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We construct a theory that explains the fine structure of excitonic levels in types I and I1 
semiconductor superlattices. The nature of the anisotropic splitting of the excitonic 
emission doublet discovered in type I1 GaAs/AlAs(001) superlattices is explained. We show 
that this splitting is caused by the low symmetry (C2,) of an ideal heterojunction, 
which allows for the mixing of states of heavy and light holes even when the hole is normally 
incident on the heterojunction plane. For the excitonic ground state el-hh 1 ( 1s) we 
calculate the dependence of the axisymmetric exchange splitting and anisotropic exchange 
splitting on the thickness of the GaAs and AlAs layers. The theoretical results are 
found to agree with the existing experimental data. 

1. INTRODUCTION 2. THE EXCITON WAVE FUNCTION 

The GaAs/AlAs (00 1 ) superlattice is a convenient 
model object for studying type I-type I1 transitions in het- 
erostructures, since in this superlattice (SL), depending on 
the layer thickness ratio, the bottom of the conduction 
band is formed mainly either from states of the 
r-minimum in the GaAs layer or from states of the 
X-minimum in the AlAs layer.14 In both cases the ideal 
heterostructure has a D2d point symmetry, in which the 
lower excitonic level elX-hhl(ls), which is fourfold de- 
generate if we take into account the electron spin ( i= 1/2) 
and the heavy-hole spin ( + 1/2), must split into an emis- 
sion doublet E and two optically inactive singlets owing to 
electron-hole exchange interaction. However, experiments 
have established that for excitons observed in photolumi- 
nescence spectra of a type I1 GaAs/AlAS superlattice, the 
E doublet splits into two sublevels which are dipole-active 
in the [I101 and [ l i ~ ]  There is a need to 
explain not only the nature of the anisotropy in the ex- 
change interaction but also the fairly large size of the en- 
ergy gap between the sublevels, 6 =&[] - ~ ~ ~ i ~ ~ ,  and the 
fact that in a single SL with fixed layer thicknesses two 
classes of excitons exist simultaneously, excitons for which 
the absolute values of S coincide and are fixed but whose 
signs are opposite. Finally, it must be understood why the 
exchange-interaction anisotropy is observed in a type I1 SL 
but not in a type I. In Ref. 8 an assumption was made that 
the anisotropy is related to the lower symmetry C2, of the 
ideal GaAs/AlAs(001), which allows for mixing of states 
of heavy and light holes (I-h mixing) even in normal in- 
cidence of a hole on the interface. In this paper we develop 
a consistent theory of the exchange interaction of an elec- 
tron and hole in an exciton for GaAs/AlAs superlattices of 
both types that allows for I-h mixing at a heterojunction. 
We calculate the dependence of isotropic and anisotropic 
exchange splitting on the thickness of GaAs and AlAs 
layers and compare the results with the available experi- 
mental data. 

In this section we give the expression for the wave 
function of an exciton in a superlattice that is a sandwich 
of GaAs and AlAs layers of thickness a and b, respectively. 
The range of a and b considered is such that the energy gap 
between the lower minibands of a r- and X-electron (the 
e l r  and elX minibands) is large compared to the size of 
the r-X interaction, so that the SL can be characterized by 
a certain type. The interface, where the and X states are 
strongly mixed, has been analyzed in Ref. 9. 

Since tunneling of a heavy hole between GaAs layers is 
negligible, in setting up the excitonic states we can assume 
that the hole in each exciton is in one of these layers. This 
makes it possible in a variational calculation to represent 
the trial wave function of a free exciton in the form of the 
product 

where S is the sample's area in the interface plane, ze,h is 
the coordinate of an electron or hole, qhhl(zh) is the wave 
function of a hole at the bottom of the lower hole hhl 
subband in AlAs/GaAs/AlAs, a structure with a single 
quantum well with a width a, and p is a two-dimensional 
vector with coordinates x,-x~ and ye-yh. 

In a type I superlattice, in which the width of the lower 
electron e l r  miniband exceeds the exciton binding energy, 
we can employ the following approximation for qe(z,):10 

where I rl ,s) is the Bloch function of an electron with spin 
s =  1/2 at the r-point, welr(ze) the envelope of the wave 
function of an electron in the superlattice calculated in the 
Kronig-Penney model, the wave function of relative mo- 
tion is 

F3o(ze ,p )=(~a l l  a: 

x expC- [ (zJall 12+ (p/al l21 'I2), (3  

where a, and all are the variational parameters, and z, is 
measured from the center of the well with the hole. 
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In the tight-binding approximation for a heavy hole, 
the wave function of a free-exciton state with a given pro- 
jection k, of the wave vector on the z axis is 

*r= (NS) - l n ~  1 exp(ikpd)*, 
m 

where N is the number of periods in the superlattice, m is 
the number of the GaAs layer, and d=a+b is the SL 
period. 

Because of the large longitudinal effective mass of an 
X-electron, in type I1 superlattices the tight-binding ap- 
proximation can be used for both the electron and the hole: 

Here I m, + ) is the state of a quasi-two-dimensional exci- 
ton with a hole in the mth layer and an electron in the 
neighboring left or right AlAs layer: 

where 

is the relative-motion function. 
In Eq. (6) we allowed for the fact that in GaAs and 

AlAs crystals the conduction band near the X-point con- 
sists of two close bands Xl and X3 and we introduced the 
respective Bloch functions I XI) and I X3). Hence, instead 
of one envelope function w(z) for a I'-electron we had to 
introduce two envelopes, u(z) and v(z). It is convenient to 
write the Hamiltonian that acts on these functions as a 
2 x 2 matrix (see, e.g., Ref. 11): 

where I;, = -id/dr, (a =x,y,z), %(z) is the energetic po- 
sition of the center between the X1 and X3 bands, which 
changes abruptly as the interface is passed, and A the gap 
between the bands; the constant R describes the kp inter- 
action between these two bands responsible for the forma- 
tion of the double-humped structure of the conduction 
band X1 in the bulk of the material. For simplicity we 
ignore the difference in the values of m! , mi , A, and R in 
neighboring layers. The superscript 0 in (6) signifies that 
the functions u and v are calculated for a structure con- 
sisting of an AlAs layer (with its center at point =td/2) 
and adjoining semi-infinite barrier GaAs layers. For esti- 
mates we can put the parameter al in (7) equal to the 
Bohr radius of the two-dimensional exciton, 

where K is the dielectric constant, which screens the 
electron-hole Coulomb interaction, and pl is the reduced 
mass equal to mihlmk (mihl + m: ) , with the effective mass 
mihl describing the motion of an hhl hole in the interface 
plane. 

With the symmetry of the superlattice taken into ac- 
count, the coefficients C, in (4) are linked either by the 
relation C- = c+* or by the relation C- = - . Then, 
normalizing qr to unity yields I C, I = 1/ $. Note that if 
we allow for the overlap of the wave functions of an 
X-electron in neighboring AlAs layers, the exciton level 
splits into sublevels with C+ = C- and C+ = - C-. If we 
ignore this overlap and instead allow for the overlap of the 
wave functions of holes in neighboring GaAs layers, the 
split electronic states are described by the function (4)  
with C+ = exp{ikpl/2) and C- = exp{ - ikd/2). 

Low-temperature luminescence usually involves exci- 
tons localized at the imperfections of the heterostructures, 
say, on fluctuations of layer widths, or excitons bound by 
impurity centers, if such centers exist. When the charac- 
teristic localization radius L exceeds the Bohr radius 
al , the localized-exciton wave function is obtained from 
(5) simply by replacing the normalization factor s-"~ 
with a smooth envelope f (Rl ), where the vector R, spec- 
ifies the position of the exciton center of mass in the layer 
plane, that is, 

In reality the potential localizing the exciton is asymmetric 
with respect to the center of a GaAs or AlAs layer, and the 
asymmetry of the respective potential energy exceeds the 
overlap integral, which determines the width of the X mini- 
band or the miniband hhl of an ideal SL. For this reason, 
an electron in each localized exciton is definitely either to 
the right or left of the layer in which a hole is excited. 

3. SIZE QUANTIZATION OF AN X-ELECTRON 

Let us calculate the envelopes u0(z) and vo(z) of the 
wave function of an X-electron in the GaAs/AlAs/GaAs 
structure. We place the origin of the z axis at the center of 
the AlAs layer. Then in the ground state elX the functions 
uo and vo are respectively even and odd under the z- -z 
transformation: 

uO(z) =Dl€$ sin (kl z) + D202 sin (k2 z) 

inside the AlAs layer, and 

vo(z) = (Glvl exp{ -K& + G2v2 e x p { - ~ ~  3) sgn (z) 

outside the AlAs layer. Here z= ( I z I - b/2), k: and k: are 
the two roots of the dispersion equation 

610 JETP 77 (4), October 1993 lvchenko et a/. 610 



for an X-electron in the interior of AlAs, and i ~ ,  and i~~ 
satisfy a similar equation, 

in the interior of GaAs, with & = ~ ( G ~ A s )  - ~ ( A ~ A s ) ,  
and the energy E, measured from ~ ( A ~ A S ) .  It is assumed 
that this energy satisfies the inequalities E,+A/~ < A,& so 
that all four roots of Eq. (1 lb)  have finite real parts and 
K ~ = K ~ .  The special case of thick AlAs layers, when the 
size quantization level lies between the minimum and max- 
imum of the double-humped structure of the X1 band is not 
considered here. Hence E,> -A/2, and of the two roots 
kl and k2 one is real and the other imaginary. In (10) we 
have introduced the coefficients 01,2 and V I , ~  defined as 
follows: 

When the masses m! in the neighboring layers are the 
same, the boundary conditions reduce to the requirement 
that the functions uo and vo and their derivatives duddz 
and dvddz be continuous at interfaces. Substituting ( 10) 
into these boundary conditions and solving the resulting 
system of four homogeneous linear equations, we arrive at 
an equation for the energy of states with an even function 
uo(z): 

Here c,=cos (kjb/2), sj=sin (kjb/2), 

A similar transcendental equation for solutions with the 
odd function u0(z) can be found from (13) by simply 
replacing r, with sj  and sj with -c,. 

4. SIZE QUANTIZATION OF A HOLE 

We employ the Bloch function basis of the representa- 
tion r8 of the Td group in the form 

where t and 1 are spin columns, and X, Y, and Z are the 
coordinate functions of representation r15 of the Td group. 
We expand the wave function qhhl in the basis functions 
(14): 

where j = & 3/2, 1/2. If we allow for 1-h mixing, the 
simplest boundary conditions for the envelopes allowed by 
the C2u symmetry and time symmetry and that retain the 
continuity of net particle flux through the boundary are8 

Here the superscripts A and B indicate that the respective 
quantity belongs to the GaAs and AlAs layers, respec- 
tively, tl-h is a real factor, 

a. is the lattice constant (in GaAs ao= 5.6 A) ,  mo is the 
free-electron mass, mhh and mlh are the effective masses of 
a heavy and light hole (we ignore the difference of hole 
masses in layers A and B), the J,  are the angular- 
momentum matrices of states with total angular momen- 
tum equal to 3/2, and the factor aomo was introduced into 
(17) so that the I-h mixing coefficient tl-h in (16) is a 
dimensionless quantity. In the basis (14) the only nonzero 
elements of the matrix 

are the off-diagonal elements with I j- j' 1 =2, so that the 
state 1 3/2) mixes with 1 - 1/2) and the state 1 - 3/2) 
mixes with 1 1/2). 

Let us examine the origin and properties of the addi- 
tional term in the boundary conditions ( 16). At tl-h=O 
these are simply the standard boundary conditions for the 
envelopes of the wave function of a heavy or light hole 
when the hole impinges on the interface at right angles. 

An ideal GaAs/AlAs (00 1 ) heterojunction is an 
atomic As plane to the left and right of which Ga and A1 
layers are positioned so that the Ga-As atom pairs lie in 
the ( 1 10) plane and Al-As pairs lie in the ( 170) plane. 
Hence, a single heterojunction is characterized by the point 
symmetry C2,, , which incorporates, in addition to the iden- 
tity transformation, the reflection planes a,,ll (110) and 
a:ll (170) and the twofold-symmetry axis C2. 

In the C2" group the pairs of functions 13/2) and 
1 -3/2), and 1 1/2) and 1 - 1/2) are transformed via 
equivalent spinor representations and the function z or xy 
is an invariant. This implies that the symmetry allows for 
mixing at the heterojunction of states 1 *3/2) and I r 1/ 
2), which differs from the well-known I-h mixing emerging 
from oblique incidence of a hole owing to off-diagonal el- 
ements of the Luttinger Hamiltonian, since in normal in- 
cidence the Hamiltonian is diagonal. 

The additional terms linear in q, and aqj/az and re- 
sponsible for I-h mixing can enter into (16) in both the 
boundary condition for the envelopes and that for the de- 
rivatives. The coefficients of q, and aq,/dz in these addi- 
tional terms can be found by doing numerical calculations 
via the tight-binding approximation or the pseudopotential 
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method in the manner of Ref. 11, where the coefficients of 
T-X mixing of electronic states in the GaAs/AlAs super- 
lattice were found. According to Ref. 11, the envelopes 
w (z) , u (z), and v(z) of the wave function of an electron in 
the Tl ,  XI ,  and X3 states, respectively, and the function 
(ml ) -'au/az are continuous at the heterojunction, and to 
the boundary conditions for the derivatives a w/a z and 
a v/a z terms are added proportional to the boundary value 
of v and w, respectively. In describing I-h mixing in this 
paper we postulate a similar structure of the additional 
terms in the boundary conditions ( 16). Symmetry consid- 
erations imply that these terms can be represented as the 
following linear combination: 

where the tp are constants, the boundary values of the en- 
velopes q, are represe2ted in the form of a four-component 
column qb,  and the Mp (p = 1,2, ... ) are linearly indepen- 
dent 4 x 4  matrices invariant u n d ~ r  a b - l ( g ) ~ p ~ ( g )  
transformation, with the matrix D(g) representing the 
transformation that the basis functions ( 14) undergo un- 
der an operation g belonging to group C2u, a subgroup of 
T d .  Of the complete set of sixteen 4 X 4 matrices only the 
following are A invariants in the C2u group: Jf, 
{:+~;=(15/4)1-~:, {Jdy}, and V,={J, , J:-J;}, with 
I the identity matrix. The first two matrices are diagonal 
and do not lead to mixing of heavy and light holes. Since 
the {JJy} matrix is symmetric and the V, matrix is anti- 
symmetric under time inversion,12 the coefficient t3 = t1-h 
must be real and the coefficient t4 imaginary. The particle 
flux at the boundary is conserved if the quantity 

i 2 (9: v ~ ~ j - ~ j v { q f  
j 

is continuous, from which it follows that t4-ti=2t4=0. 
This completes the justification of the structure of the ad- 
ditional term in the boundary conditions (16) for a single 
GaAs/AlAs heterojunction. As noted in Sec. 1, the GaAs/ 
AlAs(001) superlattice is characterized by the D2d sym- 
metry, which includes the mirror rotation S4 about the 
center of the GaAs and AlAs layers. Hence, the boundary 
conditions for the AlAs/GaAs heterojunction can be ob- 
tained from (16) as a result of an S4 transformation in 
which z is transformed into -z and the function xy [or 
{JJy}] into -xy [or -{JJy)]. This implies that the 
boundary conditions (16) have the same form with the 
same coefficient tCh for the GaAs/AlAs and AlAs/GaAs 
heterojunctions if in both cases the superscripts A and B 
are referred to the GaAs and AlAs layers, respectively. 

The coefficient tl-h is not small in the relativistic limit. 
Indeed, if we ignore the spin-orbit coupling and spin, the 
state of the hole at a T-point is threefold degenerate and is 
transformed according to the representation T15 of the 
group T d .  As we did in Eq. (14), we denote the three 
Bloch functions of r15 by X(r), Y(r), and Z(r ) .  If we now 
use arguments based on the fact that the symmetry of the 
heterojunction is low, we can easily show that when a free 
hole is normally incident on the junction, there must be 

mixing of the exp{ikg}X(r) and exp{ikg)Y(r) states or 
equivalently, the amplitude coefficients of reflection (or 
transmission) of a hole, (X + Y)/ f i  and (X - Y)/ &, are 
generally different. Hence, the coefficient tl-h in (16) is 
proportional to the nonrelativistic coefficients of mixing of 
the X and Y states at a heterojunction. 

Note that incorporating an additional term in (16) is 
equivalent to allowing for a delta-function contribution to 
the hole Hamiltonian, 

where ~ = t ~ - ~ i ? / 2 m ~ a i ,  z, is the coordinate of the nth het- 
erojunction, and [= + 1 for a heterojunction of the types 
BA and AB, respectively. The factor 6 appears in ( 18) 
because the boundary conditions ( 16) retain their form for 
both types of heterojunction, GaAs/AlAs and AlAs/ 
GaAs, so that, according to (16), the second derivative at 
the junction z, incorporates the term 

The operator (18) balances this term, which occurs in the 
Schrodinger equation when the operator of kinetic energy 
of a hole acts on qj. In calculating the hole wave function 
we use the boundary conditions in the form (16). When 
studying the mixing of two close size-quantization levels of 
a heavy and light hole, it is convenient to first calculate 
these levels at tl-h=O, and then switch on the interaction 
between the two holes, According to ( 18) the oper- 
ator hl-h mixes the envelope functions of different parity in 
z, in contrast to the parity-conserving hole perturbation 
operator in an external electric field or in a uniaxially 
strained sample. The form of ( 18) graphically illustrates 
the short-range nature of I-h mixing. Obviously, within the 
range of applicability of the effective mass method the co- 
efficient tl-h can be assumed constant, independent of the 
hole energy, inside the GaAs and AlAs layers. This coef- 
ficient, however, can depend on the type of composite ma- 
terials, e.g., on the composition if one of the materials is a 
solid solution. When the difference between mhh and mlh is 
large, that is, when the splitting of the subbands of heavy 
and light holes is much larger than the size of the I-h 
interaction proportional to tl-h, this interaction mixes free 
states but cannot localize a hole at an isolated heterojunc- 
tion. The opposite limiting case of almost identical masses 
mhh and mlh requires separate consideration and is not ex- 
amined here. 

The pair of wave functions for the hole states at the 
bottom of the lower subband hhl in a structure with a 
single GaAs well transforms according to the spinor rep- 
resentation r 6 ,  with the spin columns t and 1 transform- 
ing according to the same representation. For tl-h#O these 
functions can be written as 
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where C(z) and S(z)  are real functions. If we select the 
origin at the center, we get 

C(z) = Fh cos kg,  S(z)  = Fl sin kp if 1 z 1 < a/2 , 

Here 

where E~ is the size quantization energy of the hole, Vh is 
the size of the discontinuity of the valence band at the 
heterojunction, c$~= 1/2kha, and #/= 1/2kp. The equation 
for E~ and the expression for the Frto-Fh ratio is 

Fl -- "lh cOs 4 h  
F~ - 4-h - moao kl cos # 1 + ~ 1  sin #I 

In the first order in tl-h, the equation for the lower-level 
energy &hhl is reduced to the unperturbed equation 
kh tan (#Jh=Kh. 

5. EXCHANGE INTERACTION IN AN EXCITON 

We write the operator of the electron-hole exchange 
interaction in a bulk A3 B5 semiconductor (see Ref. 13) in 
the form 

where the a, are the Pauli spin matrices, and a=x,y,z are 
the principal symmetry axes. ~ x ~ e r i m e n t s ~ " ~  have shown 
that the constant factor of the cubic invariant is small 
compared to the constant factor E~ of the spherical invari- 
ant uJ. 

If we do not allow for the exchange interaction, the 
ground state ( n =  1) of the exciton, elr-hhl, in a type I1 
superlattice is fourfold degenerate. Calculating the matrix 
elements c:J:sj of the operator (24) between the excitonic 
states (s , j )  and Is',jl) with given electron and hole spins, 
within the basis 1 - 1/2,3/2), 1 1/2, - 3/2), 1 1/2,3/2), 
and I - 1/2, - 3/2) we obtain 

Here I So I is the isotropic exchange splitting between states 
with projections M= & 1 and M= h 2  of the total angular 
momentum, I S1 I the splitting between the optically inac- 
tive singlet states 

and the parameter S2 describes the splitting of the emission 
doublet into the states 

which are optically active in the polarizations e 11  [I lo] and 
ell [lie], respectively, and for which ( S O r  S2)/2 are the 
respective exchange energies. 

For a type I superlattice the excitonic wave function 
has been defined in Eqs. ( 1 ), (2), and ( 19). For the other 
two parameters, Sf) and 6;') it is sufficient to give expres- 
sions obtained on the assumption that there is no 1-h mix- 
ing: 

Since I E ,  1 4 1 EO I holds, we also have IS;') I 4 1~6 ' )  1 .  Al- 
lowing for the mixing of states of heavy and light holes 
leads to corrections in (26a) proportional to $-h. 

For a free-electron state (4) in an ideal type I1 super- 
lattice the emission doublet does not split either, that is, 
s~")=o, the parameter 6;") is related to 86") through Eq. 
(26b), and for S P )  we have the following expression (if we 
ignore I-h mixing) : 

where &(z) = ui(z) +v;(z); the function C(z) has been 
defined in (20) and the functions uo and vo in (6). Either 
of the two signs in the independent variable z&d/2 can be 
chosen. 

For a localized exciton in a type I1 superlattice with 
the electron to the right (an A B  exciton) or left (a BA 
exciton) of the GaAs layer in which the hole resides, the 
parameter 6;") is finite and is given by the formula 

and for SA") we still have formula (27). The reader will 
recall that C(z) and S(z)  are, respectively an even and odd 
function of z. Hence, the value of SAT') is independent of the 
electron position with respect to the hole, while the A B  and 
BA excitons have 4") of opposite sign. Thus, the two types 
of excitons with opposite signs of the exchange splitting 
parameter are localized A B  and BA excitons. The anisot- 
ropy axes of the exchange interaction are fixed by the di- 
rections of the reflection planes of the CZu group, that is, by 
the direction of chemical bonds at the interface. The dif- 
ference in the signs of the splitting E ~ ~ ~ ~ I - E ~ T ~ ~  for these 
excitons is caused by the fact that under the S4 transfor- 
mation the ( 110) and ( l i 0 )  planes transform into each 
other. 

In deriving (28) we employed the expression (9) for 
the wave function of a localized exciton valid for L)a, , 
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where L is the localization range. Since the exchange- 
interaction operator (24) is independent of the position of 
the exciton's center of mass Rl , the exchange-interaction 
constants, including a;"), are independent of the specific 
shape of the envelope f (R, ), in view of which the exciton 
localization parameters are not incorporated in Eqs. (27) 
and (28). In this connection we note that in a type I1 
superlattice in which two neighboring GaAs and AlAs lay- 
ers are typical, say, thicker than the other layers by a 
monolayer, the fine structure of a free quasi-two- 
dimensional exciton in which the electron is in the typical 
AlAs layer and the hole in the typical GaAs layer is also 
described by Eqs. (27) and (28). 

If we allow for I-h mixing, the splitting 61") of opti- 
cally inactive states is determined by the expression 

FIG. 1. Axisymmetric exchange splitting 
60 of the exciton level elX-hhl( 1s)  as a 
function of the SL period d=a+ 6. Exper- 
iment: A-Ref. 5; 0-Ref. 14; and 
0-Ref. 15 .  Theory: solid curves repre- 
sent the results of calculations in which in 
( 2 7 )  a*, was substituted for a, at a=b 
(curve 1) and at a=b/2 (curve 2 ) ,  and the 
dashed curve represents the results of cal- 
culations for a SL with a= b/2 at values of 
a, found by the variational method with 
the trial functions specified in Eqs. (6)  and 
(7). In the inset the experimental values 
60,,,, measured in a SL with different layer 
thicknesses a and b are compared with the 
theoretical values batheor calculated at 
a, =a,, for the same thicknesses a and 6. 

(6) can be discarded. In the vicinity of a type I-type I1 
transition this mixing becomes noticeable, and Eqs. (27)- 
(29) acquire a factor that is the square of the envelope 
function for r states. Note that in contrast to exchange 
interaction, optical excitation or emission of an elX-hhl 
exciton occurs only owing to I?-X mixing. 

6. RESULTS OF CALCULATIONS AND COMPARISON WITH 
EXPERIMENTAL DATA 

In calculating the exchange constants 6LI1), we em- 
ployed the following values of the band parameters: 

A=0.35 eV, h=0.46 e ~ ,  R=0.9 eV - k', K= 13. 

The constant was set in Eqs. (27) and (28) at zero and 
the constants tCh and EO were found from the requirement 

x JZ(~)~:(~*:)  a. (29) of best fit to the experimental data on 6i") and 6:"). It is 
convenient to determine the value of from the ratio 

We see that for tl-h#O this splitting can be finite even if the 6$")6i1'), which is independent of EO and of al . For the 
cubic invariant in (24) is ignored. quasi-two-dimensional radius+ a, in (27) and (28) we 

Estimates show that in calculating 6:") (n=0,1,2) in took either the value al = a 2 ~  (the two-dimensional ap- 
type I1 superlattices the mixing of r states to the function proximation) or the value determined from the require- 
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ment that the energy of the exciton with the wave function 
(9) be minimal (the quasi-two-dimensional approxima- 
tion), that is, from the minimum condition imposed on the 
functional 

Xexp -- C~(Z,)& z,f - 2npdpdzedzh. (30) ( 1  ( B 
The best fit to the experimental data is achieved with 
tkh= 1.4 and EO= 54 meV (the two-dimensional approxi- 
mation) and eo = 2 15 meV (the quasi-two-dimensional ap- 
proximation). Currently we know of no independent data 
on the constant eo of exchange interaction between an 
X-electron and a r-hole in GaAs or AlAs, since experi- 
m e n t ~ ~ " ~ " ~  have determined the constants 68") and 64") , 
and the formulas for these quantities contain, in addition to 
e0 and el, band parameters and the Bohr radius of a quasi- 
two-dimensional exciton. 

Figures 1 and 2 depict the theoretical curves represent- 
ing the dependence of the axisymmetric-exchange- 
interaction constant So and the anisotropic-exchange- 
interaction constant S2 on the period d for fixed a/b values. 
The figures also depict the known experimental values of 

FIG. 2. Anisotropic exchange splitting S2 
of the emission doublet as a function of the 
SL period. Experiment: A-Ref. 5; and 
+Ref. 16. Theory: solid curves represent 
the results of calculations in which in ( 28 )  
a 2 ~  was substituted for a, with 0=2b/5 
(curve I )  and with a=3b/5 (curve 2), and 
the dashed curve represents the results of 
calculations for a SL with 4=3b/5 at a, 
values found by the variational method. In 
the inset the experimental values 62,exp are 
compared with the theoretical values 
B2,theor . 

So and S2. We see that, in accordance with the experimen- 
tal data, both So and S2 sharply increase as the period gets 
smaller and depend weakly on a/b for a fixed value of 
a+b. Since in the elX-hhl exciton the electron and hole 
are localized chiefly in different layers, allowing for the 
spatial distribution along the z axis of the electron and hole 
density, we find that the Coulomb energy, defined by the 
second term on the right-hand side of (30), differs con- 
siderably from the Coulomb energy -e2/~aZD for a two- 
dimensional exciton. This explains the difference in values 
of parameter eo found in the two-dimensional and quasi- 
two-dimensional approximations. Comparison of the solid 
curves and the dashed curve in Fig. 1 shows that the choice 
of approximation affects the dependence of the exchange 
splitting on layer thickness only moderately. 

Note that in a more accurate calculation of the wave 
function of a localized elX-hh1 exciton we must allow for 
the effect of Coulomb attraction on the motion of the elec- 
tron and hole along the z axis. As a result the shape of the 
single-particle functions $hh l (~h)  and uo(ze) and u0(ze) 
changes and their maxima shift toward the heterojunction. 
Hence, we should expect that an exact calculation will lead 
to values of SY) and S F )  that lie within the limits specified 
by the two-dimensional and quasi-two-dimensional ap- 
proximations. 
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Finally, it is worth noting that a good fit to the exper- 
imental data has also been obtained for the constant 6j") at 
E ,  =0 but with allowance for I-h mixing. For instance, for 
superlattices with thickness ratios of 17 A/17 A (the G485 
sample), 22 A/19 A, and 23 A/28 A we obtained the ex- 
perimental values 6(")=0.5, 0.4, and 0.15 peV, while cal- 
culations yielded 6ji1)=0.57, 0.34, and 0.15 peV. 

Thus, the theory of electron-hole exchange interaction 
developed here yields a satisfactory explanation of the fine 
structure of excitonic levels studied in GaAs/AlAs super- 
lattices. 

We are grateful to P.G. Baranov and N.G. Romanov 
for fruitful discussions. 
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