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The problem of the quantum states of the harmonic oscillator is solved, yielding the 
minimum value of the uncertainty in the phase A4 of the oscillations for specified values of 
the uncertainty hk in the number of quanta and the average number ( k )  of quanta. 
It is shown that the "standard" form of the uncertainty principle relating the number of quanta 
and the phase, ANA$? 1/2, breaks down both for small values in the uncertainty of the 
number of quanta, A N 5  1, and for sufficiently large values, hk) ( k ) .  An explicit form is 
found for the quantum states of the oscillator which realizes the minimum value in the 
uncertainty of the oscillation phase for a given average number of quanta. It is shown that for 
( k ) )  1 the phase uncertainty satisfies A$) 1.376 ... / ( k )  . 

1. INTRODUCTION A In-1), n>O, 
E-In)= 

The uncertainty principle in terms of the number of 
quanta and the phase of a harmonic oscillator continues to The Hermitian conjugate of the operator k- is the opera- 
be the object of controversy at the present time. It is well tor k, , defined so that 
known that the "standard" form 

A$A$) 1/2 

(here A& is the uncertainty in the number of quanta and 
A4 is the phase uncertainty) is incorrect, generally speak- 
ing, if only because the uncertainty in the phase is bounded 
by 2.rr and for A$-0 the inequality ( 1) manifestly fails. 

Carruthers and ~ i e t o '  and ~ a c k i w ~  have made sub- 
stantial progress in understanding this problem. However, 
because of an inadvertent oversight the "states with mini- 
mum product of the uncertainties" obtained in these works 
(an experiment was recently proposed to achieve these 
states3) are not actually as claimed (see below, Sec. 6 ) .  

The question also remains open as to what the mini- 
mum value of the uncertainty in the phase of a harmonic 
oscillator can be for a given value of the average number of 
quanta, and what states achieve this minimum. This ques- 
tion has recently become pressing in connection with the 
development of laser gravitational antennas, for which it is 
necessary to find the smallest possible phase shift of an 
electromagnetic wave whose power is limited. 

The purpose of the present work is to study the uncer- 
tainty principle in terms of the number of quanta and the 
phase, and also the oscillator states with minimum phase 
uncertainty. 

2. THE OBSERVABLE PHASE 

It is well known that the definition of the observable 
phase in quantum mechanics encounters great difficulty 
(see, e.g., Ref. 1). To overcome these difficulties we will 
use the method proposed in Refs. 4 and 5. 

We define an operator k- on a finite-dimensional 
space D with a number of measurements M a: follows 
(here In) is the eigenvector of the operator N for the 
number of quanta): 

A A , .  

so that we have k - k + = k + ~  =I (I is the unit opera- 
tor). Consequently, the operator E- is unitary and the 
self-adjoint phase operator $, on the finite-dimensional 
space D with M measurements can be defined as 
E- = exp[iQM] (compare Refs. 4, 5), where 

&M= C Ok 1 Ok) (Ok 1. (2) 
(0,) 

Here Ok are a uniform covering of the integral [-T,T) with 
lengths 2.rr/M; {Ok) signifies that the summation in (2) is 
over all Ok, and I Ok) is given by 

4 M-1 

The operator &M is convenient to use as a phase oper- 
ator, as was done in Ref. 5, since 

1) The operator QM is self-adjoint; 
2) the energy of an arbitrary real physical system is 

always bounded (e.g., the total energy of the universe). We 
can therefore always describe such a system by a vector in 
the finite-dimensional space D with a large but finite num- 
ber of measurements M. In our case, when the system is 
the harmonic oscillator, it suffices to require M )  (fi) 
+A& where ( k )  is the average number of quanta and 
hk= [ ( N ~ ) ,  ( k )  '1 'I2. Moreover, the number M can gener- 
ally be omitted from the final formulas, since for an arbi- 
trary kth power of the operator &M there exists a weak 
limit as M-  W ,  which we will denote by &k. This means 
that 

for any two vectors ( f )  and Ig) (see Appendix A).  
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3. THE CONCEPT OF A "STATE WITH MINIMUM 
UNCERTAINTY" 

The commonly _employed definition is something like 
this: "States wi,th minimum uncertainty are those in which 
the product  MA^ of the uncertainties of two noncommut- 
ing observables 2 and 2 is a minimum." Obviously the 
desire to minimize specifically the product of the uncer- 
tainties is a r$iection of the Hekenberg uncertainty prin- 
ciple (if [ j ,  B] = i t ,  then AAAB> I ( t )  1 /2). A different 
formulation of the problem appears physically more natu- 
ral: for a given quantity Ah (e.g., imposed by the possibil- 
ities of a device) it is required to find the minimum value 
of M. Or, in a more general sense, states wit! minimum 
uncertainty are those in which the quantity AA is a mini- 
mum for given values of certain other p!rameters charac- 
terizing our system (for example, ( 2 )  ,A B, ( 2 )  ) . As shown 
by ~ u l a ~ a , ~  in minimizing AA for different prescribed val- 
ues of A2  we are required to find solutions that minimize 
the product M A 2  of the uncertainties. When we do this it 
is also possible to obtain solutions that cannot be obtained 
by minimizing the product of the uncertainties directly. In 
the present work we will therefore take states with mini- 
mum uncertainty to be those which have a minimum phase 
uncertainty for given values of the average number (I?) of 
quanta and the uncertainty Afi of the number of quanta. 

4. UNCERTAINTY RELATION IN TERMS OF THE PHASE 
ANDTHENUMBEROFQUANTA 

It is always possible to choose the zero of phase so that 
(&) is equal to zero. We will therefore look for the states 
in which the quantity (&2) is a minimum for given (I?) 
and AI? (i.e., for given values of (9) and (I?) plus the 
normalization condition (Y I Y) = 1 ). Using the method of 
Lagrange multipliers, we will seek the minimum of the 
functional 

U=(W 1d21Y)+A2(Y (I?2~Y)+A1(Y(I?~Y) 

Here Ao,A1 ,A2 are Lagrange multipliers. 
Starting from the condition SU=O, after varying the 

vector 1 Y) (that is, I Y) -+ I Y) + 16Y) ) and separating the 
terms that are linear in I SY), we find the equation 

[d2+~21?2+~11?+~0]  1 Y) =o. (4) 

Unfortunately, Eq. (4) cannot be solved in general. 
However, we can get an overview by considering two cases: 

1) the states with minimum uncertainty have an aver- 
age number of quanta of order unity; 

2) the average number of quanta and the uncertainty 
in the number of quanta are much greater than unity. 

4.1. Average Number of Quanta of Order Unity 

In this case the parameters of states with minimum 
uncertainty were found by solving Eq. (4) numerically. 
The results are shown in Fig. 1. From the figure we see that 
the relation dI?Ad= 1/2 holds for states with minimum 
uncertainty only in the range 0.5 < A$< (I?). In the limit 
AI?-0 the dispersion in the phase approaches the asymp- 

FIG. 1. The product &A& for the states with minimum uncertainty as 
a function of the average number of quanta (N) and the uncertain AN in 
the number of quanta. The numbers at the top refer to the average num- 
ber of quanta for each curve. 

totic value d/3, which corresponds to the dispersion of a 
random variable uniformly distributed in the interval 
( - P,P). Then the uncertainty relation assumes the form 

(the initial linear portion of the plot in Fig. 1 ). 
For large values of Al?, comparable with (I?), the 

minimum value of the product of the uncertainties be- 
comes larger than 1/2 (see Sec. 4.2 for further details). 
For every specified (fi) there exists a maximum value Al? 
for which Eq. (4) still has a solution (the rightmost ex- 
tremities of the curves in Fig. 1). These solutions deter- 
mine the states with minimum phase uncertainty for given 
(I?) (see Sec. 5). 

4.2 Average Number of Quanta Much Greater than Unity 

In this case Eq. (4) reduces to an ordinary differential 
equation. Let 

For A h 1  we can assume that the distribution over the 
number of quanta is continuous, cn=c(n), where n is 
taken to vary continuously from 0 to + co . Then we obtain 
the following equation for the function c(n) (see Appendix 
B) : 

with boundary conditions c(0) =0, c(n) I - 0. After a 
n- m 

change of variables, 
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this equation is reduced to a form analogous to the Schro- 
dinger equation for the harmonic oscillator: 

with boundary conditions 

$(PI =O, $(XI 1 - 0. 
x- m 

(6) 

Equation (5) has solutions for arbitrary E.'** The so- 
lution of Eq. (5) satisfying the boundary condition (6) has 

FIG. 2. The form of the distribution over;he number of qua?ta fpr 
the states with minimum uncertainty: 1 )  AN/(N) ~ 0 . 4 2 ;  2) AN/(N) 
~ 0 . 2 .  State 2 is essentially the same as a Gaussian distribution. 

This state corresponds to a product of uncertainties given 
by AI?A&= 1/2. When M/(I?) - 1 holds the function 
Hv(x) differs considerably from unity and the wave func- 
tion (7) is deformed (Fig. 2). 

Fi4ure 3 displays the quantity AI?A& as a function of 
A&/(N) for the state (7),  found by numerical solution. It 
is clear that up to values AI?/(I?)zz0.3 the relation 
AI?A&= 1/2 is essentially valid, and consequently, up to 
these values we can use the wave function (8) for the states 
with minimum uncertainty. 

the form 
5. STATES WITH MINIMUM PHASE UNCERTAINTY FOR A 

$(XI =$&,(x)exp( -x2/2), V=E- 1/2, (7) GIVEN AVERAGE NUMBER OF QUANTA 

Here qo is a normalization factor, Hv(x) is a Hermite 
f~nct ion,~  and the quantity v is chosen so as to satisfy the 
boundary condition (6), $(P)=O. In this case, for 
v= 0,1,2, ..., the Hermite function coincides with the Her- 
mite polynomials Ho= 1, HI = 2x, ... . When A&/($) ( 1 
holds we have v(1 and Hv(x) is essentially equal to unity 
wherever exp(-x2/2) is very different from zero. The 
wave function of the state with minimum uncertainty is 
therefore almost indistinguishable from a Gaussian distri- 
bution: 

The equation for the state that minimizes the phase 
uncertainty for a given average number of quanta is ob- 
tained from Eq. (4) by dropping the term 

m 

[ & 2 + ~ 1 1 ? + ~ o ]  I 'P) =0, 19) = 2 cnln). 
n=O 

(9) 

Figure 4 displays a plot of the product (&)A& as a 
function of (I?), obtained by solving this equation numer- 
ically. Here we can distinguish two characteristic regimes 
for the values of (I?): 

1 ) for small values of (I?) the function is almost linear, 
i.e., the phase uncertainty is almost independent of the 
average number of quanta and is close to ?r/v'3; 

FIG. 3. The product A ~ A &  of the uncertainties for the states 
H,,(x)exp(-x2/2) as a function of the quantity AN/IN). The broken 
trace represents this function for the states with (N) = 10 (see Sec. 
4.1). 
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F!G. 4. The minimum possible product (I?)&& for given 
(N) .  It is clear that 5s (N) increases the curve approaches 
the asymptote (N)A@= 1.376. 

2) for large values of (I?) the product (I?)A& ap- Consequently, the uncertainty relation for this class of 
proaches the asymptotic value 1.376 ... . This limiting case quantum states takes the form 
can be solved analytically. 

Of course, if the average number of quanta is large A I ? A ~ =  (4 - :!";1') '" ~ 0 . 6 1 5  ... . 
enough, then Eq. (9) can be replaced by an ordinary dif- 
ferential equation for the function c(n), similarly to the 
procedure followed in Sec. 4.2: 6. STATES WITH MINIMUM UNCERTAINTY OBTAINED IN 

d 2  
REFS. 1 AND 9 - 

-- c(n) + (A.ln+A.o)c(n) =O 
dn2 (10) Carruthers and Nietol reported the following states 

with minimum uncertainty for the operators .!? and 4: 
with boundary conditions c(0) =O, c(n ) I ----t 0. 

m 
The solution of this equation which rGGounded as 

n + co takes the form Iy,A.)=v IC cnln), ~ ,=I , -A(Y) 
n=O 

c(n) = ~ ~ i ( A . f / ~ n - - i l & / ~ ) ,  ( 1 1 ) with the boundary condition 

where Ai(x) is the Airy function of the first kind and C is 
a normalization constant. The values of the parameters 
AO,Al are determined by the boundary conditions and the 
prescribed average value (I?) of the number of quanta. 
Calculating them (using the formulas given in Ref. 10) 
and substituting in Eq. ( 11 ) we find 

where sl= -2.338... is the first zero of the Airy function 
and Aif(sl) is the derivative of the Airy function at the 
point s l .  

The uncertainty in the number of quanta in the state 
( 12) is equal to 

and the phase uncertainty is 

Here v is a norpalization factor, we have written A.= (I?) 
and y = AI?/As, and Ip ( y ) is a modified Bessel function of 
the first kind of order p. AS shown in Appendix C, 

for y = ~ I ? / ~ 2 > i .  

Thus, in the case AI?B 1 the states ( 13) coincide with 
the ordinary Gaussian distribution. However, Carruthers 
and Nietol and ~ackiw' erred by treating these states as 
exact states with minimum uncertainty. Regarding the 
states ( 13), Carruthers and Nieto said, "These are very 
complicated states, but they are indeed the states with min- 
imum uncertainty." It turns out that these are not only 
very complicated states, but they are not the states with 
minimum uncertainty. Carruthers and Nieto simply re- 
peated the mistake made by Jackiw in Ref. 2. The point 
here is that Ip(x) > 0 holds for x > 0 for any value of p. 
Consequently, the boundary conditions ( 14) cannot be sat- 
isfied for any A. and p. However, when A&/(&) (1 holds 
the function InPA(y) is very small for n <O. The states 
( 13 ), like the usual Gaus_sian $istribution, can therefore be 
used only in the limit AN/(N) 4 1. 
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It should be noted that these results can be carried over 
without any change to the case of states with a minimum 
product of the uncertainty in position and momentum 
when the position is restricted to positive values, 0 <x < 
+ W .  The problem of finding the minimal states (i.e., the 
states with minimum dispersion of momentum for a given 
average value of position and dispersion in position) in the 
case 0 < x  < + w has already been treated.9 However, in 
Ref. 9 it was erroneously assumed that Eq. (5)  has solu- 
tions only for E = 1/2,3/2, ... . Consequently, instead of a 
family of states Hv(x)exp(-x2/2), v>O, a single state 
HI (x)exp( -x2/2) was found for P=O, E = 3/2. 

APPENDIX A 

Consider the limit of the s-th power of the operator &M 

as M -  W .  Let 

be two arbitrary vectors in a space of dimension M. Then 

where (see Sec. 2) 

Thus, 
M - 1  

lim ( f 1 d$M lg) = lim - C OskfF(ek)g(ek) 
M -  m  M h m  n4 n=O 

Is simply the definition of an integral as the limit of a 
summation. 

We denote lim &M as the operator $, such that for 
M- m  

any two vectors 

we have 

where 

APPENDIX B 

Let 

We multiply Eq. (4) by (n I on the left and set the result- 
ing numbers equal to zero: 

Since 

[see Eq. (Al)] ,  we have the system of equations 

We define the function 

Since 

we have c(v)=c, for v=n=0,1,2, ... and c(v)=O for v 
- - - 1, - 2, - 3,. . . . Since we have 

for v=n=0,1,2 ... , 

Eq. (B. 1 ) can be rewritten in the form 

This equation must be satisfied at the points v=0,1,2, ... . 
Thus far we have made no approximations. Now for 

the case hfi) 1 we assume that n varies continuously be- 
tween 0 and + w ,  O < n < + m .  Then we have cn=c(n), 
C ( V )  =c(n) and we obtain an equation for the distribution 
over the number of quanta in states with minimum phase 
uncertainty for a given average number of quanta and dis- 
persion in the number of quanta: 

The function c(n) is equal to zero for n < 0. Consequently, 
the boundary condition c(0) = O  is imposed on the solu- 
tions of Eq. (B2). 
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APPENDIX C 

The Bessel function of order n can be written in terms 
of the Sommerfeld representation7 

exp(iz sin 4-inQ)d#. J, (z) = - 
2l7 -,, 

Using the relation between the Bessel functions J,(z) and 
the modified Bessel functions of the first kind I,(z), 

we find 

c 

I,(Y) =- J .' exp(-y sin +-inc$)d4. (Cl )  
2l7 -,, 

The integral of ( C l )  is evaluated by the method of steepest 
descent and we find that it depends on n as follows: 

where K= max( y,n). 

'P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968). 
2 ~ .  Jackiw, J. Math. Phys. 9, 339 (1968). 
'M. Kitagawa, N. Imoto, and Y. Yamamoto, Phys. Rev. A 35, 5270 

(1987). 
4 ~ .  N. Popov and V. S. Yarunin, Bulletin of Leningrad State University 
No. 22, 7 (1973); Teor. Mat. Fiz. 89, 395 (1991). 

'D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989). 
6 ~ .  A. Kulaga, Bulletin of Moscow State University, No. 5 (1993). 
'A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical 
Physics, Birkhauser Verlag, Base1 ( 1987). 

*M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical 
Functions, Dover, New York ( 1965). 

9 ~ .  Lahiri and V. J. Menon, Phys. Rev. A 38, 5412 (1988). 
''A. P. Prudnikov, Yu. A. Brychkov, and 0. I. Marichev, Integrals and 

Series, Vols. 1-3, Gordon & Breach, New York (1989). 

Translated by David L. Book 

592 JETP 77 (4), October 1993 A. A. Kulaga and F. Ya. Khalili 592 


