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In this paper we solve the problem of how acoustic-wave fluctuations develop in 
piezoelectrics under conditions of sonic instability. We obtain a system of kinetic equations in 
rather general form for the nonequilibrium phonons and the nonequilibrium source, and 
show that the unstable system automatically separates into regions where the instabilities are 
absolute and convective in character. In these regions the growing fluctuations depend 
differently on coordinates and time: in a region with convective instability, the fluctuations 
increase with the spatial coordinate, while in a region with absolute instability, they 
increase with time. The boundary between these regions translates through the crystal with a 
velocity close to the velocity of a sound wave. We then construct a general theory of 
acoustoelectric domains in semiconductors under conditions of sonic instability. We show 
that the large-scale properties of the medium (i.e., for spatial and temporal scales 
considerably larger than the corresponding wavelength and oscillation period of the equilibrium 
acoustic phonons) are described by different equations for the regions with instabilities 
of absolute and convective character. Using the saddle-point method, we also find an expression 
for the acoustoelectric force, which describes the reverse effect of the growing phonon 
fluctuations on the large-scale properties of the medium, and solve the equations for the electric 
field distribution in the regions with absolute and convective instability. We also find an 
expression for the electric current under conditions of sonic instability, and show that the 
electric current saturates as the instability develops. It is noteworthy that this current 
saturation is not connected with trapping of carriers in a potential well, but rather is explained 
by the collective action of the nonequilibrium phonons. 

The investigation of nonequilibrium media is always a 
topic of current interest both from a practical and a theo- 
retical point of view, since even today there are numerous 
physical phenomena that have not been explained theoret- 
ically. 

Many examples of nonequilibrium media are known: 
laser media, in which state populations are inverted and 
spontaneous amplification of electromagnetic waves is pos- 
sible; gas-discharge and semiconductor plasmas in a strong 
electric field; and semiconductor crystals subjected to elec- 
tric fields strong enough that the directed drift of electrons 
and holes exceeds the phase velocity of sound or some 
other type of wave, so that growing fluctuations or oscil- 
lations of the corresponding waves are possible. It is im- 
portant to note that the macroscopic properties of a non- 
equilibrium medium differ significantly from those of an 
equilibrium medium under conditions where fluctuations 
can develop: abrupt changes occur in the scattering of op- 
tical, x-ray and y-radiation, the media behave differently in 
external electric and magnetic fields, and it is even possible 
for qualitatively new states to emerge, e.g., a magnetic mo- 
ment (see Refs. 1-3) or the Hall constant measured in an 
experiment may change sign.3-5 The experiments described 
in Refs. 6-8 reveal that when phonons are generated in a 
piezoelectric semiconductor crystal under sonic instability 
conditions, the electric field distribution becomes highly 
nonuniform, and a region of rather high electric field and 
nonequilibrium phonon density forms (a  so-called acous- 

toelectric domain) which propagates through the crystal 
with a velocity close to that of sound. This phenomenon 
was observed about 30 years ago, and despite a multitude 
of experiments (see the review Ref. 8), there is no theory 
for it to this day. In our opinion, one reason why attempts 
to construct a theory of these acoustoelectric domains have 
been unsuccessful is that the theory that describes the ev- 
olution of nonequilibrium acoustic fluctuations in semicon- 
ductor crystals is itself in need of some refinement, in the 
direction of a rigorous derivation of kinetic equations for 
the nonequilibrium fluctuations (see below). Investigators 
have found (see Ref. 9) that when the nonequilibrium 
fluctuations are studied using the Langevin approach, the 
Langevin source itself depends on coordinates and time in 
the nonequilibrium system, thereby ensuring that the char- 
acter of the spatial and temporal fluctuations will change. 
It is found that an unstable system automatically separates 
into regions with convective and absolute instabilities, in 
which the reverse effect of the growing fluctuations on the 
macroscopic properties of the medium depends on the spa- 
tial and temporal coordinates in different ways. This latter 
circumstance, which has not been taken into account pre- 
viously in constructing the theory of acoustoelectric do- 
mains, turns out to play an important role in elucidating 
the physical nature of the evolution of acoustoelectric in- 
stability in semiconductors. 

The goal of this paper is to construct a general theory 
of nonequilibrium fluctuations in systems described by lin- 
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ear equations, and to use this general theory to create a 
theory of acoustoelectric instability in piezoelectric semi- 
conductors and a theory of acoustoelectric domains. 

1. KINETIC THEORY OF NONEQUlLlBRlUM FLUCTUATIONS 

A general method of constructing a theory of fluctua- 
tions for a system in a state of stationary and thermody- 
namic equilibrium was developed by ~ ~ t o v ' '  and Callen 
and welton," who showed that fluctuations in the system 
are determined by the dissipative part of the general re- 
sponse to a corresponding external perturbation (the so- 
called fluctuation-dirsipation theorem). For nonequilib- 
rium linear systems, as we show in this paper, a system of 
equations can likewise be constructed in closed form which 
describes these fluctuations; as it turns out, the intensity of 
the fluctuations is subject to a kinetic equation whose right 
side contains a source for which a special equation is ob- 
tained. The method of obtaining this system of equations is 
based on the fact that it is always possible in practice to 
identify three characteristic temporal and spatial scales: a 
small scale, which determines the period and wavelength of 
the fluctuating field, a medium scale over which the exter- 
nal Langevin forces are correlated, and finally a third large 
scale, which characterizes the spatial and temporal growth 
of the fluctuations themselves. This division into scales im- 
plies that the spatial and temporal dependences of the cor- 
relation functions of the external forces will be the same for 
a nonequilibrium medium and a uniform medium, since 
the properties of the medium that determine the correla- 
tion can change only on the large scales that determine the 
growth of the fluctuations themselves. Mathematically this 
implies that the Fourier transforms of the correlation func- 
tions of the external forces will not depend explicitly on the 
position and time in the nonequilibrium medium; of 
course, the correlation functions of the amplitudes of the 
fields or the mixed correlation functions of the amplitudes 
and fields, which determine the corresponding sources in 
the kinetic equations for the intensities of the fluctuating 
fields, do depend on position and time. Our entire discus- 
sion will be couched in a general form for the example of a 
piezoelectric semiconductor, in which the instability is 
caused by the plasma subsystem of drifting electrons; since 
the state of the nonequilibrium plasma subsystem is not 
specified, this work is completely general and can be ap- 
plied to any other linear system. 

In accordance with the Langevin approach, we intro- 
duce external (random) forces into the original system of 
equations for the theory of elasticity and the Maxwell 
equations; these sources determine the fluctuations in the 
amplitudes of the elastic displacements and electric fields. 
By applying the slowly-varying amplitude approximation 
in the usual way, we obtain kinetic equations for the bilin- 
ear averages on whose right sides appear correlation func- 
tions of the corresponding amplitudes of the elastic dis- 
placement (electric field) and the external force. In 
contrast to previous papers, we also obtain equations for 
these correlation functions in the same slowly-varying- 
amplitude approximation, whose right sides now contain 
the intrinsic correlation functiofis of the external forces, 

which should be found independently. This separation by 
scales allows us to use well-known methods to calculate the 
external forces in nonequilibrium media in order to find 
their correlation functions, e.g., a generalization of the the- 
ory of thermodynamic fluctuations (see Refs. 1,9) or the 
methods of kinetic theory (see Refs. 12,13). For the cor- 
relation functions of the external elastic stresses we use the 
fluctuation-dissipation theorem, since the lattice subsystem 
will remain in equilibrium at constant temperature (far 
from a phase transition). In this paper the intrinsic corre- 
lation functions of the external forces are assumed to be 
known. 

The solutions we find for the source equations show 
that in a nonequilibrium medium the source itself becomes 
a function of position and time. This reflects the simple 
physical fact that the correlations between an external 
force and an amplitude (field) will grow in time and space 
in an unstable medium. Therefore it is natural that the 
solutions we find for the energy spectral density of the 
generated phonons will differ from the known expressions, 
although the conclusion that the phonon spectral density 
grows exponentially remains valid. 

We begin with the equations of the theory of elasticity 
for a semiconducting piezoelectric medium9'14 in their most 
general form: 

d2ui dulm d2ulm d2q d 
p ~ - ~ i k l m  -- piklm &&- Dl, ik -,= & (r9t),  

drk 
(1 

Here p is the density of the crystal, Aiklm, piklm are the 
tensors for the elastic modulus and viscosity, respectively 
(their symmetry properties coincide), DCik is the tensor of 
piezoelectric coefficient "with respect to strain," EO is the 
dielectric permittivity of the medium, uik(r,t) is the con- 
ductivity tensor of the medium including spatial and tem- 
poral dispersion, uik(r,t) is the strain tensor given by the 
expression uik=i(dui/drk+duk/dri), where ui(r,t) is the 
displacement vector, and q ( r ,  t) is the scalar potential of 
the electric field that accompanies the sound wave in a 
piezoelectric medium. 

Because the elastic medium is also piezoelectric, there 
are two kinds of "random forces" that lead to fluctuations 
in the elastic displacement vector: spontaneous (more of- 
ten called random) elastic oscillations of the stress uik(r,t) 
in the medium, and random or spontaneous oscillations of 
the electric displacement ~ I ~ ) ( r , t )  or current 
J(" (r,t) = ( 1/4~r) ( d / d t ) ~ ( ~ )  (r,t). These quantities play 
the role of "random forces" in Eqs. ( 1 ) and (2) (see Refs. 
15, 16). We will assume that the correlations between these 
external forces at different times and at different points in 
space are given by known correlation functions: 
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(div ~ ( ~ ) ( r , t ) d i v  ~ ' " ( r ' , t ' ) )  =$(r-r', t- t'). (4)  

The differing dependences of the correlation functions qij 
and $ on their arguments reflect the fact that the correla- 
tions (3) for the elastic subsystem are always stationary 
and in thermodynamic equilibrium, because there is no 
physical basis within the framework of the problem as for- 
mulated here to assume that the correlations of the random 
elastic stresses of the crystalline medium (without elec- 
trons) do not satisfy the fluctuation-dissipation theorem. 
However, for a semiconductor in which currents of elec- 
trons and (or) holes can exist, there is no basis to assume 
that the correlation function (4)  does satisfy the 
fluctuation-dissipation theorem. For our specific case of a 
drifting electron plasma in a semiconductor, the correla- 
tion function (4) was determined in Refs. 3, 9, 12, 13; 
therefore we will assume in what follows that the functions 
(3) and (4) are known and specified. 

When the carrier drift in the semiconductor is super- 
sonic, amplification and generation of acoustic waves be- 
come possible. In obtaining kinetic equations describing 
fluctuations that grow in space we can no longer make use 
of the usual Fourier transformations in space and time, i.e., 
the functions we seek diverge as t, x- CC. However, it is 
also obvious that the divergence of these functions has an 
exponential character; therefore we always can introduce a 
certain parameter s> 0 such that a function of the form 
eCSXu(x) will now be convergent as x- cc . For definiteness 
we will assume that the medium is semi-infinite along the 
direction of electron drift, i.e., in the x direction. In they 
and z directions we will assume that the medium is un- 
bounded, and that the orientation of the crystal is chosen 
such that the growth of the fluctuations in these directions 
is bounded, so that we can use the usual Fourier transfor- 
mations in these directions. Along the x-direction we will 
use the Fourier-Laplace transformation with the necessary 
displacement of the contour of integration. 

In Eqs. ( 1 ) and (2), we introduce the Fourier compo- 
nents of the quantities u and g, according to the relations: 

then we obtain the following linear system of algebraic 
equations from Eqs. ( 1 ) and (2)  

Here Ljj(w,q) is the dispersion operator, which equals 

where cij(o,q) = ~ ~ S ; ~ - 4 ~ a ~ ~ ( w , q ) / i w  is the permittivity 
of the medium, and Yi(w,q) is the Fourier transform of the 
sources of the random forces taking into account the initial 
and boundary conditions: 

here ~ ( C O , ~ )  are terms that contain the values of the initial 
and boundary amplitudes, i.e., the values of the Fourier 
components of u(r,t) at x=O, t=O and their first deriva- 
tives. The explicit form of the terms V ( O , ~ )  depends on 
the specific boundary and initial conditions (see Refs. 
9,14). 

Let us express the system of linear equations (7) in 
terms of eigenvalues. Taking into account the symmetry of 
the matrix Lij and the fact that its real part is much larger 
than its imaginary part [it is in this case that we can speak 
of wave solutions to the system ( 1 ), (2)], we obtain from 
Eq. (7) 

where A,(w,q) is an eigenvalue of the matrix Lij(w,q) 
defined by the equation: 

and ua(w,q) is the amplitude of the displacement "along" 
the eigenvector by corresponding to the eigenvalue A,, i.e., 
such that u,(w,q) =8, b:u;(w,q), Ya(w,q) =bpYi(w,q); 
the label a characterizes the polarization of the sound 
waves, a = 1,2,3. 

Equation ( 10) is the starting point for constructing the 
kinetic equations for phonons. We note at once that many 
linear equations for waves in media can be reduced to 
equations of the form ( lo) ,  in particular the Maxwell 
equations, and the derivation of the kinetic equations we 
will carry out below can therefore be used successfully to 
construct kinetic equations for photons, plasmons, exci- 
tons, magnons, and other excitations in the medium. 

Let us apply the slowly-varying-amplitude approxima- 
tion, or, what is the same thing, the wave-packet approxi- 
mation, to Eq. (10). For this we assume that the wave 
amplitudes ua(w,q) depend weakly on the coordinates and 
time; then the following inequalities hold: 

where w,, and qmin are the minimum frequency and wave 
vector of the fluctuating amplitudes, respectively. Condi- 
tions ( 12) imply that in the interval w < urnin, q < qmin the 
functions ua and q, do not need to be expanded the Fourier 
integral (6). Introducing the slowly varying amplitudes in 
Eq. ( lo) ,  we obtain the equation 
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FIG. 1 .  Division of the sample into two regions: I-x-vat, and 2-x> vat, in which regimes of convective and absolute instability are realized, under 
conditions of sonic instability; the acoustoelectric force Foe depends on coordinates and time or only on time in accordance with these conditions. 

The choice of sign in Eq. (13) is determined by the direc- 
tion of propagation of the waves: the upper sign corre- 
sponds to waves propagating to the right, i.e., r increasing 
with t, while the lower sign corresponds to waves propa- 
gating to the left. So as not to encumber the notation, the 
polarization label a will be dropped from here on, and only 
one of the waves-that propagating to the right-will be 
discussed. It is clear on physical grounds that the space 
and time dependence in the amplitudes u (w,q;r,t) appears 
because of the imaginary part of the eigenvalue A,(o,q), 
which determines the amplification and absorption of 
waves (in a nongyrotropic medium, of course); therefore 
we retain only the real part of A, i.e., Re A(o,q) =ill(w,q), 
in the derivatives dAi/dw and dAi/dq. 

Let us multiply Eq. ( 13) by u*(w,q;r,t), and the com- 
plex conjugate of ( 13) by u(o,q;r,t), and subtract one 
equation from the other after statistically averaging the 
product of the fluctuating amplitudes over the "medium" 
scale. Then we obtain 

where we have introduced the notation 

I= Im( P u ) .  

Note, however, that we can assign a physical meaning to 
the quantities vg(w,q) and y(w,q) introduced above only 
after imposing the dispersion relation between the fre- 
quency w and the wave vector q, i.e., requiring that the 
dispersion equation A1(o,q) = O  be satisfied. It is easy to 
show that vg(w,q) is the group velocity of the waves, and 
y(w,q) is their growth rate. 

The correlation function between the external forces 
Y(w,q) and the amplitudes u*(w,q;r,t) enters into the 
right side of Eq. ( 14). In order to determine this correla- 
tion function we proceed in the following way: Let us mul- 
tiply Eq. (13) by Y*(w,q) and carry out statistical aver- 
aging. Separating the real and imaginary parts of the 
equation obtained in this way, and noting that only the 
imaginary part of this correlation function enters into the 
kinetic equation (14), we obtain for the latter the equation 

Here Q=R(w,q) =A1 (o,q)/[dA'/dw], while the correla- 
tion function ( Y* Y) can easily be expressed in terms of the 
correlation functions (3) and (4). Thus, the system of 
kinetic equations (14) for the phonons together with the 
equations for the sources ( 15 ) in terms of known expres- 
sions for the correlation functions (3) and (4) form a 
closed system of equations that describe the kinetic prop- 
erties of the nonequilibrium fluctuations. The difference 
between the equations derived here and those given in pre- 
vious papers1~9~'2 is that the source of fluctuations in the 
kinetic equation (14) is itself determined by Eq. (15) 
found above; as we will show below, for nonequilibrium 
media this function also grows in time and space. In this 
case, the medium separates into two regions: in one region 
the instability is convective in character, and accordingly 
the source and fluctuations grow in space, while in the 
other region the instability is absolute in character, and the 
source and fluctuations grow in time. 

Let us find an explicit expression for the source 
I(w,q;r,t). To do this, we will construct a solution to Eq. 
(15). This solution has a simpler form when expressed in 
the variables C=r-v& and t, which we introduce in place 
of the variables r and t:') 

The solution to Eq. (15) can be written in the form 

I(o,q;r,t) =* ( P Y )  +C,(r-vgf)eyt cos Qt 

+ C2(r-v&)eyt sin Qt, (17) 

where C1 and C2 are arbitrary functions that depend on 
g=r-v&. Note that the case of thermodynamic equilib- 
rium corresponds to y < 0, i.e., the fluctuations decay with 
time, so that the last two terms in Eq. (17) disappear as 
t-. co. 

For the case of convective instability, growing waves 
and fluctuations in the medium occupying the region of 
space r > 0 are possible only in one direction; in the oppo- 
site direction neither waves nor fluctuations can grow. 
Therefore the region of time and space can be divided into 
two subregions: r-v&< 0, where a stationary state is es- 
tablished, and r -v& > 0, in which the fluctuations grow 
with time while remaining uniform in space (a natural 

644 JETP 77 (4), October 1993 Yu. V. Gulyaev and V. I. Pustovoit 644 



consequence of the uniform initial conditions at t=O). Re- 
quiring that the solution to ( 17) describe stationary fluc- 
tuations in the region r -v& < 0, and furthermore that the 
system be in thermodynamic equilibrium at time t=O and 
at the boundary r =0, we obtain from ( 17) 

where 8(g) - 8(&) is the theta function, r= r P r v ~ / v ~ ,  
g=ga = r  - vit, and ( T* Y),, are the thermodynamic equi- 
librium values of the correlation functions determined by 
the fluctuation-dissipation theorem. It is clear from Eq. 
(18) that the source I(w,q;r,t) is always positive, indepen- 
dent of the sign of y. In deriving (18) we have used the 
relation limy-o[y/(./2+f12)]=~6(fi)sign y, which is a 
consequence of the conditions w, qv,)y,(w,q). It is found 
that the physical requirement that the fluctuations be sta- 
tionary in the region r - ~ &  < 0 can be satisfied provided 
that 0 -+ 0. Mathematically this implies that the coefficients 
C, and C2 in (17) must contain a factor of S(R). This is 
understandable because the division of the space and time 
region into stationary and uniform regions is physically 
meaningful only when the frequency o and fluctuation 
wave vector q satisfy the dispersion relation fi,=O, since 
the correlations arise only because of transport of the per- 
turbation in the medium by acoustic waves. 

From the expression for the source ( 18) it is clear that 
for y, < 0 (although the medium can still be out of equi- 
librium) the source asymptotically ceases to depend on 
space and time: 

It is this expression (without the last term in the square 
brackets) that was used previously in Refs. 1, 9, 12. [The 
appearance of the last term in square brackets in (19) is a 
consequence of the initial and boundary conditions at r =O 
and t=O.] Substituting Eq. (18) into the kinetic equation 
(14) and noting that we have S(fl,) =6(o-qv,), i.e., we 

discuss only waves in one direction, we obtain the final 
form of the kinetic equation for fluctuations of the elastic 
displacement: 

where (uzu,),= (u,*(qu, ,q;r,t) and u,(qv, ,q;r,t) ); for the 
source, 

We have already integrated over w in Eq. (20), which 
reduces to replacing w by qw, due to the presence of 
S(w -qv,). It is convenient to introduce the energy spec- 
tral density of the acoustic oscillations g,(q;r,t) 
= (uzu,), in place of (u,*u,),, which also satisfies 
a kinetic equation like (20). 

It is clear from Eq. ( 18) that the source consists of a 
sum of two functions, one of which depends only on t in 
the region g>0, while the other depends only on r for 
6 < 0. In accordance with this structure of the source, we 
will seek the solution to Eq. (20) in the form 

ga(q;r,t) = g,(q;t)O(g) + g,(q;r)8( -g), 
then Eq. (20) splits in two: 

where Q,(t) and Q,(r) are the factors in square brackets 
in Eq. ( 18). Note that continuity of the source ( 18) at the 
boundary g= 0 also implies that the energy spectral densi- 
ties of the acoustic phonons $,(q,t) and g,(q,r) are con- 
tinuous at the boundary g=0. The solution of Eqs. (20), 
(22) can be written 

where g, and g2 are the values of the phonon spectral This distribution determines a nonequilibrium but station- 
density for t=O and rv,=O, respectively. For y, <0, which ary and uniform distribution function for the phonons. If, 
corresponds to a state in which the fluctuations do not however, we have y, tzz 1 and therefore y,r- 1, then the 
grow, Eq. (23) predicts the following value of the station- nonequilibrium phonon density is 
ary phonon density for t > 1/ 1 y, 1 : 

1 ga(q;r,t) = g:(q) [exp(2yat)8(g,) +exp(2yar)8 

gb'w =I I Y , ( ~ )  I {(cY,),,+ (EY,)). (24) 
(-ga) I t  (25) 
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where we set g,= &=0 here for the sake of simplicity. 
The method developed here for obtaining kinetic equa- 

tions for the nonequilibrium fluctuations can be applied 
successfully to obtain equations for the mixed correlations 
of the form ( u p j )  or ( u p R ) ,  which determine the scatter- 
ing properties of the medium among other things. 

2. THEORY OF ACOUSTOELECTRIC DOMAINS 

The kinetic equations we have obtained for nonequi- 
librium fluctuations in piezoelectric semiconductors allow 
us to formulate a theory of the macroscopic electric prop- 
erties of the crystal in strong fields in general form, i.e., to 
describe the underlying physics of the appearance of acous- 
toelectric domains, and to give a semiquantitative picture 
of the phenomenon under very general assumptions. 

Numerous experimental investigations have shown 
that under conditions of phonon generation in a piezoelec- 
tric semiconductor crystal a region of strong electric field is 
formed that appears very abruptly in space, in which the 
nonequilibrium phonon density is very high; this domain 
propagates through the crystal with a velocity close to the 
velocity of sound (see Ref. 8) .  Attempts to construct a 
theory of this phenomenon have not yet led to useful re- 
sults, and the physical models proposed are unable to ex- 
plain the full aggregate of observed behavior of this phe- 
nomenon. 

The formation of domains is explained most often by 
starting from the assumption that application of an electric 
field pulse to the piezoelectric semiconductor crystal re- 
sults in creation of a packet of phonons by an electric shock 
wave in the near-contact (cathode) region of the crystal. 
As this packet then propagates throughout the sample, it is 
amplified and "takes up" into itself a considerable portion 
of the electric field. It is claimed that this packet of ampli- 
fied phonons, by analogy with the amplification of a mono- 
chromatic sound wave, traps electrons in a potential well 
generated by the piezoelectric potential. Under this as- 
sumption, practically all of the electrons will be trapped in 
the potential well for a sufficiently large wave amplitude; 
consequently, the current in the circuit will equal eNova 
(where va is the sound wave velocity and No is the equi- 
librium electron density). This explanation, which could 
possibly be correct for a monochromatic sound wave, can- 
not be made the basis of a model that involves wave pack- 
ets with random phases. A wave packet with random 
phases cannot give rise to a potential well that traps elec- 
trons. This is easy to show for the example of two waves 
with arbitrary phases and frequencies that are either close 
together or nearly multiples of one another. If it is assumed 
that phase correlations arise due to nonlinear effects, then 
obviously a certain amount of time (or a corresponding 
spatial scale) is necessary for this process to develop; how- 
ever, it is clear that this temporal scale should be consid- 
erably larger than the inverse of the value of the linear 
growth rate. On the other hand, the experimental data 
indicate that the domain forms quite rapidly in time, ap- 
pearing at distances of a few hundred microns from the 
cathode boundary of the crystal. 

The reason for the lack of success in constructing a 
theory of acoustoelectric domains is that the following very 
important feature of the development of the instability has 
escaped the notice of previous investigators: two unstable 
regions form in the sample, whose instabilities have differ- 
ent natures. On the left, i.e., in the near-cathode region, the 
instability is convective in character, whereas in the region 
on the right, which occupies a considerably larger portion 
of the crystal in the initial stage of development of the 
instability, the instability is absolute in character (see the 
system of equations obtained above for nonequilibrium 
phonons). It  is significant that all the quantities that char- 
acterize the state of the system in the region with the con- 
vective instability depend only on the x coordinate and do 
not depend explicitly on time, while in the region with the 
absolute instability these quantities depend only on time 
and not on the spatial coordinates. The boundary between 
these regions translates through the crystal with the veloc- 
ity of sound. The different forms of this dependence allow 
us to construct a simple system of equations to describe the 
macroscopic properties of the medium: in the convective 
region all quantities depend only on position, while in the 
absolute region they depend only on time (see below). 

Another reason for the lack of success in constructing 
a theory of acoustoelectric domains is that the reverse in- 
fluence of the growing acoustic-wave fluctuations on the 
distribution of electric field in the sample and the value of 
the current in the electric circuit that contains the crystal 
have not been successfully analyzed even qualitatively due 
to mathematical complexity; as a consequence of this, pre- 
vious researchers have not understood the physical picture 
of the phenomenon. 

The analysis given below leads to the following physi- 
cal picture of the appearance of an acoustoelectric domain. 
When an electric field whose value exceeds the threshold 
value is switched on, an acoustoelectric force appears that 
acts on the electrons and is exerted by the nonequilibrium 
phonons; in the region with the convective instability this 
force depends only on position, and in the region with 
absolute instability only on time. The direction in which 
this force acts is always opposite the action of the external 
electric field, i.e., this force brakes the motion of electrons. 
As a result, the current in the circuit will decrease, and the 
electric field will be redistributed between the regions with 
convective and absolute instabilities. A simple analysis of 
the equations for the electric field in the region with abso- 
lute instability, where all quantities depend only on time, 
shows that the field decreases with time and falls to its 
threshold value, and that the current saturates as this oc- 
curs. It is only under these conditions that the electric field 
will remain uniform in the region with absolute instability. 
In the left-hand portion of the crystal, where the instability 
has a convective character, the phonon density and the 
field are nonuniform and increase with increasing spatial 
coordinate x. The acoustoelectric force in this region also 
increases in space, but since it depends on the electric field 
as well, it is clear that the electric field should be redistrib- 
uted in self-consistently between the regions with convec- 
tive and absolute instabilities. Mathematically this implies 
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that the equations for the phonon density and distribution 
of electric field must be solved together. However, it is 
obvious that the phonon density will be largest at the point 
x=vat, i.e., at the boundary farthest to the right of the 
region with convective instability, because the phonons ar- 
riving at this point have taken the longest route from the 
x=O boundary, and thus have spent the entire time at the 
maximum of the electric field. Therefore, the electric field 
in the neighborhood of the point x = vat will increase, "ac- 
quiring" electric field from other regions of the crystal. 
Eventually, a steady state is arrived at for which the field is 
equal to its threshold value everywhere except in the region 
of the domain itself, and the current equals eNoua. This 
qualitative picture of the phenomenon, which follows from 
the analysis we will give below, is in good agreement with 
numerous experimental results. 

We now turn to a more detailed investigation, starting 
with the derivation of a system of equations for formulat- 
ing a theory of acoustoelectric domains. 

Let us identify a unit volume of the electron gas and 
describe all the forces that act on this volume. It is obvious 
that the condition for equilibrium of a unit volume of the 
electron gas is2) 

enE- TVn - mvnv=O, (26) 

where n=n(r,t) is the electron density, E(r,t) is the elec- 
tric field, T is the electron temperature, m is the mass, e is 
the charge, v is the effective collision frequency of the elec- 
trons, and v= v(r,t) is the hydrodynamic velocity. In the 
equations of hydrodynamics (26) we have omitted terms 
with time derivatives, because I dv/dt I gw. For the condi- 
tions under which the fluctuations develop we can write 

where no(r,t) = (n(r,t)), Ed(r,t) = (E(r,t)), and n- (r,t), 
E- (r,t) are corrections that are proportional to the ampli- 
tude of the fluctuations in the acoustic waves; these quan- 
tities are not necessarily small compared with their average 
values. Substituting (27) into Eq. (26) and averaging with 
respect to fluctuations we obtain from (26) 

Here p=e/mv is the electron mobility and J ( t )  
=e(n(r,t)v(r,t)) is the current density flowing through 
the sample, which can depend only on time t but not on the 
position r by virtue of the condition of electrical neutrality 
(div J=O). 

It can be shown14 that the correlation (n,E,) is ex- 
pressible in terms of the spectral density ga(q;r,t) of the 
photons being generated in the form 

The quantity Fae(x,t) is the force acting on a unit volume 
of the electron gas exerted by the increasing phonon flux 
(i.e., the acoustoelectric force). In (29), f ( q )  is the elec- 
tronic part of the growth rate of the phonons ya(q) [see 
(14)], which can be expressed in terms of the longitudinal 
dielectric permittivity of the medium (w,q) in the 
formI4 

where x:= (4~P:/~v&,) is the square of the electrome- 
chanical coupling constant, f i  qEd/qEcr, Ecr= va/p is the 
critical (threshold) value of the electric field, T ~ = E , - , / ~ I T u ~  

is the Maxwell relaxation time, and ~ ~ = e ~ ~ , - , / m v  is the 
conductivity of the electron gas. Equation (30) is for the 
case of low frequencies, i.e., qlgl, where I is the electron 
mean free path. We also can obtain an expression for the 
growth rate for phonon generation when ql> 1 holds (see 
Ref. 14), i.e., in the high-frequency region, such that all 
the previous conclusions obtain for the case of high- 
frequency phonon generation as well. 

For the latter analysis it is important that the spectral 
density of the phonons ga(q;r,t) for the region with con- 
vective instability depends only on the coordinate r, while 
for the region with absolute instability it depends only on 
the time t [see Eqs. (23) and (25) obtained above]. In 
accordance with this, substituting the quantities ga(q;r,t) 
into (29) leads to an expression for the acoustoelectric 
force Fa, that also will have different dependences on r and 
t for the regions with convective and absolute instabilities 
(see Fig. 1.) The latter implies that the equation for the 
electric field (28) breaks up into two equations for the 
regions with convective and absolute instabilities, respec- 
tively: 

for x < vat and 

for x > vat. Here 

where Fae(x) and Fae(t) are the values of the acoustoelec- 
tric force in the regions with convective and absolute in- 
stabilities, respectively. In deriving (32) we also made use 
of the Poisson equation in the form 
EO div Ed=4ae(n0(x) -No). 

It is necessary to add the obvious boundary condition 
td Eqs. (31) and (32): 
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where V is the potential difference of a source with internal 
resistance Ri, and Rl is the resistance of the load. In what 
follows we will assume for the sake of simplicity that 
Ri=O, R,=O. The electric field in the region with convec- 
tive instability depends explicitly on the coordinate x and 
depends implicitly on the time t as well due to the time 
dependence of the current J ( t )  . 

Equations (31), (32) and the boundary conditions 
(34) combined with the kinetic equations for the phonons 
(22) are the starting system of equations for constructing a 
theory of acoustoelectric domains. The equations for the 
field (31) and (32) are exact; however, in deriving Eq. 
(29) for the acoustoelectric force we made use of the linear 
relations between the fluctuations n, (r,t) in the electron 
density, the electric field E, (r,t), and the amplitude of the 
sound waves. This implies that we will not consider non- 
linear effects of the decaying-instability type or harmonic 
generation. 

For further analysis it is necessary to refine Eq. (29) 
for the acoustoelectric force. For this we substitute into 
(29) the expression (25) for the phonon spectral density in 
the region with absolute instability (ca > 0, yt > 0),  and 
carry out the integration over the wave vector q. It is not 
possible to carry out this integration explicitly; therefore, 
we use approximate calculations. First of all, we note that 
the stationary phonon density also depends on the electric 
field Ed(t), as is clear from (24). It is easy to show, al- 
though this is clear physically, that this dependence is very 
weak; therefore, we may assume $St(q) z $,,(q), i.e., that 
it equals its value in thermodynamic equilibrium. For an 
electron temperature equal to the temperature of the lat- 
tice, we have $,,(q) = T. We will also assume that viscos- 
ity absorption is small compared to the electronic absorp- 
tion, i.e., y(q) z ye(q). The orientation of the crystal is 
chosen so that the radiation diagram of the phonons is 
axisymmetric in structure; the intensity maximum of the 
radiation is located near the direction of the drift vector, 
i.e., it is directed along the x axis. The axial symmetry of 
the radiation diagram for the phonons implies mathemat- 
ically that Eq. (29) contains only the dependence on the 
direction x, and the dependence on the transverse coordi- 
nates y and z disappears [these are the conditions under 
which Eq. (3 1) was obtained; it was shown in Refs. 1, 3 
that if the dependence on y, z is retained, vortex currents 
arise that lead to a magnetic moment in the sample2]. As a 
result, we obtain from (29) 

where f = cos ( h e ) ,  where A8 is the aperture angle of the 
Cherenkov generation cone. Strictly speaking, the time in- 
tegration in the exponent of Eq. (35) does not start from 
zero, but rather from a certain very small but nonzero 

initial time, in accordance with the solution we have used 
for the kinetic equation for the phonons (25). This differ- 
ence is insignificant, because at t=O the acoustoelectric 
field is much smaller than the critical field E,,. The inte- 
gration over the magnitude q=w/v, of the wave vector in 
(35) can be carried out by using the saddle-point method, 
according to the well-known expression:19 

where xo is the point at which the function f ( x )  has a 
maximum. Integrating with respect to q in (35) and using 
Eq. (36), we obtain 

X I J o t ( ~ ( t l ) - l ) d t l / r M  I - . (37) 

Here Fo= (2.n)-1~2exf/{~Or0rM~a) is a quantity with the 
dimensions of electric field, and go= l/ro, where ro is the 
Debye radius for electrons, i.e., the maximum contribution 
to the electric field is carried by phonons whose wave vec- 
tor equals the inverse value of the Debye radius for the 
electrons. In deriving (37) we made use of the condition 

I (P( t)  - 11 <4rMua/r0, which is always met for large t, as 
we will see below. It is important to note that the acous- 
toelectric field (37) is proportional not to the square of the 
electromechanical coupling constant as occurs for the 
acoustoelectric effect from a discrete number of monochro- 
matic waves (see Ref. 14), but rather is proportional sim- 
ply to x. This is because the field (37) arises from the 
collective action of a very large number of waves. Mathe- 
matically this is due to the wave vector integration in (35) 
over a broad interval of values of q. We note also that 

where yeO= y,(q = go). This relation, which follows from 
Eq. (30), was used to derive Eq. (37). 

Let us estimate the value of the quantity Fabs(t) for 
crystals such as cadmium sulfide, which are most often 
used in experiments involving the observation of acousto- 
electric domains. For the slow transverse acoustic wave in 
the CdS crystals we have u,= 1.8. lo5 cm/s, x=0.14, 
~ ~ = 1 0 ' ~  cmP3, v= 1013 S-l, .zO=5, EO=1125 V/cm, 
T ~ =  2 - S, and r0=2.7 . lop5 cm; then from Eq. (37) 
we obtain the estimate 

where to is a certain time within the interval [O,t] such that 
04to(t, and 

648 JETP 77 (4), October 1993 Yu. V. Gulyaev and V. I. Pustovoit 648 



FIG. 2. The function A ( 6 )  = $$[J(()/U&,- l]d( versus 
Z((), in accordance with Eq. (42). The linear portion 
corresponds to Ohm's law, the region near the maximum 
to current saturation J(t) =eN,u, 

T= 3y-1/2(qo) in Eq. (42) no longer depends on the 
electromechanical coupling constant H: and has the very 
simple form 

It is clear from Eq. (39) that, as a function of time, the 
acoustoelectric field is initially slowly varying for small t, 8 ( 2 ~ )  -1/2ce 

T= 
but grows exponentially rapidly with time for values of t &o+?L$~cr 
such that t)rm/2yo. From the estimates used to obtain 
(39), we find that I;,b,(t) has already reached its threshold for the estimates given above for CdS crystals we have 

value Ecr for t= 7007, = 1.4 - lo-' s; after this time, the Y=0.08c. However, this quantity increases very rapidly 

phonons from the boundary x =O traverse a path of length with the electron density, since T c c  N:. 

2.5. cm in all. Experiments show8 that these are the The values of the electric field at different times are 

orders of magnitudes of the time and spatial scales over determined by the derivative dz/d(, and therefore must be 

which the formation of domains takes place. obtained from Eq. (41) by solving Eq. (42) to find the 

Substituting the value of F,,(t) from (37) into Eq. function z((). We emphasize once more that near t=O or 

(32), we finally obtain an equation for the electric field in (=0 the saddle-point method is not really suitable, and 

the region with absolute instability: therefore the term proportional to 3 must be dropped in 
accordance with the physical formulation of the problem. 

In Eq. (40) we have introduced dimensionless variables 
according to the definitions 

Then in place of (40) we obtain the equation 

which does not contain the variable 6 explicitly; hence a 
solution can be obtained at once: 

~ ( 6 )  - 3 ~ & ~ / ~ ( 9 0 ) * (  J%G3m) 

(42) 

Here @(x) = Sg exp(x2)dx is the probability function of 
imaginary argument and yo(qO) = x:[86]-'v:."MM is the 
value of the growth rate for generation of phonons when 
(P(() - 1 ) 4 ~ , ~ ~ / ( 4 r ~ ) ,  divided .by the factor 
( 1 - f l ( ( )  )/rM. We note that the dimensionless coefficient 

- - 
For small t, i.e., t-,O, it is no longer possible for the pho- 
non generation to reach appreciable values; therefore, the 
phonon contribution to (32) under equilibrium conditions 
will be small. For the problem under discussion here this is 
not important, because we are interested in the behavior of 
the system for large t, when the phonon generation gives 
rise to a considerable contribution. It is easy to see directly 
from Eq. (41) that for small t the usual Ohm's law holds. 

It is clear from the solution (42) that the maximum 
positive value of the current cannot exceed a certain value 
determined by Eq. (42), i.e., 

where I. is the maximum of the function of the variable z 
determined by the left side of Eq. (42) (see Fig. 2). It is 
important that Eq. (43) must be satisfied for all values of 
6, including large ones; however, this latter case is possible 
only in a situation where 

Thus, the current saturates. The value of the constant I. 
affects the character of the time dependence of the current, 
but not its asymptotic value (44) as t-, co. The fact that 
the current saturates can be proved another way, by ap- 
proximating the curve in Fig. 2 as it approaches the max- 
imum by the tangent at the corresponding point. It is ob- 
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vious that in the vicinity of the point b (see Fig. 2) we can 
write z(() =A + Ba(g), where A and B are constants that 
determine the tangent at the point b. Differentiating this 
relation with respect to (, we obtain 

as the point b approaches the maximum, at which B goes 
to infinity, the result (44) follows from the expressions 
derived above. Using the asymptotic value (44), we obtain 
from Eq. (41) the asymptotic value of the electric field as 
well, which corresponds to the value of the current (44): 

The asymptotic values we have obtained for the cur- 
rent and electric field under conditions of intense phonon 
generation are in good agreement with the experimental 
results (see Ref. 8). We note that the condition (-. co, i.e., 
t / ~ ~ -  m, is meaningful in the interval t( L/v, , where L is 
the size of the sample along the direction x. 

Let us discuss the dependence shown in Fig. 2 in more 
detail. From the plot it is clear that we can identify three 
characteristic regions: a linear segment (near the point A), 
a region near the maximum (the point B), and a rapidly 
decaying portion. On the linear portion the following rela- 
tions hold: 

from which Ohm's law follows immediately. At the point 
B near the maximum Eq. (43) holds and the current un- 
dergoes saturation. In the decaying portion (let us say, at 
point C) the following relation holds: 

where P and K are constants which characterize the tan- 
gent at the point C. Differentiating (46) with respect to g, 
we obtain a relation between the current and the field in 
this region, from which it follows that the differential con- 
ductivity becomes negative, i.e., dJ/dE= -Kgo. The latter 
implies that the system must be unstable in this region. 
However, this conclusion must be asserted with a certain 
caution, because the saddle-point method we have used 
may turn out to be inapplicable in this region. Actually, 
from Eq. (32) and the expression for the acoustoelectric 
force (29), which can be rewritten in the form 

it follows immediately that the electric field Ed satisfies the 
relation 

from which it immediately follows that Ed-Ecr/f as 
Fo+ W .  Thus, the exponential growth with time of the 
phonon density and the associated increase in the acousto- 
electric field I;, lead us to the conclusion that the electric 
field drops to its threshold value (we recall that 

(=cos(Ae), where he is the aperture of the Cherenkov 
cone for phonon generation, and f -+ 1 as the field Ed falls 
to its threshold value). 

Let us now discuss the region with an instability of 
convective character, in which the electric field is nonuni- 
form and the growth rate y for generation depends implic- 
itly on the coordinate x. The solution to the kinetic equa- 
tion (25) for this case gives the following expression for 
the phonon spectral density: 

Substituting this value of the phonon spectral density into 
Eq. (29) and carrying out the integration over all wave 
vectors, as in the derivation of Eq. (37), we obtain 

Let us introduce the notation 

and substitute (47) into the equation for the electric field 
(32). Assuming the electron concentration is such that the 
following condition holds 

we obtain the following equations for determining the di- 
mensionless electric potential Y(x,t) : 

In contrast to Eq. (41) for the dimensionless electric po- 
tential in the region with absolute instability, the potential 
Y in Eq. (49) depends both on the coordinate x and on the 
time t. Equation (49) does not explicitly contain the vari- 
able X, and, therefore, we can immediately obtain its solu- 
tion: 

It is interesting to note that the coefficient in front of the 
function Q, in the solution (50) no longer depends on the 
electromechanical coupling constant. We can find the so- 
lution for the potential Y(x,t) from Eq. (50) numerically 
or graphically after first constructing the function x (Y)  
and then the function Y(x,t). The results of this analysis 
are shown in Fig. 3, where we show the dependence of 
Y(x) on 
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FIG. 3. Dependence of Y(x) on ~ ( 6 1 ~  
=XI;( J({)/U,&~,- 1 )dt, which follows from Eq. (50) 
for different values of the current at various instants of time 
J ,  ,J2,J3, respectively. The linear portion corresponds to 
Ohm's law J(t) =u,&(t), the region near the point b cor- 
responds to the domain region; at the point b, the deriva- 
tive dy(x)/dx goes to infinity, as does the electric field. It 
is physically clear that this is impossible by virtue of the 
boundary conditions. 

which follows from Eq. (50); here J1,J2,J3 are values of 
the current at the times tl,t2,t3, respectively. The linear 
portion (point A )  corresponds to Ohm's law 
J (  t) =a&( t), the portion near the point B corresponds to 
the domain region; at the point bo the derivative dY(x)/dx 
goes to infinity, and accordingly the electric field also be- 
comes infinite. It is physically clear, however, that this is 
impossible by virtue of the boundary conditions. From the 
solution (50) it is clear that in the region of small x the 
potential increases linearly with x. This implies that the 
electric field near the cathode is uniform and does not 
depend on x; however, as x increases the electric field 
grows very rapidly and at the point bo, which can be de- 
termined from Eq. (49) it diverges. Obviously, this also is 
the region of the acoustoelectric domain. It is also clear 
that the largest value of the electric field is reached at the 
right boundary point of the region with convective insta- 
bility, i.e., at the point x=v,t. This latter also implies that 
we can use the boundary condition (34), substituting into 
it the values of the electric field from formula (45). Then 
we obtain 

v 
( o " a t ( E ~ - ~ ) d x = - - ~  Ecr  for t>td ,  (51) 

where td is the characteristic time in which a domain 
forms. From Eq. (51) it follows immediately that 
Y(x) < ( V/E,, - L )  u,rM for all values of X, and therefore 
we can obtain sufficient conditions for formation of a do- 
main from (49 ) : 

Expression (52) shows that for a given field intensity, i.e., 
for V/L=const, the formation of a domain depends sig- 
nificantly on the length of the crystal and the value of Fo 
(which is proportional to N:"), SO that as the electron 
density No and the length of the crystal L increase, the 
condition for domain formation (52) is relaxed. The 
boundary conditions (34) allow us to obtain an equation 
for the time dependence of the current 

Relation (53) is in fact an integral equation for the cur- 
rent, because Y depends functionally on the current, while 
z ( { )  depends on the time integral of the current. This 
equation can be solved only by numerical methods; how- 
ever, it is not difficult to show from (53) that all the as- 
ymptotic results obtained above follow as t+  oo; further- 
more, it follows that the current decreases as a function of 
time. From (53) it follows that the current is determined 
primarily by the function z ( { )  for large L, i.e., by the 
character of the evolution of the absolute instability in the 
region of the crystal x > v ~ .  

Relation (51) may be treated as an integral equation 
for the function Ed(x). An obvious solution to this equa- 
tion is the function 

where Ed(u,t-X) is an arbitrary nondecreasing function of 
its argument. Equation (54) yields a relation between the 
"width" h of a domain and the potential V: 

This relation is also in good agreement with experiment 
(see Ref. 8).  The stationary phonon density in the domain 
will be 

which no longer depends either on time t or on x, but 
rather is determined by the applied field and the size of the 
crystal. 

Thus, the theory of acoustoelectric domains we have 
formulated here answers practically all the questions posed 
by numerous experiments: it explains the effect of current 
saturation and the formation of the domain itself, and de- 
termines the translation velocity of the domain through the 
crystal, which turns out to be extremely close to the veloc- 
ity of the phonons generated; it gives a value of the electric 
field in the region outside the domain that turns out to be 
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very close to the critical (threshold) value v,/,u, and es- 
tablishes the connection between the current and the field 
at different instants of time. Questions about the shape of 
the domain remain outside the scope of this investigation; 
it is clear that in order to answer these questions we must 
discard condition (48) and solve the very complicated in- 
tegrodifferential equations we have obtained for this case. 
Also outside our analysis are the variation and spectral 
content of the phonons generated, in particular the down- 
ward shift of the maximum frequency of generated pho- 
nons, and the formation of an electric double layer in the 
domain, which several experiments indicate. All these 
questions require a separate investigation; however, it is 
clear that they also can be solved within the framework of 
the equations described here. 

"AS before, we are dealing with waves traveling in one direction and 
therefore g=r-vd; however, for waves propagating in the opposite 
direction we use g=r+vd, etc. 

''1t is known'' that taking into account temperature oscillations or elec- 
tron temperature waves causes only a numerical change in the threshold 
for amplification (generation) of sound, while not changing the overall 
picture of the phenomenon. As for possible dependence of the collision 
frequency v on electric field E, it can be shown that additional terms 
that arise in (26) due to this dependence are insignificant for all scat- 
tering mechanisms, with the sole exception of electron scattering by 
optical phonons in the low-temperature range T(fwOPt ,  where o,,, is 
the characteristic frequency of the optical phonons. As this case has not 
yet been encountered in experiments on acoustoelactric instability, it 
will not be discussed in this paper. 
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