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A theory is developed for triangular helicoidal antiferromagnetic structures due to the 
relativistic-exchange inhomogeneous Dzyaloshinskii-Moriya interaction in hexagonal crystals. 
The magnetic structure observed in the CsCuC13 system is explained, and the spin-wave 
spectrum for this equilibrium state is found. The theoretical results are in agreement with 
experimental antiferromagnetic-resonance data for this compound. 

Studies of physical systems whose magnetic properties 
(and not only magnetic properties) approach those of one- 
dimensional and two-dimensional systems have recently at- 
tracted continuing interest. Magnets with a highly aniso- 
tropic interaction are among them. Two factors are largely 
responsible for this. First, the behavior of such objects is 
significantly different from three-dimensional magnetic ob- 
jects. Second, the chain-coupling exchange parameters are 
small in comparison with internal chain parameters of 
quasi-one-dimensional systems (or plane-coupling param- 
eters in quasi-two-dimensional magnetically-ordered sys- 
tems as compared with internal plane parameters). This 
means that such systems can be investigated with readily 
accessible external-parameter values. 

The systems include the well-defined and extensive 
class of hexagonal magnetic compounds of the form 
ABX3, where A and B are cations and X is a halogen. The 
compund CsCuC13 occupies a special place in this class and 
presents us with a relatively rare example of a modulated 
magnetic structure due to the relativistic-exchange interac- 
tion, i.e., a structure resulting from the competition be- 
tween the Dzyaloshinskii-Moriya and exchange 
interactions. ' ) 

Although an extensitve literature is now available5-'' 
on the experimental and theoretical studies of the magnetic 
properties of CsCuCl,, there are a substantial number of 
unresolved problems relating to its magnetic structure and 
the dynamics of this structure. 

In this paper, we examine some of the details of the 
magnetic structure of CsCuC13 that had previously escaped 
our attention, and investigate the acoustic branches of its 
intrinsic linear excitations. 

1. GENERAL ASPECTS OF THE CRYSTAL AND MAGNETIC 
STRUCTURE OF CsCuCI, (EXPERIMENT) 

Below T,=423 K, in its paramagnetic state, the com- 
pound CsCuC13 has the P6122 space group (without a cen- 
ter of symmetry). Six magnetoactive cu2+ ions (spin 
S= 1/2) occupy b-positions, i.e., they are shifted in the 
basal plane of the crystal relative to the hexagonal 6'-axis 

by an amount x. The cu2+ ions thus form spiral chains 
oriented along the 6, axis (the separation between neigh- 
boring ions in a chain is -cd6 for lattice parameters 
co= 18.1777 A and ao=7.2157 A). The important point is 
that, in this particular case, the shift x (expressed in nor- 
malized units) is very small: xz0.06(1. The almost quasi- 
one-dimensional magnetic behavior of the system is dic- 
tated by the smallness of x and the properties of the 
exchange, superexchange, and relativistic-exchange 
interactions9 (in particular, the fact that interchain inter- 
actions are small in comparison with intrachain interac- 
tions). 

Neutron diffraction data, obtained in the absence of an 
external magnetic field, suggest that, below TN= 10.7 K, 
the magnetically-ordered state of CsCuC13 displays a tri- 
angular antiferromagnetic (AFM) structure in the basal 
plane of the crystal and a long-period modulation of this 
structure along the hexagonal 61-axis (subsequently, the 
cartesian z-axis), i.e., the wave vector of the structure q is 
parallel to the e, axis. The structure-period average of the 
angle between the magnetizations of the cu2+ chain ions in 
neighboring basal planes is approximately 5. lo. Conse- 
quently, the modulation period is about 12 lattice con- 
stants. 

2. THERMODYNAMIC POTENTIALS OF THE CSCUCI, 
SYSTEM 

The triangular AFM structure in the basal plane re- 
quires the tripling of the magnetic unit cell as compared 
with the crystal unit cell in this plane. Since the triangular 
modulated AFM structure "grows out of" the simple (in 
Dzyaloshinskii's sense1') triangular AFM structure with 
q=O, the theoretical description of the magnetic properties 
of the CsCuC13 system requires, in general, eighteen mag- 
netic sublattices. 

However, if we exploit the results reported in Ref. 10, 
i.e., if we use the method of extended translational symme- 
try, we can go over to the three-sublattice description of 
the above object (each spin chain of C U + ~  ions is then 
described in terms of a single sublattice) and take the ab- 
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breviated Hamiltonian of the c u f 2  ion chain in the 
nearest-neighbor approximation: 

where S, is the nth spin in the chain, x and y are the 
cartesian coordinates in the basal plane of the system, H is 
the external magnetic field, and J >  0, D, K >  0 are the 
intrachain exchange, relativistic-exchange, and relativistic 
interaction constants, respectively. We note that (1) does 
not contain invariants corresponding to the single-ion mag- 
netic anisotropy energy, since in our case S= 1/2; in addi- 
tion, we have omitted invariants that are small in compar- 
ison with the terms written out in the Hamiltonian, which 
is a quadratic function of the spins (this approximation is 
valid when x is sufficiently small). 

In this approximation, and since nearest neighbors in 
neighboring chains form layers of magnetoactive cu2+, we 
obtain the following Hamiltonian for the interchain inter- 
action if we confine our attention to the exchange interac- 
tion within a layer: 

where n is an arbitrary cu2+ ion, n' are its nearest neigh- 
bors in the basal plane, and Inn, = I is the exchange in- 
teraction constant in the interior of a layer (it is clear that 
we must have I > 0 if a triangular AFM structure is to be 
formed). 

The experimental values of J and I reported in Ref. 9 
suggest that I/J-0.1, which means that the C U + ~  mag- 
netic system is almost quasi-one-dimensional. Moreover, 
for temperatures in the range I < T < J, the triangular 
AFM structure breaks up and the magnetic material be- 
comes quasi-one-dimensional in the full sense of the 
phrase. 

It is readily shown that the transition to the continuous 
limit and inclusion, in its simplest form, of the energy of 
hexagonal magnetic anisotropy in the basal plane lead to 
the following expresion for the thermodynamic potential in 
the weak-gradient approximation (we confine our atten- 
tion to long-period modulations): 

where m,=M,/Mo, M, is the magnetization of the sub- 
lattices, n = l ,  2, 3, lMnl =Mo=const, m:=mnX*im,, 
a > 0, al > 0 are the inhomogeneous exchange interaction 
constants along chains and in the basal plane, respectively, 
6 > 0 is the homogeneous interchain (interplane) exchange 
interaction constant (6 - I ) ,  al - (v/c)Sc; is the intra- 
chain relativistic-exchange interaction constant1 whose 
sign, as will be seen later, is unimportant for the formation 
of a modulated AFM structure, v is the Fermi velocity of 
electrons, c is the velocity of light, P>O and p are the 
crystal magnetic anisotropy constants, h=H/Mo, and H is 
the external magnetic field (we shall suppose that h= he,). 
We note that al <a, SBB, 6) 1 p 1 .  

3. MAGNETIC STRUCTURE OF CSCUCI, (THEORY) 

We now parametrize the magnetization vectors of the 
sublattices in terms of the polar and azimuthal angles 8, q, 
(the polar axis of the spherical coordinate system lies along 
the hexagonal axis), i.e., we put 

so that (3) gives the following expression for the thermo- 
dynamic potential density: 

P P +- cos2 8, +- sin6 8, cos 6q, - h cos 8, 
2 6 1 

+S[sin el sin O2 C O S ( Q ) ~ - - ~ ~ )  

+sin 81 sin e3 cos(ql -q3) 

+sin e2 sin O3 cos ( ~ 2 - q ~ )  + cos el cos O2 

where the primes indicate differentiation with respect to z 
[we have omitted from (5) the invariants that are spatially 
inhomogeneous in the basal plane, since the magnetic 
structure of our system in its ground state varies only in 
the z direction]. 

It is readily verified that the equations SW/SB,=O, 
6 W/6qn = 0 have solutions of the form 

e1=e2=e3=e, 
(6) 

q i=q ,  4 ) 2 , 3 = ~ ) f  23713, 
~ ( r )  =wch(r) +~ in t ( r )  

3 
where the angles 8, q satisfy the equations 

sin B{aq" sin 13+ 2 (aq '  + al)  6' cos 8 

+ p sin5 8 sin 6q) = 0, 

ae" +sin 8{(3~+fI--aq'~-2a~q' 

- p  sin4 8 cos 6q)cos 8-h)=0. 

We note that, whatever the external magnetic field 
+6(mlm2+m~m3+mzm3), (3)  strength, the solution of (7) with O=const = O  is obviously 
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of no interest because it describes the "easy axis" ferro- 
magnetic state that cannot arise in the absence of the ex- 
ternal magnetic field for 6 > 0. 

Let us examine the set of equations given by (7) for 
certain special cases. 

A. Neglecting the hexagonal magnetic anisotropy in 
the basal plane of the crystal ( p=O), we can readily show 
that (7) assumes the form 

ap" sin B+2(ap1+a1)8' cos 8=0, 
(8) 

This set of equations has as its energetically most fa- 
vorable solution the FS-structure (see Ref. 12 for an ex- 
planation of this notation) with the following parameters: 

= w ,  qo=al/a, 

2 
(9) 

cos 8=const=h/(36+P-ago-2a1qo), 

where in view of the above estimates of the phenomeno- 
logical constants in (3),  we have 

Taken in conjunction with (4)  and (6), this solution de- 
scribes the equilibrium long-period FS-type modulation of 
the simple triangular AFM structure with the wave vector 
of the structure having the direction of the hexagonal axis 
and magnitude go. In other words, we are dealing here 
with three FS-structures of the same type, first described in 
Ref. 1, which are correlated into a triangular AFM struc- 
ture in the basal plane of the system. 

In the absence of an external magnetic field, the har- 
monic FS-structure transforms into the SS-structure ( 8  
=n/2), whereas in the presence of an external magnetic 
field h = h,= (36 +P-at/a), the modulated AFM struc- 
ture collapses and there is a continuous phase transition to 
the ferromagnetic state. 

B. If we drop the external magnetic field, but retain the 
energy of hexagonal magnetic anisotropy in the basal plane 
(p#O), the second equation in (7) obviously has the so- 
lution 

whereas the first equation assumes the form 

a p " + p  sin 6p=0. (11) 

Unfortunately, we are not aware of any experimental 
data on the hexagonal magnetic anisotropy constant in the 
basal plane of CsCuCl,. We shall therefore assume hence- 
forth that p > 0, which will have no effect on our qualita- 
tive conclusions. If we were concerned in this case with 
spatially homogeneous (simple) magnetic states, the ener- 
getically favorable states would be those with 

i.e., we would have a six-fold degenerate ground state. 

The solution of ( 11) that describes the modulated 
AFM structure can be expressed in terms of the elliptic 
Jacobi functions1 

1 z-z' 
9=-am(T,s),  3 for sin3p=sn 

where zo= (a/18p)1/2 is the characteristic length and z', s 
are constants of integration. The first of these constants is 
determined by the choice of the origin and can be set equal 
to zero without loss of generality. The second constant is 
the modulus of the elliptic functions and can be found by 
minimizing the total energy of the system (3) as a function 
of s. Substituting ( 10) and ( 12) irl (3) ,  and using (4)-(6), 
we obtain after some simple algebra the following expres- 
sion for the equilibrium value of the parameter s: 

where E(s)  is the complete elliptic integral of the second 
kind. 

If we take (13) into account, we find that the equilib- 
rium energy of the modulated AFM structure (per unit 
length) can be written in the form 

where s, is the solution of ( 13). 
The spatial period g2", of the magnetization distribu- 

tion, i.e., the period of the modulated AFM structure, is 
given by 

where K(s) is the complete elliptic integral of the second 
kind. For small values of the hexagonal magnetic aniso- 
tropy constant p<a?/a, the solution of (13) takes the 
form 

and the spatial period of the modulated AFM structure is 

It is readily seen that, for p-0, the spatial distribution of 
the magnetization of the AFM sublattices (12) takes the 
form of (9)  for h =O. 

A different picture arises for s- 1 (the case of high 
energy of magnetic anisotropy in the basal plane). In this 
case, the period of the spatial distribution of AFM- 
sublattice magnetization contains six segments with prac- 
tically constant phases p ,  namely, 

and a sharp change in p at the boundaries between these 
segments. The sublattice magnetizations in the modulated 
AFM structure form the triangular AFM structure and are 
'held' in the energetically most favored directions p(m' 

630 JETP 77 (4), October 1993 E. P. Stefanovskii and A. L. Sukstanskii 630 



(this spatial distribution is sometimes referred to as a soli- 
ton lattice). The magnetic lattice of the crystal can then be 
thought of as being a periodic system of 'domains' q(m) ,  
i.e., phases forming a coherent structure with a monotonic 
variation of g,. 

The presence of a well-defined soliton lattice in the 
crystal is readily seen to explain the experimental results 
reported in Ref. 13 on the NMR spectra of cu2+ nuclei in 
magnetic fields of different orientation in the basal plane of 
the system. 

Obviously, if the energy of hexagonal magnetic anisot- 
ropy in the basal plane is high enough, long-period modu- 
lation of sublattice magnetization of the triangular AFM 
structure becomes impossible, and a spatially homoge- 
neous triangular AFM distribution of sublattice magneti- 
zation is established (which does not, of course, exclude 
the presence in the crystal of true "domains" q(") due to 
the six-fold degeneracy of the ground state in the angle g,. 
We note that such domain systems are not thermodynam- 
ically stable states of a magnetic material, but are never- 
theless observed experimentally. 

Comparison of the energies of the soliton lattice and 
the spatially homogeneous sublattice magnetization distri- 
bution, given by ( 14), readily shows that the soliton lattice 
is energetically more favorable for 

If p- p,, then s, - 1 and Tp- 03. Consequently, the 
period of the structure increases without limit with increas- 
ing anisotropy constant, and for p-p, the system trans- 
forms into a system of 60" domain boundaries at an infinite 
(formally) distance from one another. In fact, we obtain a 
spatially homogeneous magnetization distribution. 

C. We now return to the general set of equations (7) 
for p#O and h#O. A general analytic solution of this sys- 
tem does not seem possible. However, when the external 
field is low enough (h(h,), we may expect that the angle 
at which the magnetization vectors leave the basal plane is 
also small: 1 ~ / 2  - 8 1 (1. It is readily verified that, as for 
h =0, the first equation in (7) reduces to ( 1 1 ) to first order 
in the external magnetic field, i.e., the azimuthal angle dis- 
tribution q(z) is again given by (12). To first order in 
h (h, and '-8=d2- 841, the second equation in (7) is a 
Hill-type inhomogeneous differential equation with peri- 
odic coefficients: 

where p=q(z)  is given by ( 12). 
Analysis of (18) becomes significantly simpler if we 

recall that, within the entire domain of existence of the 
modulated AFM structure, excluding a logarithmically 
narrow band near p,, the system has only one character- 
istic length, namely, the structure period Tp. If we also 
recall that p4S and gp> (a/S) 'I2, the solution of ( 18) 
can be approximately written in the form 

(19) 
It is clear from (19) that, when the external magnetic 

field and the hexagonal anisotropy in the basal plane are 
simultaneously taken into account, we obtain a 'nutation' 
effect in which the modulated AFM structure includes the 
modulation of not only the components of the magnetiza- 
tions of the AFM sublattices in the basal plane, but also 
their projections along the wave vector of the structure. 
The 'nutation' amplitude is of the order of hp/a2 and the 
corresponding spatial period [i.e., the period of the polar 
angle 8(z)] is, as expected, smaller than the period of the 
main structure by a factor of six. 

If a "soliton lattice" is established in the system, then 
there are two characteristic dimensions, namely, the struc- 
ture period Tp and the size A. of the transition region 
between the "domains" q(m) (see above), where Ao(d",. 
The solution of ( 18) can then no longer be written in the 
relatively simple form of (19), but the qualitative picture 
remains unaltered. Under these conditions, we have q' ~ 0 ,  - 
Ozh/36 in the interior of each 'domain' g,("). On the other 
hand, within the region of rapid variation of the phase g, in 
the "domain" boundaries, the polar angle 8 changes 
abruptly by an amount - hp/a2. 

The linear dependence (19) of the "nutation" ampli- 
tude on the external magnetic field (for given p)  is, of 
course, no longer valid when we leave the linear approxi- 
mation (h ( h,). Moreover, the effect vanishes in the oppo- 
site limit (h-h,), since the projections of magnetization 
m, on to the basal plane tend to zero. Consequently, an 
increase in the field is accompanied by a nonmonotonic 
dependence of the 'nutation' amplitude, with a maximum 
in the interval (O,h,) . The amplitude vanishes as h - 0 and 
h+h,. 

4. SPIN DYNAMICS OF CsCuCI, (ACOUSTIC BRANCHES) 

We now turn to linear magnetic excitations (spin 
waves) superposed on the modulated AFM structure dis- 
cussed above. 

As noted in Sec. 2, a triangular modulated AFM struc- 
ture in the CsCuC13 system can be described by a model 
with three effective magnetic sublattices. The magnetic dy- 
namics of the system can then be analyzed with the help of 
the usual equations of motion of the sublattice magnetiza- 
tion vectors m, (Landau-Lifshitz equations). In our 
model, these equations reduce to a relatively cumbersome 
and inconvenient system of six differential equations for 
the angle variables 8, and g,, that parametrize the unit 
vectors m, (cf. Ref. 4). 

To investigate the modulated AFM structure in the 
CsCuC13 system, we therefore use the very productive 
method of effective Lagrangians developed in Refs. 1616. 
According to this method, any magnetic structure can be 
described in the exchange approximation by not more than 
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three mutually perpendicular unit vectors l,(r,t), a= 1,2,3 
that do not alter their mutual orientation in different ex- 
cited states, i.e., they provide a rigid reference frame. In the 
method of phenomenological Lagrangians, the dynamics of 
long-wave excitations can be investigated by including the 
relativistic interactions, which fixes the orientation of the 
magnetic vectors 1, relative to the crystal axes,I6 assuming 
that they are nevertheless much weaker than the exchange 
interactions. 

Any excited state specified by the vectors l,(r,t) can be 
obtained from an initial homogeneous state 1:'' by rotation 
through an angle @(r,t): 

where D ( @ )  is a three-dimensional orthogonal matrix. 
We emphasize that the use of the effective Lagrangian 

method must be confined to long-wave excitations for 
which the characteristic spatial inhomogeneity scale is 
much greater than the crystal lattice constant, and the fre- 
quencies are much smaller than the exchange frequencies. 
We shall now focus our attention on these particular (hy- 
drodynamic) excitations in which the dynamic bending of 
the crystal sublattices is small. In particular, we shall con- 
fine our attention to the acoustic branches of the spin-wave 
spectrum. Exchange branches of intrinsic linear magnetic 
excitations of the system, for which the concept of the 
'rigid reference frame' is not valid, lies outside the scope of 
this paper. 

A. In the absence of the external magnetic field h (see 
Sec. 3), the sublattice magnetization vectors m, lie in the 
basal XY plane and form a triangular AFM structure. The 
mutually perpendicular unit vectors 1, can therefore be 
taken in the form 

For p=O the orientation of the vectors 11') and liO) 
relative to the Cartesian x,y axes is not fixed, so that with- 
out loss of generality we can put 11') = e,, 1;') = e,, where 

 ex,^ are the corresponding unit vectors. We then have 

The effective Lagrangian 9 describing the noncollin- 
ear antiferromagnetic medium takes the formI6 

g is the gyromagnetic ratio, dots indicate differentiation 
with respect to time, X, and x are the transverse and 
parallel (relative to the vector 1$' = [l[O'liO'l) susceptibili- 
ties of the AFM medium, X, , XI, -6-l), eikl is the fully 
antisymmetric tensor of rank three, and U is the "poten- 
tial" energy of the magnetic medium, whose form can 
readily be obtained from the expression for the density of 
the thermodynamic potential (3) ,  taking into account 
(21) and (22). 

In the parametrization 

~ ; ~ = 6 ~ ~ + 2 ( ~ ; ~ ~ - d 6 ~ ~ )  - ~ v ~ & ; ~ ~ Y ~  (25) 

of the rotation matrix, the differential forms mi take the 
form 

where v,= (v,v4) are the components of the unit Cvector, 
d + d = l ,  and 02=4< .  

The next step is to parametrize the unit vector v, with 
the help of the three angle variables, namely, 

v1= cos g, v2 = sin g cos r] ,  v3 = sin 6 sin r] sin [/2, 

v4 = sin g sin r] cos [/2. (27) 

We note that it is precisely this parametrization that is 
particularly convenient in the analysis of spin waves in 
modulated AFM structures. A more standard and widely 
used parametrization is 

@=n  tan $/2, n2= 1, 

which has a simple physical meaning (rotation of the ref- 
erence frame by an angle $ around the axis defined by the 
unit vector n) ,  but is found to be inadequate because the 
vector n becomes meaningless on a denumerable set of 
values of the angle $. 

If we use the specific form (3)  of the thermodynamic 
potential of the system CsCuCl, together with (25)-(27), 
we can take the effective Lagrangian for the problem in the 
form 

where mi(@,&) a_re differential Cartan forms related to the 
rotation matrix D(@) by 

1 1 - 
mi(@,&) =? E ; ~ / D ~ , ~ ,  , , (24) - - (Vr] ) sin 2f sin2 r] - p sin2 f sin2 r] (cos2 6 

2 
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X (2gf cos q-7' sin 2gsin q ) + f r  sin4gsin4q] , I 
where V=e,(d/dz+a, /a)[e,(d/dx) +ey(d/dy)]. 

We have omitted from this expression the terms con- 
nected with the external magnetic field and the energy of 
hexagonal magnetic anisotropy in the basal plane, whose 
influence on the form of the spin-wave spectrum super- 
posed on the modulated AFM structure will be discussed 
below. 

The equations of motion corresponding to the La- 
grangian (28) are rather cumbersome in their general 
form, so that we shall not write them out in full here. 

It is readily verified that these equations have the fol- 
lowing static solution: 

and the corresponding rotation matrix is 

cos go -sin go 0 

(30) 

This shows that the static solution (28) corresponds to a 
rotation of the basic reference frame through an angle go 
around the z-axis (hexagonal axis of the crystal), i.e., to 
the above modulated AFM structure. 

If we use the Lagrangian given by (28) to construct 
the energy functional, we can readily show that its mini- 
mum is reached for q=qo= -al/a. In other words, the 
distribution given by (29) describes the same modulated 
AFM structure that was discussed above in terms of the 
standard sublattice approach [Sec. 3, Eq. (9) with h=O]. 

To analyze linear excitations superposed on the mod- 
ulated AFM structure, we put 

where E,g,5j are small deviations from the equilibrium dis- 
tribution of (29), i.e., (El, I f  I,[ Tj  1 (1, and we then linear- 
ize the equations of motion in these deviations. The result 
is the following set of second-order linear differential equa- 
tions with constant (this is important) coefficients: 

where = #/a2 + (al  / a )  (d2/dx2 + #/d2). 
Equation (32) is not coupled to the other two equa- 

tions in the system and describes the Goldstone mode of 
the spin-wave spectrum with the gapless dispersion relation 

where f l  is the spin-wave frequency and k,, k, are the 
components of the wave vector along the hexagonal axis 
and in the basal plane, respectively. Oscillations of the ref- 
erence vectors 11, l2 (and also of the sublattice magnetiza- 
tion vectors m,) in the basal XY plane correspond to this 
branch, which is typical for easy-plane magnetic media. 

On the other hand, equations (33) and (34) describe 
the two branches of the spin-wave spectrum with the dis- 
persion relation (and a gap) 

These branches have corresponding oscillations of the 
reference frame in which the vectors 11, 1, leave the xy 
plane (the oscillations take place around mutually perpen- 
dicular directions in the basal plane). 

It is interesting to note that a spin-wave spectrum anal- 
ogous to (36) is generated by the simpler two-sublattice 
AFM model whose thermodynamic potential density con- 
tains an invariant of the form wd = a l (  L,Lj, - LyL:) and 
has an easy-axis symmetry (rather than the easy-plane 
symmetry of our case). The equilibrium state of this type 
of AFM medium is, of course, spatially homogeneous, and 
the invariant wd manifests itself only in the excitation spec- 
trum. 

On the other hand, in an easy-plane two-sublattice 
AFM medium with an invariant wd and a modulated mag- 
netic structure as the equilibrium state, there is, apart from 
the Goldstone branch of the spin-wave spectrum, only one 
branch similar to (36). This branch typically exhibits the 
nonreciprocity property Q ( - k,)#fl (k,) due to the mod- 
ulated magnetic structure that originates from the invari- 
ants in the thermodynamic potenial that are linear in the 
first space derivatives. 

In our case of modulated AFM structure, on the other 
hand, we again have nonreciprocity of each of the two 
branches of the spectrum with the gap, but the presence of 
two such branches restores the symmetry: 
fl2( -kz)=f13(kz). 

B. We now turn to the effect of an external magnetic 
field hlle, on the spin-wave spectrum, particularly the an- 
tiferromagnetic resonance frequencies. 

According to Ref. 16, if the external magnetic field 
strength is weak enough in comparison with the field as- 
sociated with the exchange interaction between the sublat- 
tices (h(S), then it can be taken into account by the ef- 
fective Lagrangian method when we analyze the dynamics 
of the magnetic medium. The new effective Lagrangian can 
be obtained from (23) by introducing the replacement 
wi- wi+gM& ; .  It is then readily verified that, in our case, 
this signifies the appearance in the effective Lagrangian 
density (28) of the additional term 
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x'l hM0 
w3 =- 'I' hMO (2e cos , - sin2 p sin2 7 

g g 

-7j sin 2lj sin 7). (37) 

Equation (32), which describes the gapless Goldstone 
mode of the spin-wave spectrum, then remains valid as 
before, and equations (33) and (34) have to be modified as 
follows: 

These equations describe spin waves with dispersion 
relations of the form 

where ~ = X I I  /x1 and R2,3(k,0) is given by (36). 
It is clear from (40) that an external magnetic field 

parallel to the wave vector of the modulated AFM struc- 
ture lifts the degeneracy of the AFM frequencies R2,3 that 
is present for h =0: 

where 

is the AFM resonant frequency for h =O. One of the AFM 
resonant frequencies then increases with increasing exter- 
nal magnetic field and the other decreases2) For small 
values of the external magnetic field (gM&(Ro), the cor- 
responding functions are linear, in agreement with 
experiment. l 8  

C. When the hexagonal anisotropy in the basal plane of 
the system is taken into account, the magnetization distri- 
bution of the modulated AFM structure in the absence of 
the magnetic field is described by ( 12). The corresponding 
term in the effective Lagrangian 9 ,  which we shall denote 
by 9 , ,  is exceedingly cumbersome when it is written in its 
general form in terms of the angle variables g, q, 5'. We 
therefore reproduce only the quadratic terms in the expan- 
sion of 9, in terms of the small deviations z, q, t that 
describe the spin-wave spectrum: 

- 2Cij sin 5c0] ), (42) 

where co=co(z) is given by (29). 

It is clear from the structure of (42) that, as before, the 
equation of motion for t ( r , t )  splits off from the other two 
equations in the set: 

Assuming that 

we readily find that (43) takes the form of the well-known 
Lam6 equation3) 

where the characteristic size zo and the modulus of the 
elliptic function s are given by ( 12) and ( 13). 

The solution of (44) is well-known (see, for example, 
Ref. 20). The corresponding spectrum consists of two 
branches. The wave function corresponding to the first of 
them is 

where 0 ,  8, and Z are, respectively, the Jacobi functions, 
K' = K(sl), cd(v,sf ) =cn(v,sl )/dn(v,sf ), v is a dimension- 
less parameter, and O<v<Kf. On the other hand, the dis- 
persion relation for this branch is 

( g ~ o ) '  
fit1 (u) =- [a, k: + 18p 

XI1 
The minimum value of R:,(v) is reached for v=K1, 

and is zero. We then have q1(v=Kf)=~/2Kzo. On the 
other hand, the maximum value R:l(v) (for kl ) is 
reached for v =O and is given by 

We then have ql (v=O) =O. 
The second solution (second branch) of (44) is 

H(z/zo + iv;s) ZL2' (z) = 
O(z/zo,s) exp[iq2(v)zI, 

The corresponding dispersion relation is 

where dc ( v,sf ) = dn( v,sf ) /cn (v,sl ) . 
The minimum value of R:,(v) is reached for v = O  and 

is given by (for k1 =0) 
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If, on the other hand, u-K', we have - a ,  q2 -+ a . 
Comparison of (47) and (50) shows that there is a gap 

between the above branches of the spin-wave spectrum. 
The gap is given by 

1 8 p ( g ~ o ) ~  
~ : 2  min - a: 1 max = 

XI1 
We thus find that, when the hexagonal magnetic an- 

isotropy in the basal plane of the system is taken into ac- 
count, the spectrum of the Goldstone mode acquires a for- 
bidden band of magnon energy values, and the size of this 
gap is proportional to As p-0, both the forbidden- 
gap width and the width ail of the lower branch are found 
to vanish. In this situation, we again obtain the plane-wave 
solution with the acoustic dispersion relation ( 3 5 ) .  

If we consider the effect of the hexagonal magnetic 
anisotropy in the basal plane of the system on the two 
other spin-wave modes described by the angle variables 
and ?j, we find that the presence of the variable functions 
cos 5c0 and sin 5c0 in front of these variables in the expres- 
sion for Y p  ensures that an analytic solution of the cor- 
responding set of equations is practically impossible. The 
determination of the spectrum of the corresponding modes 
would require relatively cumbersome numerical calcula- 
tions, which are outside the scope of the present paper. 
Here we merely mention that the spectrum is again of the 
band type. l 2  
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"AS far as we know, apart from CsCuCI,, this type of modulated mag- 
netic structure has been reliably established only in MnSi and FeGe 
(Refs. 1 and 2) and in TbAsO, (Refs. 3 and 4). In most magnetically- 
ordered objects, the presence of a modulated magnetic structure is due 
to the competition of exchange interactions. 

"we note that the above analogy between the spectrum of spin waves in 
the two-sublattice easy-axis antiferromagnetic medium," on the one 

hand, and (36), on the other, is also found to occur for the dependence 
of the spin-wave frequencies on the external magnetic field. 

" ~ n  analogous equation arose in the study of the spin-wave spectrum 
superposed on modulated magnetic structures in easy-plane two- 
sublattice antiferromagnetic medium with rhombic magnetic aniso- 
tropy, or when the external magnetic field was taken into account in the 
basal plane (cf. Ref. 19). 
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