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A method is developed for calculating the probability amplitude of the ionization of atoms by 
electrons in an electric field. The wave functions of the initial and final scattering 
channels are calculated in the approximation of a "frozen" ion core. The effect of the electric 
field on the ionization amplitude is taken into account in the first order perturbation 
theory for the Green function. Estimates are made of the distortion factor vk(E),  and it is 
shown that near the ionization threshold at a field strength E of order of 10-100 kV 
cm-' the value of vk(E) can be large. 

The kinetics of electron-atom collision processes in an 
electric field are due to the effects of polarization of atoms 
and the distortions in the waves of the impinging and scat- 
tered electrons. As shown in Ref. 1, for atomic excitation 
by electrons these effects separate in the expression for the 
scattering amplitude. The distortion factor can be calcu- 
lated separately as a correction to the amplitude of scat- 
tering on a Stark state. And to calculate the scattering 
amplitude in the basis of Stark functions one can use meth- 
ods well-known from the l i terat~re.~ 

Several difficulties emerge in the problem of electron- 
induced ionization of an atom because the wave function of 
the initial and final scattering channels belong to different 
~amil tonians .~ '~  Extending the respective methods used 
in calculating the ionization amplitude5 to this process in 
an electric field leads to incorrect accounting for the field 
effect. 

Kang and ~ o l a n d ~  developed a method for calculating 
the amplitude of electron-induced ionization of the hydro- 
gen atom using the Coulomb functions as a basis. This 
method makes it possible to allow for exchange effects cor- 
rectly and is free of the deficiencies inherent in other cal- 
culation methods. 

Here we expand this method to the case of ionization 
of complex atoms and within the new method take consis- 
tent account of the effect of the field on ionization. 

Let us consider the ionization of an atom whose initial 
state has a configuration lN1', where lN is the configuration 
of the ion core, and I' represents a peripheral, or optical 
electron. We write the wave function representing the elec- 
tron plus atom system as an expansion in the atomic states 
@ y ( g )  : 

( -  l)N+l-i 
*'"I = \I N+1 Y ( I N ~ I ~ I  , I'LS) 

where c;,,,~, and are the Clebsch-Gordan coeffi- 
M ~ l m d  

cients, PLIS1 (gl ,..., ljN+ I ,..., gN) is the wave function of the 
ion core, with the coordinate of the ith electron replaced by 
the coordinate of the (N+ 1 ) electron, *,,, (&) is the wave 
function of the optical electron, and the sum over m is 
understood to be over the quantum numbers MLI,  ml,, 
Msl , and m,, . 

Let us assume that only valence electrons participate in 
ionization. This means that the subscript "n" in Eq. (2) is 
assigned only to the wave function of an optical electron. 
In this case, to find the discrete and continuous spectra of 
states 'Pnlt(lji) it is expedient to employ the method of the 
"frozen" ion core,8y9 which guarantees that the PnI,(Lji) 
are orthogonal to the ion-core functions. We write the 
Hamiltonian in Eq. ( 1 ) in the form 

where Hi is the the ion-core Hamiltonian, KN+ and K, the 
kinetic-energy operators of the optical and incident elec- 
trons, 

the potential energy of the interaction between the optical 
electron and the core, *= *?)(Lj)4,(r19 (1) 

n ze2 e2 q=-- + z- 
r i= l  lr-gil 

where &(r)  is the wave function of the incident electron, the potential energy of the interaction between the incident 
and the sum incorporates integration over the continuous- electron and the core, and 
spectrum states. 

Next in \yf)(g) we isolate an electron in the (nl') e2 
state using the well-known formulas7 V(r,lj) = I r - g ~ +  1 1 (4) 
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the potential energy of the interaction between the optical 
and incident electrons. We substitute (2) into the Schro- 
dinger equation, multiply the left- and right-hand sides of 
( 1 )  by the conjugate wave function of the ion core in the 
ground state, Y * ~ , ~ ,  ( g l  , . . . ,gN), and integrate over the 

51 ,&, . . . ,gN:  

X y ~ I ~ l  (61 9 . s . 9  SN+ 1 , . . . , g ~ )  qn/t(gi)4n(r) ( 5 )  

Next we isolate in (5 )  the term with i= N +  1: 

To obtain an equation for $, (r ) ,  we multiply ( 6 )  by 
Y*ql,t ( g N +  1 ) and integrate with respect to gN+ The result 
is 

where E ,  is the eigenvalue for state Yql,, satisfying the equa- 
tion 

Let us denote the energy of the incident particle by 
E,=EL,s ,+E~-E.  As a result from (7 )  we obtain the fol- 
lowing equation: 

= - X ( q q l t I  1 Vl q n ~ l ) 4 n ( r ) .  ( 9 )  
n 

The Clebsch-Gordan coefficients disappear when the ini- 
tial state of the atomic electron is specified. 

Equation ( 9 )  differs from the ordinary equations of 
multichannel scattering theory in that it contains the ma- 
trix element of the operator < sandwiched between ion- 
core wave functions. 

If we allow for exchange between the incident electron 
and the core, the homogeneous part of Eq. ( 9 )  contains an 
exchange term: 

Thus, the movements of the incident and atomic elec- 
trons in the ion-core field are described by a single Hamil- 
tonian and, hence their wave functions form a orthonor- 
malized system. 

The solution to Eq. ( 9 )  in integral form can be written 
in the usual way: 

~ ~ ( r )  =4FbO)(r) + 1 l dr' GF1(r,r') 
n 

where #$) ( r )  and the Green's function G;)(r,rr)  are the 
solutions of appropriate homogeneous equations with the 
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potential (LISIML MS, I ( 1  LISIML,MS,). The asymp- 
(b)  totic behavior of Gq (r,rl) for r)rl is given by the func- 

tion 

2 rp  ( _ ) *  exp ikqr 
-7 4q r 

(see Ref. 2), with +:-I* =+L:) . 
The inelastic scattering amplitude can be expressed in 

the following way: 

Here the upper and lower indices designate the initial and 
final states of the incident and atomic electrons, respec- 
tively. This formula differs from the one in Ref. 6 in that 
here the 4,(r1) are not Coulomb functions. 

Exchange between the impinging and valence electrons 
can be allowed for in the same way as is done in Ref. 6. In 
this case instead of 9,/,, (gN+ and &(r)  we must take 

1 
*($,I =$ [*qlf*(6N+l)4n(r) **ql))(r)4n(&v+1)]. 

(13) 

Then Eq. (9) transforms into 

Correspondingly, instead of ( 1 1 ), the solution to Eq. ( 14) 
is given by the function 

Then the exchange part of the ionization amplitude can be 
written as 

We can allow for the effect of the field on the ionization 
amplitude in the same way as is done in the case of 
excitation.' In first-order perturbation theory the Green's 
function in the field is 

with a the dipole polarizability of the ion, and E the elec- 
tric field strength. 

As shown in Ref. 1, the field contributes considerably 
to the final scattering channel, where in the case of ioniza- 
tion there is the ion core and two electrons in a continuous- 
spectrum state. 

Owing to the long-range nature of Vf, the field pro- 
vides its greatest contribution to the distortion of the 
scattered-electron wave at distances r" greater than the 
range of the scattering potential V(rN). Then for G:) 
x (r",rl) we can employ an asymptotic expression in the 
limit r") r' similar to that for GP)(r,rl) in the limit 
r)r'. As a result the Green's function in the field has the 
form 

where 

exp ( ik'r) 
. lr.(E) = -2Tp #:-)*(r) (qZ" I Vfl qll)  7- dr. 

(19) 

In the formula for the distortion factor qk t (E)  the 
difference from the case of excitation1 is that the matrix 
element of the scattering matrix is taken over the Stark 
functions of the continuous spectrum and instead of a 

plane wave the integrand contains &)*. 
For the amplitude of ionization in the field we arrive at 

the following formula: 

where the integrals are evaluated in the basis of Stark func- 
tions. 

To estimate the distortion factor qk(E)  we proceed as 
follows. Since integration in (19) is done over the outer 
region, the function 4 can be chosen as the solution of the 
equation with a Coulomb potential:10 

where n = -pze2/h2k. Then the formula ( 19) for the dis- 
tortion factor yields 

where 
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Using the properties of hypergeometric functions, ' ' we can 
evaluate the integral in (22) analytically. Then 

Here we have allowed for the fact that n <O. Next we 
represent the hypergeometric function in the form of a 
series and use the properties of gamma functions." As a 
result we arrive at the following expression for the distor- 
tion factor:: 

where zo = 2ikro. 
Let us consider the extreme cases of slow and fast 

scattered electrons and estimate the distortion factors in 
both. 

(a) n +O (k+ co ) . In this case formula (24) implies 

Since the po1arizabiIity of the ion core is insignificant, 
qk(E) -- ~ O - ~ E ,  and at E-  10-100 kV cm-' we have 
qk4 

(b) n + co (k-0). In ( 18) we introduce the notation 
in = x. Then the definition of n implies zo= - 2rokdx, with 
ko=4dPe2/h2. The series within the square brackets in 
(24) can be written in the form of a sum, 

where p= 2roko. In the limit of x - co the sum is equal to 
8-'J2( ), where J2( ) is a Bessel function. l2 

As a result we arrive at the following formula for the 
distortion factor: 

When the scattered-electron momentum is low, 
kao(O.Ol, the factor n3l2 can balance the insignificant 
value of the ion-core polarizability a. In this case the dis- 
tortion factor q (E)  has a strong effect on the ionization 
amplitude. 

'V. P. Demkin, Opt. Spektrosk. 73, 62 (1992) [Opt. Spectrosc. (USSR) 
73, 62 (1992)l. 

21. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation ofAtoms 
and Broadening of Spectral Lines, Springer, Berlin ( 198 1 ) . 

'M. R. H. Rudge and M. J.  Seaton, Proc. R. Soc. London, Ser. A 283, 
262 (1965). 

4M. R. H. Rudge, Rev. Mod. Phys. 40, 564 (1968). 
'P. K. Peterkop, Theory of Atomic Ionization by Electron Impact, Zi- 
natne, Riga (1975) [in Russian]. 

6~k-Ju Kang and W. D. Foland, Phys. Rev. 164, 122 (1967). 
'I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer, 
Berlin ( 1979). 

'v. M. Lazauskas, Z. I. Kuplyauskis, and A. P. Yutsis, "On solving the 
Hartre+Fock equations for nonorthogonal radial orbitals in the case of 
a ls2s configuration," in Theory of Atoms and Atomic Spectra, Riga 
(1975), p. 48 [in Russian]. 

9V. M. Zelichenko, B. F. Samsonov, and E. I. Cheglokov, Izv. Vyssh. 
Uchebn. Zaved. Fiz. No. 6, 71(1980). 

'OL. I. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York 
(1968). 

"A. Erdtlyi, Higher Transcendental Functions, vol. 2 (Bateman Project), 
McGraw-Hill, New York (1953). 

'*L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic 
Theory, 3rd ed., Pergamon Press, Oxford (1977). 

Translated by Eugene Yankovsky 

This article was translated in Russia and is reproduced here the way it 
was submitted by the translator, except for stylistic changes by the Trans- 
lation Editor. 
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