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The time-dependent spatially two-dimensional problem of the self-channeling of a high-power 
ultrashort laser pulse in matter is solved. The relativistic and ponderomotive nonlinearities 
are treated for free electrons, with the ions assumed to be at rest. The novelty of the model 
consists in including the longitudinal component of the ponderomotive force for the 
electrons along with the wave interaction between neighboring transverse segments of the 
pulse. The two-dimensional calculations are visualized as a sequence of "snapshots" 
of the pulse as a whole at different times. In the process of nonlinear propagation, strong 
dynamic modulation of the spatial shape of the pulse in the direction of propagation is 
observed, which causes the spectrum to broaden. 

At the present time the interaction of ultrashort ( r  < 1 
ps) high-power (P> 10'' W) pulses from excimer' and 
neodymium2 lasers with gaseous media is being studied 
actively both experimentally and theoretically. One of the 
important directions of this research is the study of the 
propagation of intense laser pulses in the nonlinear plasma 
medium formed by the pulses themselves. When a laser 
pulse is focused in light gases (H2, He, N2 , C02 ,.. . ) , nearly 
complete ionization of the gas atoms occurs at the leading 
edge of the pulse. Under these conditions relativistic and 
ponderomotive nonlinearities are present and the Kerr 
nonlinearity is suppressed. In this paper we treat the time- 
dependent spatially two-dimensional picture of the propa- 
gation of an ultrashort high-power laser pulse in plasma 
under conditions such that the relativistic-ponderomotive 
nonlinearity dominates. We show that a pulse propagating 
in the self-channeling regime undergoes strong time- 
dependent spatial modulation, which changes its spectral 
makeup. 

1. PHYSICAL MECHANISMS 

The possibility of self-focusing of a light beam in a 
nonlinear medium was first pointed out by G. A. 
~ s k a r ' ~ a n . ~  It was also he who predicted the thermal and 
ponderomotive mechanisms that give rise to self-focusing. 
The work of A. I. Akhiezer and R. V. polovin4 drew at- 
tention to the dependence of the mass of an electron oscil- 
lating in a strong field on the intensity of this field. The 
repulsive force acting on a free electron, causing it to move 
from the region of an intense light field to the region oc- 
cupied by a weaker field, was established by V. A. 
Gaponov and M. A. ~ i l l e r . ~  The fact that the increase of 
the electron mass in a strong optical field leads to relativ- 
istic self-focusing of the radiation was apparently first 
pointed out by Max  eta^.^ The critical relativistic self- 
focusing power was determined by Schmidt and  ort ton.' 
The nonlinear Schrodinger equation describing the com- 

bined relativistic-ponderomotive nonlinearity effects on 
propagating circularly polarized radiation was first ob- 
tained in Ref. 8. The effects of self-modulation of the spec- 
trum of scattered radiation when a picosecond laser pulse 
propagates in a nonlinear medium were reported in Refs. 
9-1 1. A more complete bibliography of papers on nonlin- 
ear propagation of high-power laser radiation in matter 
and on related topics can be found in several review 
 article^'^-'^ and also in two papers by Borisov et al. 15,16 

The relativistic-ponderomotive self-channeling of ul- 
trashort high-power laser pulses in plasma is a physical ef- 
fect which is of interest for a number of applications. The 
effect was predicted theoretically by Borisov et a ~ , "  and 
then observed experimentally.18 The theory has been de- 
scribed in Refs. 15, 16, and 19, and later experimental 
results are given in Ref. 20. 

A high-power ultrashort laser pulse propagating in 
matter causes rapid nonlinear ionization of the atoms. As a 
result, a plasma consisting of multicharged ions and free 
electrons forms. The presence of the plasma reduces the 
index of refraction of the gas, and the resulting plasma 
column has nonlinear defocusing properties. However, 
there exist a number of physical mechanisms that lead to 
the nonlinear increase in the index of refraction in the 
region occupied by the strong field. These include a )  the 
Kerr effect, in which the high-power laser radiation de- 
forms the electron shells of atoms and ions, thereby creat- 
ing nonlinear dipole moments induced by the strong field; 
b) the relativistic increase in mass of the free electrons 
oscillating in the strong field with high velocities, close to 
the speed of light; c) electron repulsion by the pondero- 
motive force from the region occupied by the field, which 
gives rise to a cavitation channel filled with heavy ions. In 
the case of fully ionized material the Kerr effect is absent. 
These mechanisms increase the index of refraction of the 
medium, and when the critical power is exceeded they lead 
to a regime in which a self-focused ultrashort laser pulse 
propagates. 
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This regime differs from the familiar laser pulses prop- 
agation regimes. Its characteristic feature is that a pulse of 
length T and transverse dimension d propagates without 
diffractive spreading in the transverse direction for some 
distance L ) Ld, where L ~ = ~ ~ / A  is the Rayleigh distance 
associated with the transverse dimension of the channel 
and satisfying L )  L,, where L,=cT is the longitudinal 
dimension of the pulse. Inside the pulse a region develops 
with a reduced electron density, which for high levels of 
the trapped power can turn into a cavity completely free of 
electrons. This cavity or hollow has a length less than L, 
and translates with the pulse. 

Borisov et a1. observed the self-channeled propaga- 
tion of a KrF* excimer laser pulse (A = 0.248 pm, r z 600 
fs, Pz3 10" W) over a distance of up to 2 mm, which is 
equal to z (50-100) Ld. The channel radius was less than 
1 pm. The intensities in the channel were estimated to be 
I= lo2' w/cm2. The distance L over which self-channeled 
propagation occurred was determined by the rate of pulse 
energy dissipation in the material. 

The present work extends the theoretical treatment of 
the relativistic-ponderomotive self-channeling of an ul- 
trashort high-power laser pulse in plasma. We add to pre- 
vious ~ o r k ' ~ , ' ~ , ' ~  by presenting a more general theory of 
the effect. We also report for the first time the results of 
numerical simulation of the three-dimensional (r,z,t) prob- 
lem, illustrating the time-dependent spatially two- 
dimensional propagation of an ultrashort laser pulse as a 
single entity in matter. Note that all previous work only 
treated the steady two-dimensional (r,z) problem of the 
propagation of a thin transverse slice of a pulse, without 
treating the wave interaction between neighboring layers. 
The results of the theory described below paint a physically 
clear picture of the propagation of the pulse and predict 
that it undergoes time-dependent spatial modulation par- 
allel to the direction of propagation. The latter is exhibited 
in the broadening of the spectrum of the scattered radia- 
tion, which may be confirmed experimentally. 

2. GENERAL CONSIDERATIONS 

To describe the propagation of a short intense laser 
pulse in matter we use the following approach. Since atoms 
and ions undergo rapid nonlinear photoionization at the 
leading edge of the pulse, most of the pulse propagates 
through an already existing plasma. Hence in what follows 
we will treat the propagation of radiation in plasma. The 
electrons are probably not heated to temperatures much 
greater than a few keV over the time during which the 
ultrashort high-power laser pulse acts on the material; this 
is shown by experiments with subpicosecond pulses from 
excimer and neodymium  laser^.^^'^,^^ On the other hand, 
the average energies of the electron oscillations in the fields 
of these pulses reach hundreds of keV. This implies that for 
a short high-power laser pulse the plasma through which it 
propagates is essentially cold. 

We require that the average kinetic energy of the elec- 
tron oscillations be much greater than their thermal en- 
ergy, ~ , , = m c ~ ( ~  - 1 ) >3T/2, where we have written 

2 2 3  ?= l+I / I r  and I,=m w c /47re2 is the relativistic 

intensity.4 In terms of the radiation intensity this criterion 
assumes the form I[w/crn2]% 1.65 . 1 0 ' ~ q k e ~ ] / ~ ~ b m ] .  

Cold plasma in an electromagnetic field responds only 
to the electromagnetic forces, and the gasdynamic pressure 
and the processes giving rise to this pressure through elec- 
tron heating can be neglected to lowest order. However, 
when charged particles move in superpowerful light fields 
their velocities are so large that it becomes necessary to 
take into account the relativistic increase in their masses. 
Thus, many properties of the nonlinear propagation of ul- 
trashort pulses of high-power laser radiation in plasma can 
be understood if we make use of the electrodynamics of a 
cold relativistic plasma. This approach is relatively wide- 
spread, going back to the pioneering work of A. I. 
Akhiezer and R. V. ~ o l o v i n . ~  

2.1. Equations in relativistically Invariant form 

Consider a plasma consisting of electrons with charge 
g= -e and rest mass m and ions with charge Q=Ze and 
rest mass M. The quantity e= I g 1 is taken to be positive. In 
the absence of an external field we assume that the plasma 
is quasineutral. The electron density, velocity, momentum, 
and current are denoted by n, u, p, j. The corresponding 
quantities for the ions are denoted by the corresponding 
upper case letters N, U, P, J. 

We introduce into the discussion the Cvelocities and 
4-currents for electrons and ions, along with the 
4-potential of the field, using the following formulas: 

We introduce the electromagnetic field tensor 

The components of this tensor are equal to 

where 

The system of equations describing the combined mo- 
tion of the field and plasma, including the electron and ion 
components, assumes the form 
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Here Eqs. (9) and ( 10) describe the motion of the electron 
and ion components of the plasma in the field Fik , and Eqs. 
( 11) and ( 12) are the four-dimensional version of the 
Maxwell equations. Equations ( 13) are the conditions for 
conservation of the electron and ion 4-currents. 

For the system (9)-(13) we can introduce the energy- 
momentum tensor 

which for the solutions of this system of equations satisfies 
the conservation law 

The system of equations (9)-( 13), together with the 
requirement that the conservation law (15) hold for the 
energy-momentum tensor (14) of the material and field, 
constitutes the starting set of equations for the electrody- 
namics of a cold relativistic plasma and forms the basis for 
our subsequent treatment. 

2.2. Basic equations in spatially three-dimensional form 

Equations (9 )-( 13), written in three-dimensional 
form, become 

Here the first two equations are the equations of relativistic 
hydrodynamics for the electron and ion components of a 
cold plasma in an electromagnetic field. The Maxwell 
equations (18) and (19) are written in terms of the field 
potentials. The fifth equation is the condition for the Cou- 
lomb gauge of the vector potential. The sixth and seventh 
equations determine the current and charge densities of the 
plasma. The eighth and ninth equations give the relativistic 
relation between the velocities and momenta of the elec- 
trons and ions. 

Energy and Momentum Conservation Laws. The solu- 
tion of Eqs. (16)-(24) must satisfy the energy and mo- 
mentum conservation laws, which in four-dimensional no- 
tation take the form ( 15). The various components of the 
energy-momentum tensor (14) are determined by the fol- 
lowing expressions: 

nmcu, NMcU, 1 +- [EXB],, (26) 
p a  4~ 

In three-dimensional notation the conservation laws as- 
sume the form 

Here ( 1 E 1 2+ 1 B 1 2)/87r is the energy density of the elec- 
tromagnetic field, [EX B]/47r is the energy flux of the field 
(the Poynting vector), and oaP is the momentum flux of 
the field (the stress tensor). The electric and magnetic field 
strengths are expressed in terms of the field potentials by 
means of Eqs. ( 8 ) . 

2.3. Separation of the charged-particle momentum into 
rotational and potential components 

Let us consider Eq. ( 16). In what follows we will re- 
gard the ions as fixed and leave Eq. (17) out of the dis- 
cussion. The term (u V)p can be transformed as follows: 
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= m 2 v y e -  [ u x  [ ~ x p ] ] .  (31) 

Substituting in Eq. (16),  we rewrite the equation in the 
equivalent form 

We look for a solution of this equation as a sum of three 
components 

where po is a vector derivable from a potential and pl is a 
rotational vector: 

Substituting (33) in (32) and taking the curl of both sides 
of the equation, we find an equation for the momentum 
vorticity M = [V X pl] : 

a M  -- 
at [VX [ u X M ] ]  =O. 

Taking the divergence of the same equation we find for 
D= (VXp,) 

The system of equations consisting of (36) and (37) is 
nonlinear, since u is given in terms of p by the relativistic 
relation, which also depends on po and p l .  

There is a simplifying factor that permits us to treat 
the problem without taking into account the vorticity M. 
Specifically, if the laser pulse is incident on a plasma in 
which there is no rotational motion in the initial state, then 
at subsequent times no vorticity will develop in the plasma. 
This is implied by Eq. (36) .  In fact, if at time t=O we have 
M=O and aM/dx,=O in the plasma, then aM/at=O 
holds everywhere, and consequently no vorticity can be 
created. In the remainder of this work we will consider the 
equations of motion for the charged components of the 
plasma under conditions such that no vorticity is present. 

Note that under actual experimental conditions rota- 
tional fluctuations can evidently be present in the initial 
state. Under these conditions, although the quantities M 
can be close to zero, the derivatives are nonzero: 
aM/ax,#O. The question as to whether these fluctuations 
can develop into full-scale electron vortices affecting the 
dynamics of the laser radiation during the time the laser 
pulse is acting is an interesting one, but it lies outside the 
scope of the present work. 

Thus in what follows we set pl=O. Under these con- 
ditions the equation of motion (16) for the electrons re- 
duces to 

The electron current in this approximation can be written 

The representation ( 38 )-(40) becomes most perspicuous 
when the Maxwell equations are written in the Coulomb 
gauge, which implies that the vector potential is a solenoi- 
dal vector. In this case Eqs. (38)-(40) constitute an ex- 
pansion of the momentum of the electron component of the 
plasma into rotational - (q/c)A and potential po compo- 
nents. This expansion facilitates solution of the problem. 

3. SPATIALLY TWO-DIMENSIONAL TIME-DEPENDENT 
PROBLEM 

In this section we derive simpler equations approxi- 
mately describing the time-dependent spatially two- 
dimensional nonlinear propagation of ultrashort high- 
power circularly and linearly polarized laser pulses in a 
cold plasma. In the most simplified case these equations are 
versions of the nonlinear Schrodinger equation (NLSE) 
with a special form of nonlinearity. 

3.1. Circularly Polarized Waves 

We treat a circularly polarized wave by assuming that 
the potential part of the electron motion is time- 
independent: 

This approximation is valid if the laser pulse length is 
greater than the time required to expel an electron from the 
strong-field region, T > r/c--,A/c= 1 - 3 fs. In the field of 
this wave the electron moves in a circular orbit in the xy 
plane, perpendicular to the direction of wave propagation. 
In this limit it is unnecessary to take thep, component into 
account. In the field of a circularly polarized wave with no 
transverse variation a z component of the vector potential 
nevertheless develops. The condition (V A )  = O  implies 
( a, ( --, k- 'a ( a 1 /ar. The A, component is small under the 
condition that the field varies slowly in the transverse di- 
rection over distances of order A/6. The presence of A, 
gives rise to a component pZ4p, . 

Here we consider the case of a circularly polarized 
wave, keeping a small longitudinal component of the vec- 
tor potential in the theory. The potential motion of the 
electron gas is treated as steady. The presence of a rapidly 
oscillating longitudinal component of the vector potential, 
and hence of the electron momentum, causes harmonics to 
be generated. Because the longitudinal components are 
small it is reasonable to take into account only the produc- 
tion of the third harmonic. Below we derive a system of 
coupled equations describing the propagation of radiation 
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at the fundamental frequency and that of the third har- 
monic. Neglecting third-harmonic generation, we find a 
nonlinear wave equation describing the propagation of ra- 
diation at the fundamental frequency. 

Next, we-use the normalized physical variables 
= e ~ / m c ~ ,  4 = e4/mc2, ii= u/c, b= p/mc, %= n/no. 

In what follows we omit the tilde. In the approximation 
(41) we have the following system of equations: 

Here we have written kp=wp,dc, where 
= ( 4 ~ e ~ n d m ) " ~  is the plasma frequency in the unper- 
turbed plasma. Note that because of the approximations 
we have made the system (42)-(45) is not completely 
equivalent to the original equations. 

We look for a solution of Eqs. (42)-(45) in the fol- 
lowing form: 

We write the square of the absolute value of the vector 
potential as follows: 

Here 4=wt- klz. 
We introduce the following notation (here the symbol 

a without a superscript refers to the primary wave): 

We write the relativistic y factor in the form 

Next, we carry out an expansion and retain only the 
terms which are first order in Co. The complex quantity Co 
enters in the problem as a small parameter. The term 
c-'(d/dt),v, , does not contribute to generating the third 
harmonic. The result of the calculations for the case in 
which only the two frequencies w and 3w are retained in 
the summation (46) takes the form 

[ai3'exp [i(3wt- k g )  ] ] 

Applying the operation 

to the left sides of (52) and (53) and using the dispersion 
relation 

we obtain the following equations: 

These equations can be still further simplified if we use 
the approximation in which the complex amplitudes are 
slowly varying. This means that the field amplitudes vary 
slowly over distances on the order of a wavelength in the 
direction of propagation and over times on the order of the 
period of the high-frequency field oscillations: 

In this approximation the Dalembertian and the Laplacian 
appearing in the nonlinearity in Eqs. (56) and (57) must 
be replaced with transverse Laplacians 3 A, , A =j A, . 
As a result we find equations which are classified as non- 
linear Schrodinger equations (NLSE) . These equations are 
widely employed to describe the propagation of electro- 
magnetic gains in nonlinear media. In the solutions of Eqs. 
(56) and (57), in which the Dalembertian is reduced to 
the transverse Laplacian 3 Al , the following conserva- 
tion law holds: 
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We obtain the following equations: 

This equation is well known in nonlinear optics; it de- 
scribes the conservation of photon number in processes in 
which the frequencies are transformed parametrically. 

Expression for the y Factor. From the condition 
V A=O it follows that 

la~o,ll J ( 4 - Y )  c- -- - 
at az 

u=p/y ,  ?= l +  1-41 I ~ + P : , ~ ~  . 
From (72 )  it follows that 

Here rl, is the azimuthal angle. We see that 

If we write a, = I a, I exp(irl,), then 

Replacing ##/ataz in Eq. (68 )  by means of (74)  and 
replacing Vl 4 in Eq. (67 )  with V, y from (71 ) ,  and also 
expressing n from (69)  in the following fashion: 

Charge Conservation. Note that in the problem defined 
by Eqs. (42)-(45)  the total charge is conserved. Specifi- 
cally, 

Iv (n- l ) d v = k L 2  AydV=O Jv 
since V y  vanishes at infinity. This fact is an additional 
argument in favor of the present model. 

Conditions for Phase Synchronization. When the third 
harmonic is generated in the plasma in the direction in 
which the primary wave is propagating, the condition for 
phase synchronization is only satisfied for a short distance. 
Using the dispersion relation we estimate this distance 
from the condition 

we arrive at a system of equations 

whence 

In experiments with gases ( o / ~ , ) ~  zz 0.1 -0.01 holds. This 
means that zc=: (10-40)10. For a KrF* excimer laser at 
A0=0.248 cm the phase synchronization distance is 
less than 10 pm. Hence it makes no sense to talk about any 
significant pumping of energy from the primary wave into 
the third harmonic. In what follows we will refrain from 
questions involving third-harmonic generation and will an- 
alyze Eq. (56)  for the primary wave, setting G*=O. 

?= 1 + l A1 l 2 + ~ : , 1 1  . (79)  

The physical meaning of Eq. (77 )  is as follows. The 
equation 

in a uniform monochromatic field 

A -1 -*  exal exp [ i (wt-  kz )  ] +c.c. (81)  

has the solution 

3.2. Linearly Polarized Waves 

To study the propagation of a linearly polarized wave 
in the plasma we neglect the longitudinal component of the 
vector potential and the transverse component of the po- 
tential part of the electron momentum, 

All =O,  PO,, =O .  (66)  
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which after being integrated twice describes the familiar 
relativistic figure-eight for the electron trajectory. In a non- 
uniform field this is superposed on the directed electron 
drift21 P0,ll =P$ +pgII . 

The equation 

describes oscillations of the longitudinal electron momen- 
tum with the plasma frequency, altered by relativistic ef- 
fects. 

In the set of equations Eq. (77) describes the com- 
bined effect of the electromagnetic field and plasma oscil- 
lations on the longitudinal electron momentum. 

With due regard to the complexity of the nonlinear 
equations (76)-(79), we can suggest the following approx- 
imate approach for describing the propagation of linearly 
polarized laser radiation in a plasma. We look for a solu- 
tion in the form of an expansion in harmonics of the fre- 
quency: 

and at the same time describe the longitudinal electron 
momentum using (82) with a, =all). Then, just as in the 
case of a circularly polarized wave, we find the oscillatory 
y factor. Then, expanding the y factor we obtain a system 
of coupled equations for the harmonic amplitudes. Since 
there is no phase matching in the plasma between the fun- 
damental and the harmonics, we can disregard the process 
of harmonic generation. Under these conditions the equa- 
tion describing propagation of the fundamental takes the 
form (56) with @=O, and the expression for the nono- 
scillatory y factor (disregarding the drift component of the 
longitudinal momentum, which is usually smaller than the 
oscillatory part) is the following: 

We can also use the approximation of slowly varying com- 
plex amplitudes. In this case the Dalembertian and Laplac- 
ian in the nonlinear term must be replaced with the trans- 
verse Laplacian. 

We see that the propagation of circularly and linearly 
polarized radiation is described approximately by the same 
wave equation or the NLSE. However, the y factors are 
different. It is noteworthy that the y factors do not in fact 
differ much from the model expression 

(For a linearly polarized wave the factor 1/2 goes away 
because the amplitude is renormalized.) In this connection 
we can model both cases qualitatively by using the wave 
equation (56) with Gr =O or the NLSE and the model y 
factor (86). Note that the wave equation (56) with GC = O  
and the model y factor has a ~amiltonian.') 

3.3. Transformation to the Comoving Reference Frame 

The wave equation describing the nonlinear propaga- 
tion of ultrashort high-power laser pulses in a plasma was 
obtained above, and takes the following form: 

In solving Eq. (87) in practice we use two alternate forms 
of the variables, depending on the type of initial conditions. 
Both transformations are based on the intrinsic properties 
of Eq. (87). 

If we are treating a semiinfinite medium z > 0 and the 
pulse enters this medium moving in the positive z direction, 
it is convenient to perform the following change of vari- 
ables: 

Equation (87) then assumes the form 

If the problem is posed on the infinite domain - UJ 
< z < co and at time t= 0 the pulse is prescribed with a 
known form, then it is convenient to make another change 
of variables: 

Equation (87) then assumes the form 

The transformation (88) corresponds to a rotation of the 
slanted region of propagation of a pulse in the t, z plane 
parallel to the z axis. The transformation (90) rotates the 
propagation region parallel to the time axis. Convenience 
in solving the problem and the initial conditions determine 
which transformation to choose. 

In the approximation of slowly varying complex am- 
plitudes, Eq. (89) takes the form 

It was precisely this equation which was treated in previ- 
ous work.8,15,16,19 
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FIG. 1. A succession of "snapshots," illustrating the self-channeling of an ultrashort high-power laser pulse in plasma (7, fs): a) 112.5; b) 150; c) 262.5; 
d) 300; e) 337.5; f)  375; g)  487.5. 
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FIG. 2. Trajectories of the foci in the z,t plane, obtained in Ref. 19 by 
solving the NLSE with the relativistic-ponderomotive nonlinearity, drop- 
ping the second derivatives parallel to the direction of pulse propagation. 

4. TIME-DEPENDENT SPATIALLY TWO-DIMENSIONAL 
PROPAGATION OF AN ULTRASHORT HIGH-POWER LASER 
PULSE IN PLASMA 

Here we present the results of a numerical simulation 
of the following equation: 

Below in the two-dimensional calculations we use a model 
expression for the y factor (86). 

At the initial time r = 0  we assume that a laser pulse is 
given with intensity profile ( l =  vd-z) 

We assume that the initial phase is planar. The field am- 
plitudes are taken to vanish at infinity: 

On the axis we impose the condition 

We have solved Eq. (93) with the initial and boundary 
conditions (94)-(96). The values of the radiation and 
plasma parameters were taken as follows: ;1=0.248 pm 
(KrF* excimer laser1), initial focal spot radius ro= 3 pm, 
which corresponds to the focusing system used in Ref. 20, 
electron density n,=7.5. lo2' cm-3 (N2 gas at pressure 
z 1 atm), and laser pulse length 2r= 0.8 ps, corresponding 
to a length L= 120 pm. The ratio of the squares of the 
plasma and laser frequencies in this case is w2w2=0.043. 
The initial peak intensity was taken to be 10=2.98 1019 
w/cm2. (The radiation and plasma parameters given 
above correspond to the constants a, =248.6 and a2=2/3 
used in Refs. 15, 16, and 19.) Initially the transverse and 
longitudinal intensity distribution was taken to be Gauss- 
ian, i.e., we took N1 =2, Nz = 2 in Eq. (94). In this case the 
laser pulse contains an energy E=6.0 J, and the initial 
power in the transverse cross section corresponding to the 
peak intensity is equal to Po=8.4. 1012 W. From Refs. 8 
and 19 the critical power of the relativistic-ponderomotive 
self-focusing is equal to PC,= 1.62 . 10'~(w/w,)~ 

FIG. 3. Electron density profile at time T= 300 fs. 
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=3.77. 10" W. Thus, we are treating a case in which the 
initial power is substantially greater than the critical value 
for the central regions of the laser pulse. 

Equation (93) has a conservation law 

In the numerical integration we check the calculations by 
evaluating this integral. 

Whenever this problem is solved numerically the high- 
frequency region of the spatial perturbations is cut off. For 
this problem we could not use a PC (running at 33 MHz) 
if spatial perturbations with kll > 4800 cm-' were allowed 
to develop. However, as our calculations show, high- 
frequency longitudinal perturbations occur at substantial 
distances from the start of the calculations (in fact, beyond 
the points at which the first and second foci form). 

Figure 1 shows the results of solving the problem. Fig- 
ures la, b, corresponding to the times r= 1 12.5 and 150 fs, 
respectively, illustrate the formation of the first focus by 
the central part of the pulse. Figure lc  (r=262.5 fs) shows 
how the field intensity is distributed after passing through 
the first focus. Two peaks can be seen, moving out toward 
the edges of the pulse, along with a ring which develops 
around the central part. The first focus disperses on ac- 
count of energy transfer to the ring structure. Figure Id 
(r=300 fs) illustrates the formation of the second focus. 
Shown is the complicated structure of the central part of 
the pulse, consisting of four symmetrically distributed 
peaks, of which the two outermost are moving toward the 
ends and the two inner ones are moving toward the center, 
producing a powerful central focus. Figures le, f, and g 
illustrate the subsequent transformation of the pulse at suc- 
cessive times r=337.5 fs, 375 fs, and 487.5 fs. Figure Id 
shows the decay of the second pulse. The subsequent evo- 
lution of the pulse is accompanied by a strong spatial self- 
modulation of its shape, i.e., it breaks up into a large num- 
ber of peaks parallel to the direction of propagation. 

We can understand the main reason for the occurrence 
of self-modulation of the pulse if we use the model of the 
motion of the foci in the (z,t) plane developed in Ref. 19. 
These foci arise in the process of self-focusing of different 
transverse layers of the ultrashort pulse (Fig. 2). (Note 
that in Ref. 19 the second derivatives d2/dc2 were not 
treated, so the results of that work can only be applied in a 
qualitative fashion. Nevertheless, this is still possible, since 
in the initial stages of pulse propagation the derivatives are 
small because the pulse is stretched out longitudinally.) 
Different initial transverse sections of the pulse are focused 
at different distances, since they are transporting different 
amounts of power. If the initial peak power is greater than 
or of order the relativistic value, I0>I,=4.46. 1019 
w/cmP2, which serves as a universal parameter of the 
medium and of the radiation wavelength, then the trajec- 
tory of the first focus in the (z,t) plane has three turning 
points (Fig. 2). The pulse therefore begins to focus at its 
leading and trailing edges, where two foci develop symmet- 
rically about the center of the pulse (the time tl indicated 

in Fig. 2). Then each of these foci breaks up into two more 
(time t2). Of these the two outer ones move away toward 
the edges of the pulse and the two inner ones proceed 
toward the center, merge, and then disappear (undergoing 
conversion to the ring structure). For the conditions con- 
sidered in the present work the depth of the dip on the 
trajectory of the first focus is 6 fs (Ref. 19). This process is 
therefore actually somewhat smeared out. The two inner 
peaks are not resolved, and the overall picture resembles 
the formation of a single broad focus in z which then de- 
cays into three foci, two of which propagate to the ends 
while one remains at the center and then merges into the 
ring structure. Thus, the main reason for the self- 
modulation of an ultrashort laser pulse is that the different 
transverse sections are focused at different distances, since 
they have different amounts of power. 

As a result of the self-focusing process the pulse breaks 
up into several peaks. After this the principal reason for 
the enhancement of the spatial self-modulation of the pulse 
comes into play. This is the longitudinal ponderomotive 
effect, i.e., the second derivatives d2y/dc2 in the pondero- 
motive term. In order for this derivative to play a role, it is 
necessary that the pulse envelope have several peaks as a 
function of z. This means that a considerable number of 
concavities and convexities develop for the function y. 
Near the peaks of the foci we have a2y/d{' <0, and this 
term only enhances the transverse ponderomotive effect 
A, y < 0. The electrons are expelled from the focal regions 
more effectively. However, in the intervals between foci of 
the z axis the y surface is concave downward and 
d2y/dc2 > 0 holds. Consequently, this term has the oppo- 
site sign and partly cancels the transverse ponderomotive 
effect A, y <O. The electrons are less effectively repelled 
from the interfocal regions, and the repulsion may shut off 
entirely. Figure 3 illustrates this situation. Two peaks in 
the electron density are shown, situated in the regions be- 
tween the foci. On these electron density bumps the radi- 
ation undergoes enhanced refraction in the transverse di- 
rection. As a result, the field intensity in the interfocal 
region decreases. The spatial self-modulation of the pulse is 
enhanced. 

In Eq. (93) there is one second derivative of 6 left in 
addition to the transverse diffraction operator A, a. The 
role of this ponderomotive effect is small, since it is multi- 
plied by a small coefficient. 

Reference 22 is of considerable interest. There an equa- 
tion of the form (93) with a Kerr nonlinearity was solved 
for a wide beam (in slab geometry ), under conditions such 
that the numerical coefficient of the derivative a2a/b't2 
present in addition to the diffraction operator was rela- 
tively large. [The equation of Ref. 22 is the same as (93) 
with the change in notation 7-t.] It was shown that the 
second derivative given above can go over to self- 
modulation of the pulse before self-focusing occurs. 

Our treatment differs from that of Ref. 22 through the 
use of a different type of nonlinearity, and also of a small 
number of coefficients in the derivative noted above. The 
pulse undergoes self-focusing more rapidly, and the result- 
ing self-modulation is due to the second derivative ~ ~ ~ / d { ~  
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in the nonlinear term, not to that in the diffraction opera- 
tor. 

5. CONCLUSION 

In this work we have proposed a theoretical model for 
the propagation of an ultrashort ( 10 < r < 1000 fs) high- 
power (P> 10'' W) laser pulse in plasma, based on the use 
of a model in which the electrostatic and ponderomotive 
forces are instantaneously in balance under relativistic con- 
ditions for the electron component and the assumption that 
the plasma ions are stationary. We have presented a sys- 
tematic derivation of the equation describing propagation 
of circularly and linearly polarized laser radiation, includ- 
ing the previously disregarded corrections to the expres- 
sions for the relativistic y factors, taking into account the 
increase in the electron mass due to oscillations in the 
intense light field. We have shown that both cases are de- 
scribed by the same equation for the complex field ampli- 
tude, where the y factors have different forms but are not 
very different from the model expression = 1 + 1 a 1 '. 

We have reported the first solutions of the time- 
dependent spatially two-dimensional problem involving the 
evolution of an ultrashort high-power laser pulse in the 
plasma with the relativistic-ponderomotive nonlinearity. In 
contrast to previous the second de- 
rivatives a2/a(2 in the diffraction operator and in the pon- 
deromotive term have been retained in Eq. (93). 

We have presented visualizations of the three- 
dimensional solutions in the form of a sequence of "snap- 
shots," illustrating the time evolution of an ultrashort 
pulse as a single entity. Thus, we have numerically simu- 
lated the dynamics of a self-channeled ultrashort high- 
intensity laser pulse in matter. 

The calculations reveal that the pulse undergoes strong 
longitudinal spatial self-modulation as it propagates in the 
fully ionized plasma under conditions such that the 
relativistic-ponderomotive nonlinearity applies. The effect 
is spatially two-dimensional in nature. Different transverse 
sections of the pulse are focused at different distances, since 
they carry different powers. Self-focusing of the pulse 
causes it to become peaked primarily in the direction of 
propagation z. In the regions between the peaks the longi- 
tudinal ponderomotive effect balances the transverse effect, 
and there the bunched electrons are retained. The radiation 
undergoes refraction in these clumps in the transverse di- 
rections, enhancing the dips in the intensity between ad- 
joining peaks. The self-modulation of the pulse is mani- 
fested in broadening of the spectrum of the scattered laser 
radiation, which can be detected experimentally. 

Borisov et a1. I5 , l6  established that quite arbitrary two- 
dimensional solutions of the NLSE (92) asymptotically 
approach the zeroth eigenmode of this equation when the 
power threshold condition19 is satisfied. The present work 
shows that the real nature of the self-channeling of an 
ultrashort laser pulse in matter is complicated by the 
strong self-modulation of its shape parallel to the direction 
of propagation. 

Note that the question regarding the asymptotic prop- 

erties of the solutions for systems with dissipation is mean- 
ingful only when energy is supplied externally.23 

The investigation carried out in the present work does 
not answer all possible questions. In order to develop a 
more complete description of the nonlinear propagation of 
an ultrashort laser pulse in plasma it is necessary to solve 
Eq. (91 ), including in addition to (93) the cross-derivative 
#/a(& and the second derivative term a2/a2 in the wave 
operator. Moreover, refinements in the description of the 
behavior of the electron component of the plasma in a 
strong light field, introduction of dissipation of the field 
energy to the model, self-consistent ionization, and other 
effects are possible. 

We sincerely thank V. V. Korobkin for his interest in 
this work, and also A. G. Kamushkin for assistance in 
solving the problem of visualizing the three-dimensional 
calculations. 
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