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The nonlinear dynamics of the Jeans instability in a cold nondissipative medium is studied 
analytically and numerically. It is found that as the system undergoes a transition to 
the equilibrium state an infinite number of caustics develop in it. It is shown that the 
equilibrium density distribution that arises has a singularity p at the center. 

1. INTRODUCTION 

As is well known, most of the mass in the universe 
resides in dark matter, which is shown convincingly by the 
rotational velocity profiles of galaxies, the motion of gal- 
axies in clusters, etc.lp2 Unfortunately, we do not know 
what sort of particles make up this dark matter; we can 
assert with some confidence, however, that they are cold 
and interact very weakly with baryon material and each 
other. An important theoretical problem is therefore the 
study of the dynamics of such noninteracting and dissipa- 
tionless material. 

Previously we have studied the nonlinear dynamics of 
three-dimensional perturbations in nondissipative material 
in an expanding ~n ive r se .~ -~  There it was shown that for a 
broad class of initial perturbations (assuming only that the 
latter are not highly elongated along any single axis or two 
axes) a dissipationless gravitational singularity develops in 
the process of nonlinear compression and the subsequent 
kinetic mixing. This is a steady spherical structure of self- 
confined material, having a density singularity at the cen- 
ter. The density profile in a dissipationless gravitational 
singularity is accurately described by a power law:5 

par-" ,  az1.7-1.8. (1) 

As can be seen from ( 1 ) , the density singularity is integra- 
ble. 

It is significant that the question of the nonlinear de- 
velopment of highly elongated or lenticular initial pertur- 
bations has not previously been studied. The main differ- 
ence between the dynamics of these perturbations and that 
of the spheroidal perturbations discussed in Ref. 5 is that 
self-trapping of material near the dynamical singularity in 
the original compression of the latter does not take place. 
As a result material spreads out over a broad region and 
one may expect a very different, nonsingular steady struc- 
ture to develop by the end of the kinetic mixing process. 

The typical limiting case of this type of initial structure 
is one-dimensional. In these, self-trapping of matter natu- 
rally also does not occur near the x=O singularity of the 
initial compression. Specifically, as shown in Ref. 3, near 
the singularity for x-0 the gravitational potential satisfies 
VaX 4/3 and the flow velocity satisfies  ax"^. Conse- 
quently, the streaming kinetic energy K a v2 a x2I3 is much 
greater than the potential energy, so that no capture oc- 

curs. It is the purpose of the present work to study the 
nonlinear dynamics of one-dimensional flows of self- 
gravitating cold dissipationless material. 

Since there is no small parameter determining the 
rapid capture process near the singularity of the original 
compression, the analytical solution of the problem ob- 
tained in Refs. 4 and 5 is difficult. In the present work we 
therefore depend mainly on a numerical solution, supple- 
mented by a detailed analytical critique. This enables us 
not only to study the steady state that develops as a result 
of kinetic mixing, but also to study the entire process of 
nondissipative nonlinear relaxation of the initial perturba- 
tion. 

We can concisely summarize the main features of the 
process as follows. The nonlinear development of the Jeans 
instability results in a transition from the initial cold one- 
stream unstable hydrodynamic state of dissipationless gas 
to an equilibrium kinetic state trapped in the self-consistent 
gravitational field, with an infinite multiplicity of streams. 
The distribution function of the streams in the equilibrium 
state depends only on their energy. The streams proliferate 
because of successive tripling in the center of the cloud, 
which is accompanied by the generation of caustic waves 
expanding from the center. The flow therefore acquires a 
multicaustic nature. At each caustic located at a point 
x,(t), as is well known,6 the density of the material di- 
verges poc [x-~,( t)]- ' /~.  Relaxation to the steady state 
results from the presence of an infinite number of caustics, 
which reduces the distance between them. Hence, despite 
the absence of material capture near the initial singularity, 
the steady distribution of material that develops in the cen- 
ter of the cloud is singular with a density 

As in the three-dimensional case ( 1 ), the density sin- 
gularity (2) is integrable. But the presence of an infinite 
number of caustics under nondissipative conditions implies 
the existence of infinite density fluctuations. Similar fluc- 
tuations occur, of course, in three-dimensional geometry. 

Thus, in the completely nondissipative case, strictly 
speaking, no equilibrium state is reached. We see that a 
strong initial deviation from equilibrium does not disap- 
pear, but only breaks up into a multitude of small-scale 
fluctuations. However, the reduction in the scale of the 
perturbations, even though they are strong, enables us to 
distinguish an average equilibrium state because of their 
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integrability. If we analyze the concept of entropy, then it 
may turn out in our nondissipative mixing case that it is 
conserved, although in order to reach a genuine equilib- 
rium state it should increase strongly. The excess entropy 
is contained in the nonequilibrium fluctuations. 

2. INITIAL STAGE OF THE NONLINEAR DYNAMICS OF THE 
JEANS INSTABILITY 

The initial process of the nonlinear dynamics of a cold 
nondissipative medium is described by the hydrodynamic 
equations: 

where p is the density, V is the velocity, and $ is the 
potential produced by the cold nondissipative material. In 
Eqs. (3) a system of units is used in which 47ry= 1. 

Equations (3) must be supplemented with initial con- 
ditions. As was shown in Ref. 4, without loss of generality 
they can be chosen in the form 

Equations (3) can be integrated exactly. Specifically, 
substituting the third equation of the system (3) into the 
first and introducing the notation y=a$/ax and using the 
mass conservation law we find 

Using the hodograph transformation we obtain an implicit 
solution of Eqs. (5) : 

The functions M(y) and H(y) are determined from the 
initial conditions (4). In our case we have 

Analysis of the solution (7) shows that the neighborhood 
of the density maximum plays the main role in the process 
of compressing the initial nonuniformity. It is clear that in 
the most general case the initial density can be represented 
near a maximum in the form 

Going over to new dimensionless variables 

we can take po(x) in the form 

The solution of (7), taking into account the initial condi- 
tion (8), assumes the form 

It is easy to show that the solutions (7) and (9) last only 
for a finite time. Specifically, at time t=t,=z/Z near the 
maximum density a singularity  occur^:^ 

Numerical solution of the problem also yields a similar 
singularity. The solution is found by means of the particle- 
in-cell method. We analyze the dynamics of particles sat- 
isfying the kinetic equation 

af af a*af 
-+v-+--=o, 
a t  ax ax av 

It is easy to show by direct substitution that the kinetic 
equation ( 11) is equivalent to the hydrodynamic system 
(3) when the distribution function is given in the form 

The initial conditions for the distribution function f (x,v,O) 
are chosen in accordance with (8) and ( 12) in the form 

where po(x) is given by Eq. (8). 
In the numerical solution the length of the computa- 

tional system - 1 (xo( 1 is taken to be twice the size of the 
region occupied initially by the particles. The potential is 
assumed to be prescribed at the boundaries (x = .t 1 ), so 
that by virtue of the symmetry of the problem we can 
assume $( - 1 ) = $( 1 ) =O. The collection of particles was 
monitored, which revealed that not one particle left the 
region of the calculation over the whole time of the simu- 
lation. In the calculation we used lo5 particles; the time 
step At was 0.004 and the mesh spacing was 
Ax=2/3840~5.  low4. There were of order 50 particles 
per zone on the average, which amply ensured the required 
accuracy of the calculation.' 

Since prior to the onset time t , = a  of the singularity 
we have the analytical solution (9), ( lo) ,  by comparing 
the two we were able to check the accuracy of the numer- 
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From ( 14) and ( 15)  it then follows that 

FIG. 1 .  Density and distribution at the time t=\/Z when the singularity 
develops. The points represent the results of the numerical calculation 
and the straight line corresponds to the analytical dependence (10). 

ical simulation, which was found to be quite good. In par- 
ticular, as a result of the dynamical evolution of the initial 
distribution function ( 13)  at time t z  1.4142 a very strong 
peak in the density develops at the center of the distribu- 
tion. The corresponding dependence of log p on log x is 
shown in Fig. 1. The straight line corresponds to the ana- 
lytical solution ( 10) .  It is evident that even in the imme- 
diate vicinity of the singularity the agreement between the 
numerical and analytical solutions is very good. 

3. PROLIFERATION OF STREAMS 

We proceed to study the behavior of the solution after 
the singularity t > t,. For this purpose it is convenient to 
use in place of Eqs. ( 3 )  the equivalent equations ( 11 ) and 
( 12) .  Now it is natural to regard the time t= t, at which 
the singularity occurs as the zero of time. Then the initial 
function f (x,v,t,) near the singularity x=O is given by 
Eqs. ( l o ) ,  ( 1 2 ) :  

Now let us consider the behavior of the solution im- 
mediately following the singularity, i.e., for r  > 0, where 

We take into account the fact that in the region x 4 1  of 
interest to us, it follows from Eq. ( 1 0 )  that the kinetic 
energy of the stream satisfies v2 /2  a: x2I3 and the potential 
energy satisfies $a x4I3, i.e., the potential energy is sub- 
stantially less than the kinetic. This means that the last 
term in Eq. ( 11 ) is unimportant, so that to lowest order we 
can disregard it. In this approximation the solution of Eq. 
( 1 1 ) takes a simple form: 

It is significant that the argument of the S function has 
three roots for I x 1 < x,= (Z9l4/3.rr) r3I2,  r  > 0. This means 
that in the neighborhood r>0 of the singularity three 
streams develop in the flow. The distribution function ( 16)  
can therefore be rewritten in the form 

where the quantities 

signify the density of the ith stream, and Vi= V i ( x , r )  are 
the roots of the equation 

Relation ( 1 7 )  is equivalent to the transition to multi- 
stream hydrodynamics. Specifically, using the representa- 
tion of the distribution function in the form ( 17) we find 
from ( 1 1 )  

In Eqs. ( 11)  and ( 18) the caustics of the surface on 
which merging or splitting of the streams takes place play 
an important role. These are the points x,. Specifically, as 
follows from ( 16)  for I x 1 <x ,  there are three streams, 
while for Ix 1 > x ,  there is one. At the points x=x, the 
derivatives of the merging velocity V 1  and V2 have singu- 
larities 

The densities pl  and p2, along with the second derivative 
#$/ax2 of the field, vanish at the points x,. However, the 
gravitational potential $ and its first derivative remain con- 
tinuous: 
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FIG. 2. The v(x)phase plane at time t= 1.5. The region in which the 
phase curve is three-valued corresponds to three-stream flow. 

becomes smooth (see Fig. 3). It is natural to expect that 
after prolonged mixing a similar smooth density distribu- 
tion also arises, namely, 

*(xc+O) =*(xc-0). (20) 

Conditions (19) and (20) can be written down at every 
P=PI[l-(;)2], 

point where the streams merge. They comprise a complete differing from the initial distribution (8) only by changes 
system of boundary conditions for Eqs. ( 18 ) . in the constants pl and a, .  

The results of the numerical solution, shown in Figs. 2 
and 3, demonstrate the formation of a triple stream and the 
development of the density near caustics. As a result of the 

tial energy at the time t, of the initial singularity. Conse- 
FIG. 3. The distribution of the density of the nondissipative material at 

quently there is no here, since immedi- time 1.5. The density near the caustics correspond to the distri- 
ately after the initial breaking the singularity disappears at bution (20). The locations of the caustics correspond to the points at 

subsequent evolution the central stream gradually stops 80 
and begins to move in the opposite direction, and at some 
time it breaks, i.e., a singularity analogous to ( 10) develops 
all over again at the center of the distribution. After that a 
five-stream flow develops near the center, and caustics nat- 
urally arise which separate the five-stream and three- 
stream regions. In (x,v) space the flow acquires the form of 
a twisting spiral (Fig. 4). Subsequently the spiral twists 
still more and the number of streams near the center in- 
creases. Regions with different numbers of streams are sep- 40 
arated by caustics. The density function is strongly in- 
dented, but the integrals of the density and the potential 
remain fairly smooth functions (20). This process is illus- 
trated in Fig. 5. 

4. THE STEADY STATE: ADIABATIC MODEL 

Now we consider the state that develops in the process 
of prolonged mixing in the limit t+  m . As indicated above, 

the center, and the density distribution near the point x=O which the roots merge on the curve of Fig. 2. 
- 
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in contrast to Ref. 5, in the present case the kinetic energy -0.02 0 .  0.02 
near the singularity is substantially greater than the poten- 
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FIG. 4. The v(x) phase curve corresponding to the region of five-current 
flow: t= 10.4. 

However, it does not work this way. The numerical 
calculation shows that with long calculation times material 
becomes concentrated near the center. The density p ( x )  
fluctuates strongly, so that this concentration is most 
clearly visible in a plot of the integrated density, i.e., the 
mass of material 

FIG. 6. The distribution of the integrated density (mass) of the material 
at time t=23.6. The straight line corresponds to the adiabatic model (32) 
and the x's represent the result of the numerical simulation. 

I= I vdx = J-dx . ( 22 )  

FIG. 5. Density distribution corresponding to the phase curve of Fig. 4. 
The plot clearly shows the central peak and the density peaks at the 

m ( x )  = I,' p ( x ~ ) d x t ;  

see Fig. 6. For larger values t> 10 of the time the curve 
shown in this figure becomes essentially constant. Thus it 
shows a steady distribution of the integrated density. Evi- 
dently it differs considerably from the function m ( x )  = plx 
for x  -0, which follows from ( 2  1 ). The figure also shows 
that in the steady state the average density p ( x )  =dm/dx 
grows rapidly as we approach the center x=O. Further- 
more, in this region the fluctuations of p ( x )  are enhanced, 
which says that the caustics of the singularities bunch up 
and implies that the potential of the average field differs 
considerably from tj - tj, cc x2 in the limit x  - 0.  

In order to explain the behavior of the singularities 
observed in the numerical experiment, it is necessary to 
perform some analysis of the process of multistream mix- 
ing at late times t. Here it is convenient to introduce in- 
stead of the variable v in Eq. ( 11) a new quantity, the 
adiabatic invariant I: 

Here 8 is the energy F f  = v2/2 + I) of the stream; the re- 
flection points * x ,  are determined by the condition 
8 = t j ( x m ) .  For a given potential tj expression (22 )  
uniquely relates g and the invariant I according to 
8= g ( I ) .  In the new variables the system of equations 
( 1 1 ) assumes the form 

caustics. 
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We also consider the approximation which we call the 
adiabatic model.') This model is essentially the following. 
The mixing process consists of oscillations of the streams 
and the resultant appearance of multistream flows. In these 
oscillations the adiabatic invariant I is conserved if they 
are superimposed on a sufficiently slowly varying potential. 
The proliferation of the streams follows the initial singu- 
larity. The multistreaming region is bounded by the first 
caustic x, : before it (for I x I > x,) there is one stream, and 
after it (for I x 1 < x,) there are three or more (Fig. 2).  We 
assume that after the first caustic is passed mixing imme- 
diately occurs due to the rapid oscillations associated with 
the conservation of the adiabatic invariant. Then the form 
of the distribution function is determined from the conser- 
vation of the mass of material passing through the caustic: 

where x, is the location of the caustic and I, is the value of 
the adiabatic invariant on the caustic: 

413 I,= Ioxc vdx = a VG~ 

From relations (22), (24), and (10) we find 

the constants po and Vo are defined in ( 10). Then by virtue 
of the adiabatic invariance for any value of I we have 

The equation for the potential, taking into account 
(23) and (27), can be written in the form 

a2$ gc(t) f ( z ) d 8  -- 
aX2-J-, d m .  (28) 

The system of equations consisting of (1 1) and (23) thus 
assumes the form (26), (27), and (28). Its solution in the 
limit x-0 is found in the form of a power law $=qlxa. 
Then according to (22), (26), and (27) we have 

Substituting (29) in (28) we finally find 

Thus we see that the potential that develops as a result 
of multistream mixing, 

is a smooth function, which, however, differs considerably 
from x2 in the limit x -+ 0. The average density for x - 0 has 
the singularity 

where the actual density in view of what was said above 
has strong fluctuations (sharp peaks) in the neighborhood 
of which Eq. (20) holds. But the integrated density, i.e., 
the mass calculated according to (3  1 ) and (2 1 ), by virtue 
of the integrability condition (20), is a smooth function 

In Fig. 6 the behavior of (32) is shown by a straight line. 
The agreement between the adiabatic model and the results 
of the numerical calculation is clearly evident. 

The strong accumulation of particles toward the bot- 
tom of the potential well ( 8 - 0 )  is also evident in the 
distribution function. According to (29) we have 

The distribution (33) also agrees with the results of the 
numerical calculation (see Fig. 7). 

We see that the adiabatic model agrees well with the 
data from the numerical simulation. This agreement is 
probably a consequence of the relatively slow variation of 
the gravitational potential, whose fluctuations are small2) 
(see Fig. 8). This gives rise to a numerical parameter 
which is responsible for the slow rate of change of the 
adiabatic invariant. Moreover, the oscillation period 

vanishes for 8 -0, which gives rise to rapid mixing of the 
streams in the vicinity of the bottom of the potential well. 

5. BUNCHING OF CAUSTICS 

In the steady state, as can be seen from (34), the 0s- 
cillation period T ( 8 ) near the bottom of the potential well 
( 8 -0) approaches zero. This in turn implies that near the 
bottom caustics form at an increasingly rapid rate. This 
was shown above [see Eqs. (16), 17)]; the process by 
which caustics proliferate is the appearance in time of new 
zeros of the 6 function. Hence the distribution function can 
always be expressed in the form 
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It is assumed that asymptotically (t+ co ) the motion takes 
place in the steady field (30). 

Making a change of variables in (36), introducing in 
place of xl  the quantity 

COS 0 = xy7/v, 

we find from (36) 

where 

a = arccos ( a x5i7/v 1, 

b = arccos ( a X:/~/V). 

+oxX At late times r)tc, introducing the average value 
• ( ~ o s ~ ' ~ 8 )  =go, we find from (37) 

The sequence of points at which caustics are located is 
FIG. 7. The energy distribution function. The straight line corresponds to 
the adiabatic model of Eqs. (29) and (33), and the points correspond to determined by the conditions ( 19)9 which for large 
the results of the numerical simulation at various times (x-r=20; + -t of n are close to the points where the velocity vanishes 
=21.6; 0 - k 2 3 . 6 ) .  (Fig. 4). However, in view of the symmetry of the picture 

under these conditions this sequence is similar to the se- 
quence of points v, on the x=O axis. For this sequence we 

Here V is the initial velocity, expressed in terms of the 
find from ( 38 ) using ( 10) the transcendental equation initial position xo at the time tc of breaking according to 

where xo=xo(x,v,t) is the constant of motion defined by For r+ co the solution of Eq. (39) agrees with the zeros of 
the sine function, so that 

(36) 
v , ~ x ( r / n ) ~ / ~ ,  n=1, ..., N. (40) 

FIG. 8. Form of the potential at various times: t=4.4 (long dashes), t=6 
(short dashes), and t=24 (solid trace). 
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FIG. 9. Damping of the potential minimum versus time. 

The total number N of caustics can be estimated from Jfl afl a*oafl a*lafo a*lafl 
relation (39) if we use the fact that the sine cannot exceed -+v-+--+--+--=O, a t  ax ax av ax av ax av 
unity: 

N 2  ~ ~ ~ / ~ ( 2 + ~ ) ~ / ~ ~ r  . (41 

From this it is evident that the total number of caustics 
increases in proportion to the time r. The relative distance In the full equation (44) it is natural to distinguish the 
between caustics, as follows from (40), is linear part 

which decreases as a function of the number n. That is, 
caustics with large values of n bunch up near the center. 
Naturally, the same relations determine the positions x, of 
the caustics. As the number of caustics increases the num- 
ber of streams does also. 

Thus, we see that the basis of the mixing process is the 
continual increase in the number of streams, as a result of 
which the system approaches the steady kinetic state. The 
significance of the increase in the number of caustics is that 
the spatial scale of the fluctuations is diminishing. 

This describes the characteristic modes of linear oscilla- 
tion. The first mode is clearly evident in the oscillations of 
the potentials shown in Fig. 9. From the figure we see that 
the period T and accordingly the angular frequency w of 
the first mode are equal to Tz4.2, w z  1.50. Here the time 
is expressed in units of the Jeans time t,. 

In view of the absence of dissipation in the system the 
linear oscillations must naturally be undamped, i.e., the 
eigenmodes An of Eq. (45) must be purely imaginary. On 

In the foregoing discussion we treated only smal'-scale the other hand, Fig. 9 clearly shows that the oscillation 
caustic waves. In addition, the steady kinetic state (29) amplitude decreases.  hi^ is related to the fact that the 
can be regarded as an d~namical 'ystem. De- amplitude of these potential oscillations is finite, and re- 
viations from the equilibrium position, including the initial sults from nonlinear mode interactions. To describe this 
state ( 8 ) ,  must give rise to the excitation of eigenmodes of process we expand the function in characteristic 66ket,, 
the system. vectors Ign(x,v)) of Eq. (45) and obtain 

To describe the eigenmodes we write the distribution 
function f and the potential qh in the form 

f l =  2 exp(A,t)A,(t) Ign(x,v)), (46) 
f = f ~ ( g ) + f l ,  ~ = $ o ( x ) + $ I ,  (43) n 

where f o  and lbo are the steady distribution function and where A, is the eigenvalue and A,(t) is the amplitude cor- 
potential. Substituting (43) in ( 1 1 ) we find responding to the eigenmode I g, (x,v) ) . Substituting ex- 
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pression (46) in (44) and multiplying Eq. (44) by the 
corresponding "bra" vector, we find an equation for the 
amplitude of the I-th mode 

where 

The equation for the amplitudes (47) permits us to find an 
asymptotic law for the damping of the amplitudes at late 
times t. Specifically, for t- co we have from (47) 

This type of equation for the mode amplitudes is a 
natural consequence of the quadratic behavior of the non- 
linearity in Eqs. (44). Equation (48) has the obvious so- 
lution 

where the constants CI satisfy the equation 

C (c~-mcmK~,m,~-m +a,cm) =Om 
m 

Thus we see that at late times the modes damp as l/t. 
This process is analogous to nonlinear Landau damping.' 
The fundamental mode is most slowly damped; its dynam- 
ics can be estimated from the time dependence of the po- 
tential minimum. The process by which the potential 
damps is shown in Fig. 9. It agrees well with (49) and 
accordingly displays nonlinear behavior. 

In conclusion we note that, since this system is conser- 
vative, both the damping of the modes and the decrease in 
scale of the caustics only mean that they are being pumped 
into smaller and smaller scales. In this sense it is useful to 
consider the total entropy of the system: 

In the initial state, as can easily be seen from ( 13), it is 
equal to - co. The dynamical process does not change the 
entropy. Consequently, the entropy must be equal to - co 
at all times. This can easily be seen if we recall that the 
distribution function can be represented in the form (17). 

In addition, if we consider the mixed kinetic state, then 
the entropy in it calculated using the steady distribution 
function (29) has the finite value 

In accordance with (29) we have P=0.9, $, is the depth 
of the potential well, and 

Thus, we see that all the entropy in a mixed state is 
concentrated in giant small-scale fluctuations. In this sense 
we can speak of incomplete relaxation of the system to a 
mixed kinetic state due to the dynamical process consid- 
ered here. 

"~nfortunately, there is no small parameter in this problem which would 
permit the theory of adiabatic trapping to be developed systematically. 
As we will see below, an adiabatic parameter develops only at late times 
[cf. Eq. (3411. 

''AS can be seen from the results of the numerical calculation, the greatest 
change in the potential occurs during the initial hydrodynamic com- 
pression. This is partly responsible for the choice of the matching con- 
dition (24) at the first caustic. 
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