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Analysis of self-focusing instability of plane solitons and chains of two-dimensional solitons in 
the framework of the Kadomtsev-Petviashvili equation for positive-dispersion media is 
presented. Exact solutions of this problem by the inverse scattering method are obtained. It is 
shown that in the simplest case, a chain of two-dimensional solitons and a new plane 
soliton are created as a result of the initial plane soliton decay. Decay processes are shown to 
be caused by specific resonant interaction of two-dimensional quasi-plane structures 
when the phase shift of their trajectories tends to infinity. A new type of wave synchronism 
condition is established for this case. 

1. INTRODUCTION 

At present it is well-known that in isotropic nonlinear 
media the development of multidimensional perturbations 
depends essentially on the form of the dispersion. This fact 
was first discovered by B. B. Kadomtsev and V. I. 
Petviashvili,' who obtained an equation (later called the 
Kadomtsev-Petviashvili (KP) equation) describing quasi- 
one-dimensional waves and generalizing the classical 
Korteweg-de Vries (KdV) equation, and revealed that in 
some cases plane solitons are unstable with respect to self- 
focusing processes. Moreover, soliton stability or instabil- 
ity depends directly on the sign of the dispersion: in 
negative-dispersion media (phase velocity of linear pertur- 
bations decreases with increasing wave number) solitons 
are stable, while in positive-dispersion media they are un- 
stable. (To be precise, the instability of plane solitons is 
determined by the the way the spectrum decays for small 
perturbations. The spectrum is really decaying in isotropic 
homogeneous media with weak positive dispersion. In an- 
isotropic media, however, the spectrum may be decaying 
even for negative dispersion and all plane solitons are un- 
stable there.2) Note that in the one-dimensional case the 
form of the dispersion is not essential: the KdV equation 
can be reduced to standard form by renormalization, inde- 
pendently of the signs of its coefficienk3 

The linear and nonlinear stages of the self-focusing 
instability in the framework of the KP1-equation describ- 
ing waves in positive-dispersion media have been studied 
by many workers (see, e.g., Refs. 4-7). In particular, 
zakharov4 claimed that a plane soliton decays as a result of 
the excitation at its front of small oscillations which move 
faster than the soliton, overtake it and take away some 
energy that is scattered in space by dispersive effects. How- 
ever, our study of this problem shows that the nonlinear 
development of small perturbations at the soliton front 
gives rise, in an intermediate stage of instability, to periodic 
chains of two-dimensional (2D) solitons which have larger 
amplitude and smaller velocity than the initial plane soli- 
ton. The latter decreases in amplitude and moves faster 
after losing some of its energy. (The first stage of this 

process is clearly seen in the numerical simulations of Ref. 
6.) 

It should be mentioned that chains of 2D solitons are 
also unstable against deformation of their fronts. This was 
discovered by ~ u r t s e v , ~  who constructed a growing mode 
of the discrete spectrum of a chain. As we shall show, if 
this mode is given as an initial perturbation, the original 
chain decays into two others with greater separations be- 
tween the 2D solitons. We can therefore expect that the 
development of unstable quasiplane solitary structures un- 
der the action of real, disordered perturbations gives rise to 
a disordered ensemble of two-dimensional solitons, the role 
of which in the evolution of the wave field in media with 
positive dispersion has been unclear until now (see Ref. 9). 

In addition, the analysis presented in this paper shows 
that the plane soliton instability is closely associated with 
the resonant interaction between plane solitons and chains 
of 2D solitons when the space phase shift of their trajec- 
tories grows without bound. The soliton resonance is well- 
known for negative-dispersion media (for the 
~ ~ 2 - e ~ u a t i o n ) ; ~ . ' ~  the simplest example of such resonance 
is the exact solution found in Ref. 10 which describes a 
triad of plane solitons at certain angles to each other. Until 
now it was thought that there is no soliton resonance in the 
~ P l - e ~ u a t i o n . ~  However, as will be shown below, the soli- 
ton resonance is possible in this model too and plays an 
important role in the decay of quasiplane structures. 

2. PLANE SOLITON DECAY 

As has been shown by various methods,"-13 the broad 
class of solutions to the KP1 equation, which we shall treat 
in the normalization 

aX(4a,u + ciuaXu + a ; ~  = 3$u, (2.1) 

can be expressed in determinant form: 

u (x,y,t) = 2% In a, 
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where n,m= 1,2, ...,N, and q: are solutions of the set of 
linear equations 

These solutions can be written in integral form: 

where S: (p) is an arbitrary function of p. In particular, 
one can easily find soliton solutions for S: (p) a S (p -p,$), 
which corresponds to the following choice of the functions 
'P: : 

where yno is phase constant. 
Analysis of the Zakharov-Shabat theory presented 

by Newel1 and ~ e d e k o ~ ~ "  revealed that under certain 
conditions the solution determined by the functions (2.4) 
formally diverges. Actually, however, this divergence can 
be eliminated by proper renormalization of the phase con- 
stants yfl Then the corresponding solution describes de- 
generate plane-soliton interaction processes in the case of 
the KP2 equation. Following the approach used by 
~ a k h a r o v , ~  we shall take into account such processes not 
by renormalizing the constants yno, but by choosing the 
functions V: in the form 

which corresponds to the following kernel S,f(p) in the 
integral (2.3): 

The solutions (2.2), (2.5), as will become clear, de- 
scribe not only the usual collision between plane solitons 
and chains of two-dimensional solitons, but, also their res- 
onant (degenerate) interaction. The physical meaning of 
these solutions becomes obvious from analysis of the sim- 
plest case N = 1, q 1 = q;f. Simplifying the calculations, we 
shall assume that the solitons move only in the x direction 
with fronts parallel to the y axis; then pln=pn are real 
parameters. In this case the solution (2.2), (2.5a) is as 
follows: 

2 2 2 where vn =x-pnt and pmn=x - (pm +pn -p,,,pn t. 
We order the constants p, according to 
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po >pl  >p2 > ... >pw > 0. (2.7) 

Then it is not difficult to see that in the limit t-+ - co 
the solution (2.6) describes a unique plane soliton which is 
determined by the parameter po : 

- 
Let Cn=&Cn, where ~ g l ,  n=1,2 ,..., M. Then for t-0 

the solution (2.6) can be regarded as a perturbed plane 
soliton (2.8). Expanding u(x,y,t) in powers of E, in the 
first-order approximation we obtain the perturbation to the 
plane soliton expressed by Eq. (2.8) in the form 

2 where xn =po-p~, 2, =pnxn > 0 and 

The perturbation (2.9) corresponds exactly to linear 
superposition of M discrete modes of the problem obtained 
by linearizing about the solution (2.8). Here the parame- 
ters 2, and x, determine the growth rate of the perturba- 
tions and the period of the transversal m~dulation.~ Thus, 
for t > 0 the complete solution (2.6) describes the nonlin- 
ear stage of instability development for a plane soliton per- 
turbed by M modes of the discrete spectrum. 

Note that the mode W(x;po,pn) is localized under the 
condition (2.7), but the degree of localization at 
x- + CQ ( W a  exp[- (po-pn)x]) is less than at 
x - - co ( W a exp[(po +p,)x]). This means that for t > 0 
"radiation" propagates from plane soliton towards x > 0. 
However, as follows from (2.1 ), small-amplitude wave 
perturbations move in the opposite direction (x < 0) in the 
reference frame used. Hence, as a result of the plane soliton 
instability, nonlinear solitary structures rather than linear 
dispersive waves are formed. 

2.1. The elementary decay of a plane soliton 

Here we shall study the elementary process of plane 
soliton decay for a one-mode perturbation (M= 1). It is 
easy to see that as t- + co the solution (2.6) is nontrivial 
only along two curves: 

1 ) q l  =xl -p:t, for which 

and 
2) eol =x- (P~+P~+PoPl)t ,  for which 

where 
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A plane soliton having smaller amplitude and velocity 
than the original one moves along the first curve. Along the 
second curve a nonlinear wave propagates which is peri- 
odic in y and localized in x. It was discovered in the Refs. 
14 and 15. In Ref. 14 it was shown that this solution can be 
regarded as a chain of two-dimensional solitons which are 
localized in all directions and vanish at infinity according 
to a power law = (x2+y)-I  (Ref. 16). Thus, for a peri- 
odic single-mode perturbation plane soliton self-focusing 
results in the formation of a 2D soliton chain located par- 
allel to the front of the original wave at a distance equal to 
the period of initial modulation. This process is shown in 
Fig. 1. 

The properties of the solution (2.10b) indicate that 
there is a threshold level of transversal modulation period 
located within the instability region (A1>O). At one 
boundary of this region where p l  -PO, x -0, the solution 
(2. lob) describes 2D solitons spaced far apart ( - l/xl).  
The parameters (amplitude, velocity, half-width) differ lit- 
tle between the final and initial plane solitons. 

At the other boundary where p l  -0, xl  -pi, the dis- 
tance between the 2D solitons in the solution (2. lob) is so 
small that they merge to reconstruct the initial almost 
plane soliton (2.8) with a small residual amplitude modu- 
lation proportional to 6. The amplitude of the other 
plane soliton (2.10a) is infinitesimal, -p:. Hence the com- 
plete annihilation of the initial plane soliton, which was 
claimed in Ref. 4, never occurs. 

2.2. Nonlinear Interaction of discrete modes 

The period of a single-mode initial perturbation deter- 
mines the distance between solitons in the chain formed by 
the self-focusing process. Now we shall consider a more 
complicated process of plane soliton evolution under the 
action of a quasiperiodic perturbation. The corresponding 
solution follows from Eq. (2.6) at M=2. 

If a superposition of modes (2.9) with the wave num- 
bers x,, x2 is specified initially, their nonlinear interaction 
gives rise to a perturbation with the wave number 
k2= x2-xl. AS a result, besides the 2D soliton chain 
@r(80;po,pl) and the plane soliton with the amplitude 2pi, 
which is smaller than for the plane soliton (2. lOa), another 
2D soliton chain +r(e12;p1 ,p2) forms with a period which 
does not coincide with any period of the initial perturba- 
tion. Although the result of plane soliton decay in the case 
of the two-mode perturbation, as in the other cases, is de- 
termined by the relation (2.7), the intermediate picture 
depends on the ratio of the growth rates of the two modes. 

If A, > A2 holds, 2D soliton chains are formed due to 
the subsequent single-mode decay of the plane soliton 
Qp(qo;po) first to the chain @r(801;po,pl) and the plane 
soliton @,(ql;pl), and then through secondary decay of 
the latter to the chain @r(012;p1 ,p2) and the plane soliton 
Qo(q2;p2) (Fig. 2a-f). Alternatively, if A, < A2, holds, a 

FIG. 1. The birth of 2D soliton chain as a result of the plane soliton 
instability described by Eq. (2.6) for M =  1: a-t=O; b-t= 10; c-t=20. 

wavenumber displacement of the second soliton chain 
@r(e12;pI ,pZ) is accounted for by the two stages of decay 
and formation of metastable soliton structure in the inter- 
mediate stage. It should be added that for A 1 d 2  both 
stages of the plane soliton decay take place at the same 
time, and no metastable structure can be distinguished in 
the intermediate stage. 

perturbed chain with the wave number x2 first is separated 
in the course of the primary decay from the plane soliton 2.3. Plane soliton decay for an M-mode perturbation 

with the amplitude 2p$, and then decays into two chains The results presented above can be generalized for an 
<Pr(Bol;po,pl) and @,(B12;pl,p2) (Fig. 2a-f). Thus, the initial perturbation with M discrete modes. In this case, the 
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FIG. 2. The plane soliton decay for a 
two-period initial perturbation for 
1 , > 1 , :  a-t=O; b-t=15; c-t=40, 
but for 1, >A,; d-t=O; e--t= lO; f-t 

development of the self-focusing instability gives rise 
to M parallel chains of two-dimensional solitons 
<0r(8n-l,n;pn-l,pn) propagating one after another with 

2 2 transverse wave numbers kn= xn- xn- =pn- -pn and 
2 2 velocities Vn =pn +pn- +p,pn- l ,  n = 1,2 ,..., M, and to a 

single plane soliton Q>,(vM ;pM) with the smallest possible 
amplitude and velocity which are determined by the pa- 
rameter pM (see 2.7) .  

To prove this statement we multiply the expression 
(2 .6)  by exp[- (pk+pI)pk1] and choose a reference frame 
moving with the velocity of a certain fixed chain 
<0r(8kl;pk ,pl) ,  k < 1. Then the solution (2 .6 )  assumes the 
form 

where cpklmn = (pm+pn-pk-p1) 8kl- ( u k +  01) t and 
an= ( P I - ~ n )  ( ~ k - ~ n )  ( P I + P ~ + P ~ ) .  

One can easily see that o n ) O  holds for arbitrary n only 
if I =  k +  1 .  Therefore for l#k+ 1 we have 

From formula (2 .2 )  it follows that the field u(x,y,t)  tends 
to zero asymptotically as t +  + ao on the corresponding 
characteristic Okl .  Hence, a nontrivial solution is possible 
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FIG. 3. The decay of 2D soliton chain described by Eq. (3.1): a) t=O; b) 
t= 10; c )  t=20. 

2 2 
where #krnn= ( ~ r n + ~ n )  [ ~ k +  (~2k-~rn+~$rn-~n)~]- 

Hence, the solution @(qk,y,t) is nontrivial in the limit 
t + + co only on the characteristic qM, where the plane 
soliton QP(qM;pM) with the smallest possible amplitude 
and velocity propagates. 

Thus, the process of plane soliton decay for an 
M-mode perturbation is an M-fold decay of one of the two 
structures (either the perturbed plane soliton or the per- 
turbed 2D soliton chain) formed at each intermediate 
stage. The specifics of this process depend on the ratio of 
the growth rates of the unstable modes. Consequently, M 
new characteristics of arising soliton chains split off from 
the characteristic of the original plane soliton. 

To conclude this section we would like to point out 
that we have presented analysis of the solutions describing 
plane soliton self-focusing for the simplest perturbation 
type which is determined by formula (2.5). However, the 
results can be generalized when the kernel of the integral 
(2.3) is expressed by derivations of order k of the 
S-function: Sl (p) cc (p -prn), pm <po. A similar analy- 
sis shows that as t-. + cx, the corresponding initial pertur- 
bations give rise not only to the structures described above 
(plane soliton and 2D soliton chains), but also to single 
two-dimensional solitons following the soliton chains equal 
in number to the order k of the derivative. Obviously this 
self-focusing mechanism for an arbitrary perturbation 
specified by the function S,(p) in general form will give 
rise to a disordered ensemble of individual two- 
dimensional solitons distinct from the original plane soli- 
ton. 

3. SOLITON CHAIN DECAY 

Here we shall consider the decay of a nonlinear wave 
periodic in y and localized in the direction of propagation. 
The corresponding solution can be constructed in explicit 
form, if in (2.2), (2.5) we take N = 2 ,  @ ~ = 6 $ ,  
@? = 6 f ,  M1 =0, M2= 1; plo=p, pz0=q, pzl =s. AS a re- 
sult, we have the following solution: 

(s+pI2 
only on the characteristic curve Ok,k+l for k=1,2, ..., M, +E2- 

4ps 
~ X P [  (s-p)e,+ (s-q)esql . (3.1) 

along which the soliton chains @r(ek,k+ l;pk ,pk+ l )  propa- 
gate. As is easily seen, the soliton chain @,(e,;q,p) which is 

In order to find the form of the plane soliton that asymptotically free for p < s < q as t -. - a, begins to decay 

emerges as t- + cx,, we choose the reference frame with at t-0 into two chains @r(8sp;s,p) and @,(8qs;q,s) which 

the coordinate qk  in the solution (2.6): are free again at t+ + cx,. The dynamics of this process is 
shown in Fig. 3. 

w 

M The original chain decays on account of the growing 
@ ( q k , ~ , t ) = l +  C ex~~2~n[qk+(~Zk-~:)t11 

n=O mode of the discrete spectrum, which was first found by 
~ u r f s e v . ~  This mode can be found from (3.1) by neglecting 

+ 4 G c m c n  terms -0(.z2), and is a two-periodic perturbation of 2D 

n=om>n Prn+Pn soliton chain with a certain phase ratio which distinguishes 
it from the 2-mode perturbation (2.9). The transverse 

x cos [ -P: )Y I  ex^ ( #kmn ) 9 ( 2. l2 ) wave numbers of this perturbation determine the periods of 
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the chains that form in the decay process. From (3.1) it 
follows that these wave numbers are related by 

because 

kYl=2 -p2, ky2 =q2 -2, ky3 = q2-p2. 

The relation (3.2) corresponds to the conservation law 
for the spatial density of the 2D solitons of which the 
original nonlinear wave consists. As a result, the break- 
down of the soliton chain is not accompanied by merging 
of individual 2D solitons (Fig. 3). 

The relation (3.2) is known in the theory of weak 
nonlinear waves" as the synchronism condition for the 
y-projection of the wave vector of the quasimonochromatic 
waves which are assumed to be of the form 
exp[i(kp+k$-wlnt)]. Together with analogous condi- 
tions for k, and wln(k, ,k,) they determine the wave reso- 
nance at which a wave with parameters (wln3,kx3,ky3) de- 
cays into two other waves (alnl ,kxl,kyl) and (wln2,kx2,ky2), 
or alternatively, two waves merge into the third wave. 

The dispersion relation of a linear perturbation for the 
KPl equation (2.1 ) is 

This is a decaying dispersion relation,' i.e., the condi- 
tions of three-wave synchronism are met. A similar prop- 
erty also holds for strongly nonlinear periodic waves. 

Specifically, introducing the "x-projection of the wave 
number" k, and the "frequency" wnl(k,,ky) in the expo- 
nential phase of the soliton chains @,(O,;q,p), @,(OSp;s,p) 
and @,(O,;q,s) in the form 

we can easily verify that the parameters kx,ky,wnl(kx,ky) 
are related by the same formula (3.3), with the replace- 
ment wln - - wnl. Consequently, for the decay of a soliton 
chain, the parameters of the original and two new chains 
obey the same conditions of three-way synchronism as in 
the linear case: 

So, all decay processes which occur as a result of the 
quasilinear wave interaction within the KP1 equation are 
also observed for nonlinear solitary waves. 

4.THERESONANCEOFPLANESOLlTONSASACAUSEOF 
THEIR DECAY 

The projection of the wave vector ky might seem to be 
equal to zero for plane solitons parallel to the y-axis. Con- 
sequently, the synchronism condition in the form (3.2) 
does not hold for interactions between plane solitons and 
2D soliton chains. Actually, however, in this case nonlin- 
ear wave synchronism is possible too, but it has some pe- 
culiarities. We shall study this process by considering the 
interaction of one plane soliton and one steady-state non- 

linear wave periodic along y. For simplicity the fronts of 
both waves are supposed to be parallel to the y-axis. The 
corresponding solution can be obtained from the general 
formulas (2.2) and (2.4) with N=3: 

where 

For 0 < b < 1 this solution describes the collision be- 
tween a plane soliton with the parameters po,wo and a 
chain of 2D solitons with the parameters p2,ky ,a2. After 
interaction at t- + oo both the waves retain their initial 
amplitudes and velocities, but acquire the phase shift + S 
=In b. 

The infinite increase in the phase shift, as b+O, is due 
to instability of the plane soliton and its decay before in- 
teractly closely with the 2D soliton chain. This decay gives 
rise to a new soliton chain displaced relative to the original 
one by +S. Besides, a "virtual"18 plane soliton also occurs 
with parameters p l  ,wl which do not obey the "dispersion 
relation" for plane solitons (ol#pi). As some time, it be- 
gins to interact with the original soliton chain, which re- 
sults in their merging and in the formation of a plane soli- 
ton with parameters po,wo, but phase shifted by -6. 

The process of plane soliton decay in a pure form, 
which was analyzed in 2.1, is observed at b=O. In this case 
we have wl=pi, i.e., the "virtual" soliton becomes a real 
plane soliton of the wave field and the original soliton 
chain with the parameters p2,ky ,w2 is located at infinite 
distance from plane soliton. Hence, the condition of wave 
resonance in this case reduces to the following: Besides the 
known relation for "frequencies" w and "wave numbers" 
P, 

the additional condition for an infinite phase shift, 

must be met too. 
This is a specific feature of resonant processes in the 

interaction of two-dimensional structures of different kinds 
(plane solitons and 2D soliton chains). Formally, as is 
clear from the analysis presented in Sec. 2, we can consider 
a plane soliton as a particular case of a general 2D soliton 
chain if the transverse wave number ky depends on the 
longitudinal wave number p as ky=p2. Then relation (4.4) 
coincides exactly with the synchronism condition (3.2) for 
soliton chains. Apparently, this formal similarity allows us 

607 JETP 77 (4). October 1993 D. E. Pelinovsky and Yu. A. Stepanyants 607 



to treat all decaying processes of quasiplane nonlinear 
waves in positive-dispersion media in terms of the concept 
of resonance of 2D soliton chains. 

5. CONCLUDING REMARKS 

The analysis of decaying processes of the simplest sol- 
itary waves presented in our paper allows us to understand 
in novel way the problem of plane-wave instability in 
positive-dispersion media. As nonlinear quasiplanar struc- 
tures decay, the energy is not lost on small oscillations of 
the medium. Instead, it is condensed in some two- 
dimensional and plane solitons. Since the considered model 
is conservative, these processes are reversible, i.e., soliton 
merging is possible, too. 

The appearance of a 2D soliton lattice as a result of 
plane perturbation self-focusing enables us to relate the 
decaying character of the spectrum of linear and nonlinear 
waves to the existence of a solitary solution in the form of 
a two-dimensional soliton. It can serve a convenient crite- 
rion for the existence of such solutions. In the description 
of 2D nonlinear perturbation dynamics these solitons will 
probably play the same role as solitons in one-dimensional 
evolution equations. 

Although all the results obtained in this paper are 
based on the integrability of the KP1 equation we believe 
that for other similar models with positive d i ~ ~ e r s i o n ' ~ - ~ ~  
where the instability of plane soliton relative to self- 
focusing processes was discovered, a similar plane soliton 
decay may be observed. However, the question of the ori- 
gin of small oscillations of the wave medium which can 
accompany soliton decay needs independent investigation. 
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