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Experimental and theoretical investigations of the antiferromagnetic resonance spectrum of 
CsMnI, , a quasi-one-dimensional hexagonal antiferromagnet with noncollinear spin 
ordering, are described. We demonstrate here that the three relativistic resonance branches 
we observed are all well described by spin-wave theory. We construct a 
phenomenological theory for magnetic resonance in a hexagonal antiferromagnet with a 
strong easy-axis anisotropy, and discuss how to determine the constants in the microscopic 
Hamiltonian from the available experimental data. 

1. INTRODUCTION 

The problem of how to adequately describe the spin 
dynamics of quasi-one-dimensional antiferromagnets with 
exchange-mediated noncollinear spin ordering using the 
standard theory of spin waves has a history which, al- 
though recent, is quite fascinating. 

In 1983, ~a ldane '  put forward a hypothesis about an 
unusual quantum effect: the existence of a gap in the spec- 
trum of quantum excitations of a one-dimensional isotropic 
antiferromagnetic chain with integer-valued spin. Immedi- 
ately after the publication of Ref. 1, an intense experimen- 
tal search was undertaken to find real physical systems that 
might confirm this theory. Nowadays, the consensus is that 
the Haldane gap has been observed with some degree of 
confidence only in the compound Ni (C2H8N2) NO2C1O4, 
abbreviated NENP. Neutron inelastic scattering and elec- 
tron spin resonance data, measurements of the magnetiza- 
tion in strong magnetic fields, and other experiments, all 
attest to the validity of this statement. Apparently, NENP 
is an almost ideal material for investigating the one- 
dimensional spin chain, as its interchain exchange interac- 
tions are so small that three-dimensional magnetic order- 
ing is not observed down to the lowest temperatures. 

Other materials in which Haldane's theory could be 
verified are CsNiCl, and RbNiCl,, which are hexagonal 
antiferromagnets with the so-called triangular structure. In 
contrast to NENP, rather strong interchain interactions in 
these antiferromagnets lead to long-range magnetic order 
as the temperature is lowered (TN=4.4 K for CsNiCl, and 
TN= 11.1 K for RbNiCl,). In both of these compounds 
the Ni ion has unit spin. One of the most productive meth- 
ods for investigating the excitation spectra of a spin system 
is inelastic neutron scattering; for this reason, it is not 
surprising that a large number of neutron-scattering stud- 
ies of these antiferromagnets have appeared recently.2 The 
definite assertions that are characteristic of articles with 
titles such as "Direct Observation of the Haldane Gap" 
have gradually been replaced by cautious discussions of the 

possibility of interpreting data obtained as indirect confir- 
mation of the existence of such a gap. In any case, it has 
become clear that the standard theory of spin waves, which 
is based on the Hamiltonian 

(the sign ' next to the summation sign denotes summation 
over nearest neighbors along a chain, while the sign " de- 
notes summation in the basal plane) does not describe the 
dispersion of magnetic excitations in the ordered phases in 
CsNiCl, and RbNiCl,. The disagreement with spin-wave 
theory is interpreted either in terms of Haldane's hypoth- 
esis, as ~ffleck, has stated, or in terms of geometric frus- 
tration of the triangular spin lattice, as Plumer and Caille 
have ~ l a i m e d . ~  

Experiments with CsMnI,, which has the same mag- 
netic structure as CsNiCl, but involves half-integral spins 
S=5/2, could clarify this situation and answer the ques- 
tion of what is causing the disagreement with spin-wave 
theory-geometric peculiarities of the structure or quan- 
tum effects. The half-integral spin excludes any possibility 
that the phenomena observed in this system are connected 
with a Haldane gap. Based on their neutron-diffraction 
study of CsMnI,, Harrison et al. concluded that the spec- 
trum of magnetic excitations in this compound is rather 
well-described by the linear spin-wave theory for a certain 
choice of constants in the Hamiltonian J, J', and D. How- 
ever, there are two problems with this: first, some impor- 
tant features of the spectrum could not be explained by this 
theory; and secondly, the values of J, J', and D obtained 
give incorrect values for certain measured physical quan- 
tities, i.e., the spin-flop field and the angle of deviation of 
the spins from the hexagonal axis. As the authors them- 
selves acknowledge, their work requires continuation. We 
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have saved a detailed discussion of their results to the sec- 
tion labeled "Discussion." 

Despite these problems, it has been established that the 
magnetic field dependence of the resonance frequencies of 
CsNiCl, and RbNiC13 is very well described by spin-wave 
theory for the low-lying relativistic branches of the 
spectrum.6 The values of J, J', and D obtained by compar- 
ing the theory with data from resonance measurements 
have been used to calculate the frequency of the exchange 
branches of the spectrum. The fact that the values obtained 
in this way for w(k=O) deviate significantly from the ex- 
perimental results can be interpreted as a consequence of 
Haldane-like behavior of the system. 

The goals of our work were the experimental investi- 
gation of the relativistic branches of the antiferromagnetic 
resonance spectrum in CsMnI,, the construction of a the- 
ory that adequately describes all the observed resonance 
branches, and calculation of the frequencies of the ex- 
change branches of the spectrum w,(k=O). After carry- 
ing out this program, as will become clear, we have con- 
cluded that the spin dynamics of CsMnI, can be described 
by the Hamiltonian ( 1 ), possibly with some modification 
[see (1) and (22)l. 

2. THEORY 

The theory of the low-lying branches of the magnetic 
resonance spectrum in easy-axis triangular antiferromag- 
nets has been described previously in Refs. 7-9. For 
noncollinear structures formed by the exchange interac- 
tion, there exist three spin-wave branches in general, whose 
activated character is related to relativistic anisotropy or 
an external magnetic field. Zaliznyak et a17 have calcu- 
lated the magnetic resonance frequencies for two of the 
so-called "acoustic" modes in terms of a macroscopic 
theory.7 

Using the macroscopic theory of magnet dynamicslO, it 
is possible to obtain the spectrum of long-wavelength low- 
frequency oscillations in an arbitrary magnetic field very 
simply, starting only from general symmetry principles ap- 
plied to the magnetic ordering, without making any special 
assumptions of the sort that are unavoidable in model cal- 
culations. However, to first order in u2/c2 the energy an- 
isotropy used in Ref. 7 has a degenerate character. This 
implies that one of the resonance frequencies ( a3 )  is a1- 
ways equal to zero. 

Extending the range of frequencies under study beyond 
that investigated in Ref. 7 quickly leads to the observation 
of yet another spectral line, and with it the question of how 
to describe it Both the calculations given in 
Refs. 8 and 9 were carried out at T=O in the mean-field 
approximation using the Hamiltonian ( l ) ,  under the as- 
sumption that (1)  can give a satisfactory description of 
quasi-one-dimensional antiferromagnets. Nevertheless, the 
expressions obtained in these papers for the frequency 
w3(H) are different (to show this, it is necessary to identify 
the smallest root after expanding all coefficients in the 
small parameter D/3Jf rather than solving the correspond- 
ing dispersion relation numerically as was done in Ref. 8) .  

In order to calculate the dependence of the resonance 
frequencies on the magnitude and direction of the magnetic 
field, we will apply the phenomenological theory of Ref. 
10. 

The exchange symmetry of the magnetic structure of 
CsMnI,, like that of CsNiCl, and RbNiC13 and many 
other quasi-one-dimensional hexagonal antiferromagnets, 
is specified by introducing two orthogonal unit pseudovec- 
tors that transform according to a single irreducible repre- 
sentation: 

S-A exp(i1r) +A* exp(-Ar), A=l,+zl2, 

In the absence of a magnetic field, alJ th: spins lie in a 
plane perpendicular to the vector n'= (I, x 12). The dynam- 
ics of the antiferromagnet is determined by the Lagrange 
function: 

where q =  (xI I  --XI )/x1 ; here y is the gyromagnetic ra- 
tio, R is the angular velocity of rotation in spin space, and 
Ua is the potential energy of magnetic anisotropy. 

In order to derive equations of motion it is necessary to 
parametrize the group of spin rotations (see Ref. 10). It is 
simpler to proceed directly to linearized equations of mo- 
tion, using the following expansion up to terms of second 
order in the small angle of rotation 8 for the law of trans- 
formation of an arbitrary spin vector o and the angular 
velocity R: 

Varying the Lagrange function L with respect to 8 and 8, 
we obtain equations for small vibrations around the equi- 
librium position. 

To first order in v2/c2, the relativistic interaction terms 
reduce to a single invariant AjSA, - I:, + I;,, in equivalent 
form, ua=an;/2. The easy-axis nature of the structure 
implies a > 0. In this case, an external magnetic field H, 
( ~ : = a / ~ ~  ) applied along the symmetry .axis z causes 
flipping of the sublattices, so that the spins lie in the basal 
plane of the crystal. For H <  H, (HI1 2) there is only one 
resonant branch with frequency7 

In fields that exceed the spin-flop field, or for H inclined to 
the 2-axis, a second resonant branch w2(H) appears that 
reduces to zero at H=O (see Ref. 7 and below). Correcting 
the anisotropy energy to second order in v2/c2 in L does 
not change these results qualitatively: w3(H)=0, 
wz (0) = 0. 

A preferred orientation for the vectors 1, and 12, and 
consequently for the spins with respect to the crystallo- 
graphic axes, emerges only in terms of sixth order in the 
components of the vector A: 
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The first invariant that distinguishes a direction for the 
vector n in the basal plane of the crystal leads to a nonzero 
value of ~ ~ ( 0 ) .  Since the experimental value is u2(0)  =0, 
we will neglect this anisotropy in what follows. 

The invariant (7) orients the triangular spin structure 
in a plane passing through the axis of symmetry, and cre- 
ates a gap at zero field for the third resonance branch. Such 
anisotropy energies arise as a result of spin-orbit interac- 
tions between the angular momentum density (2) and the 
electric crystal field. Such interactions are not included in 
model ( 1 ). However, the same sort of anisotropy (7) ap- 
pears when we go from the Hamiltonian ( 1 ) to the mac- 
roscopic level, taking into account the deviation of the 
spins from the ideal 120" structure. 

In addition to (7), the following invariants are also 
responsible for orienting the vectors 1, and 1, in a magnetic 
field: 

Formally, they correspond to a lower order of expansion in 
the anisotropy energy in powers of the u2/c2. However, 
because the spin-flop field satisfies H:- D-v2/c2 for 
H<Hc, their energy is comparable to the energy (7). 

Let us denote the phenomenological constants with 
which the invariants (7) and (8) enter into the Lagrangian 
by gi/12. Then g, > 0 holds, i.e., according to neutron scat- 
tering data, one of the three pairs of sublattices is directed 
along the 2-axis when H=O. 

From the Lagrange equations, to first order in gi we 
obtain the following expression for the frequency of the 
third resonant branch: 

As is clear from (9), the behavior of u3(H)  is in general 
quite arbitrary. 

For a spin system described by the Hamiltonian ( I ) ,  
the phenomenological parameters predicted by the symme- 
try approach are connected with one another in a definite 
way. Thus, at T = 0 the form of ( 1 ) for a system of clas- 
sical spinsgv9 requires X, = 1/16J, a = D, and 77 = 1. In or- 
der to find the function q ( H )  it is most important to 
establish relations between the parameters gi. 

The strongest interaction in ( 1 ) is exchange along the 
c6 axis. Therefore, neglecting the contribution to the sus- 
ceptibility from interchain exchange, let us introduce an 
individual antiferromagnetic vector for each chain. Then 
the energy of a chain in a magnetic field coincides with the 
corresponding expression for an ordinary two-sublattice 
antiferromagnet. Each elementary magnetic cell contains 
three chains; omitting terms of order Jf2/J, d/J, we find 
for these chains: 

where a, P, y are angles formed by the antiferromagnetic 
vectors of the chain and the taxis. For H=O and D=O the 
angles between the magnetizations of neighboring ions 
along the basal plane (i.e., a-P, a- y, and 8- y) equal 
120". It is clear from (10) that the deviation of the spins 
from an ideal structure, and the anisotropy energy with 
them, depend only on the parameter 

In the spin-flop field Hc,  which in the model ( 1) equals 
H:= ~~DJs', we find that A = O  and the anisotropy of the 
form (7) + (8) drops out of the energy (10). Minimizing 
(10) with respect to B and y, we obtain in third-order 
perturbation theory with respect to A: 

Comparing (7) and (8) with our expressions, we find 
that 

while Eq. (9)  for u3 (H)  acquires the form: 

The function u3(H)  we have obtained coincides with the 
results of Ref. 8 for v= 1 (if the expansion mentioned 
above is carried out). The equation for the frequency of the 
lower relativistic resonance branch found in Ref. 9 is in- 
correct. 

We should emphasize one more time that the detailed 
form of the dependence of 0 3  on magnetic field is not uni- 
versal, and, e.g., should be different for the case Jf-J. 

Let us find the resonance frequencies when the mag- 
netic field is directed at an angle q, to the Laxis. The equi- 
librium direction of the vector n, which is given by the 
angle $ in the plane (H,2), is determined by minimizing 
the magnetic energy and anisotropy energy. When finding 
the spectrum it is necessary to avoid too much accuracy. 
Thus, the kinetic energy of rotation of the spins must be 
left in the exchange approximation (3); correction terms in 
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the equations of motion that follow from the invariants (7) defined without taking into account this additional anisot- 
and (8) are retained only in those quantities that equal ropy: 

zero for g=O [see matrix ( 16) below], and the angle $ is H~ sin 2p 
tg 2$= 

H2 cos 2p-HZ' (15) 

This results in the following cubic equation: 

where 

Q(H,p) = J@+@-2H2~: cos 2p, 

11 

B(H,p) = 6 2  1 sin5 $ cos $-7 [2 sin3 $ cos $ sin2 
H c  

iP 
+sin4($-p)sin $ cos $) -$ sin5 

C 

For an arbitrary direction of the field, there are no remain- 
ing symmetries that permit the various resonant frequen- 
cies to intersect, and all three branches of the spectrum 
should repel each other. However, for the parameters gi 
entering into the model ( I ) ,  the nondiagonal element 
B(H,q) is small compared to g2 over the entire range of 
variation of the parameters H and p. Therefore the gap 
between the two lower relativistic branches should be un- 
detectable (if, e.g., we have gl#O and g2=g3 =g4=0, then 
this will no longer be so). The angular dependence of the 
frequency of the third relativistic mode of the spectrum is 
given by the expression 

For the remaining relativistic branches, when wl>w2, 

@ : ( ~ ) = ? [ r l ~ ( ~ , p ) + ( l + q ) H ~  sin2($-#)], (18) 

If, however, the condition 01>a2 does not hold, then the 
expressions from Ref. 7 must be used for o , ( H )  and 
w2(H). Those expressions can also be obtained from Eq. 
16. 

3. EXPERIMENT 

The antiferromagnetic resonance spectrum in CsMnI, 
was measured using a direct-amplification spectrometer in 
the frequency range 9 to 178 GHz and temperature inter- 
val 1.4 to 20 K according to the usual method: resonant 
power absorption was detected by observing the change in 
the amplitude of a micro-wave signal P at fixed frequency 
o passing through a cell containing the sample, while 
sweeping the static magnetic field H. We used a truncated 
4-mm waveguide or 8-mm rectangular resonant cavity as 
an absorption cell for the spectrometer. When the resonant 
cavity was used, we were able to change the orientation of 
the sample with respect to the magnetic field. Fields up to 
60 kOe were created by a superconducting solenoid. The 
temperature was measured with a semiconductor ther- 
mometer. 

In preparing the CsMn13 we used the following 
method. Metallic manganese was heated in an evacuated 
quartz ampule in iodine vapor up to 1000 "C. The resulting 
brown product was freed of excess iodine by heating in a 
vacuum, and then was sublimated under continuous pump- 
ing at 1000 "C. The rose sublimate of Mn12 was melted in 
vacuum with an equivalent amount of CsI to form 
CsMnI,, which is dark red in color. This was then lowered 
into a cylindrical oven in a sealed ampule (the oven was 
heated to 430 "C; the melting temperature of CsMn13 is 
413 "C). The single crystals of CsMn13 obtained in this way 
were annealed in the same ampule at 300 "C over a period 
of 200 hours. After a variety of trials it was established that 
the best way to protect CsMnI, from hydration was to use 
a resin glue. 

The fact that the crystal structure of the compound 
obtained was indeed that of CsMnI, was established by 
x-ray phase analysis. All the crystals used were easily 
cleaved along the ( 110) plane and had clearly distinguish- 
able veins along the C6 axis, allowing us to orient them 
visually. 
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FIG. 1. Magnetic field dependence of the resonance frequency for HI1 C6 
(a) and HI C6 (b),  T= 1.4 K. The squares display the results of our 
measurements, the triangles the date of Ref. 8. The solid curves were 
drawn using expressions from Ref. 7 for q=0.5" with parameters 
q=0.894, Hc=52 kOe, using Eq. (14) with the parameter g=7 kOe. The 
dashed curve was plotted by using Eq. (5) of Ref. 9. 

In the disordered phase we observed a paramagnetic 
resonance line w = yH with y = 2.8 GHz/kOe for T > 12 K. 
Figures 1 (a) and 1 (b) show the results of measuring the 
antiferromagnetic resonance spectrum in CsMnI, at 
T =  1.3 K for HI C6 and HI1 C6 respectively. It is clear 
from the figure that we were able to detect the upper 
branch of the resonance, which has a gap of about 138 
GHz, when the field was directed in the basal plane, while 
for the case HI1 C6 we were able to observe it only in 
magnetic fields above the phase transition field Hc=52 
kOe. Recall that in CsNiCl, and RbNiC1, this resonance 
branch was observed for any direction of magnetic field. In 
our view, the explanation for this phenomenon is that for 
crystals with large anisotropy we cannot describe the fre- 
quency wl using Eq. ( S ) ,  since the latter was obtained only 
to first order in D (see Ref. 8). For large D the function 
wl(H) is more gently sloping for HI1 C6 than Eq. (5) 
would indicate. The method used for these measurements 
does not allow us to detect a resonance whose frequency 
depends weakly on magnetic field. 

If the magnetic field is directed in the basal plane of the 
crystal, then the field dependences of both resonance fre- 

FIG. 2. Dependence of the resonance field on the angle between the field 
and the C6 axis for a frequency of 29.9 GHz, T= 1.3 K. The solid curves 
were plotted using Eqs. (17) and (19) with the same parameters 
q=0.894, Hc=52 kOe, and g=7  kOe. 

quencies coincide to within the accuracy of the constants 
with those of CsNiC1, and RbNiCl,, and are well described 
by the expressions given in Ref. 7 with parameters 
q=0.894, Hc=52 kOe, at a temperature T=1.3 K. The 
expression from Ref. 7 used to describe the resonance is 
just as useful for the case Hll C6, H >  H,.  The value of H, 
agrees with data from static measurements" which predict 
a value of 54 kOe for the spin-flop transitions at T =  2.0 K. 

In the range of fields below the spin-flop field, still 
another resonant branch is observed when HI1 C6 with a 
gap of 35 GHz that decreases as H increases. From the 
figure it is clear that the dotted curve plotted using the 
expressions from Ref. 9 is a much worse description of the 
experimental points than Eq. ( 14) which we have obtained 
(the solid curve) when the parameter g=7 kOe is used to 
determine the value of the gap. 

Figure 2 shows how the resonance field depends on the 
angle between H and the C6 axis for a frequency of 29.9 
GHz. As we should expect, the "gap" from repulsion of 
the two lowest resonance branches was so small that we 
were unable to observe it experimentally. The angular de- 
pendence of the spectrum is well described by the theoret- 
ical expressions (17) and (19) (solid curves) with the 
same parameters 7, H,, g. 

As the temperature decreases the widths of the reso- 
nance lines abruptly increase, the intensity of the signal 
decreases, and, unfortunately, we were unable to track the 
functions v( T )  and Hc( T )  as was done for RbNiCl, . For 
this reason, we are unable to say anything definite about 
the resonant properties of the intermediate phase between 
the paramagnetic state and the three-dimensional ordered 
state for T N 2 < T < T N 1  (TN1=11.4 K, TN2=8.2 K) .  

4. DISCUSSION 

The experimental results we have obtained in the 
course of our investigation of the antiferromagnetic spec- 
trum of CsMnI, unequivocally indicate that the magnetic 
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field dependence of the resonant frequencies is well de- 
scribed by the usual spin-wave theory, as is the case for 
CsNiC13 and RbNiC13. 

In constructing a theory of magnetic resonance in an- 
tiferromagnets with exchange noncollinear spin structure, 
we can either start with the microscopic Hamiltonian ( 1 ) 
and make use of mean-field theorygy9 or use a phenomeno- 
logical approach like the one employed in Ref. 7 and de- 
veloped in this paper. Of course, the results obtained agree 
with one another and give practically the same field depen- 
dence for the resonance frequencies; however, there are a 
number of distinctive features as well. The method of Ref. 
10 predicts the existence of two different resonance 
branches for the case HI1 C6, H >  Hc, which is observed 
experimentally. These branches differ from one another to 
the extent that the parameter 7 differs from unity, which 
also destroys the relation between the value of the gap for 
the upper relativistic resonant branch and the spin-flop 
field transition implied by mean field theory: for the model 
approach we have wl = yHc, while for the phenomenolog- 
ical approach we have wl = y a. 

Let us discuss the determination of the constants J, J', 
and D of the model Hamiltonian ( 1 ) . The parameter J can 
be found with good accuracy from inelastic neutron scat- 
tering data: J= 198 GHZ.~ However, it is not entirely cor- 
rect to determine J' and D from the dispersion of the 
exchange spin-wave branches, since, first of all, we do not 
yet have a satisfactory theory for the exchange branches of 
the spectrum, and secondly, the neutron measurements are 
not accurate enough in the range of frequencies smaller 
than 500 GHz, within which the dispersion curves depend 
significantly on J' and D. The anisotropy constant D can 
reliably be found from the spin-flop field: Hc 
= ,/mi = 52 kOe; therefore, D= 1.07 GHz. 

The ratio of the anisotropy D to the exchange J' can be 
determined from the angle the spins make with the hexag- 
onal axis 9 = (5 1 * 1 )", which is well-known from neutron 
scattering:59" 

D -- 3 
-6--- 

J' cos 6 
- 1.23*0.l. 

Knowing the constants of the spin Hamiltonian ( 1 ), we 
can find the resonant frequency of the exchange branches 
at k=O, making use of the expressions derived in Ref. 8. 
Taking the values J=198 GHz, D=1.07 GHz, and 
J' =0.87 GHz, we obtain 

In the paper by Harrison et al.' on inelastic neutron scat- 
tering only one experimental point was given at zero wave 
vector; its frequency 0=424 GHz agrees with the value of 
0 6 .  As we will see, when the considerable anisotropy is 
taken into account, the two lowest exchange resonance 
branches are split so that the ratio m d ~ ~ , ~ = f l ,  which 
holds for D(J', does not hold. Experimentally, the lowest 
exchange branches are not observed, and finding them re- 
quires further investigation. However, the frequencies cor- 
responding to them are not at all comparable to w d a ,  as 
was found for CsNiC13 and RbNiC13 .2 

The ratio of the anisotropy D to the interchain ex- 
change J' can also be determined without going beyond the 
limits of this paper from the ratio of the resonance frequen- 
cies in zero field: 

The accuracy of h lo which the authors of Ref. 5 
claimed in their determination of angles implies an error of 
10% for the ratio D/J'. The values of D/J' found from 
resonance and neutron-scattering experiments differ by 
more than 30%, which can in no way be explained by 
inadequate accuracy of our measurements. If the angle of 
deviation of the spins is determined to this kind of accu- 
racy, then in our view the reason for the disagreement must 
be sought in the incompleteness of the Hamiltonian ( 1 ) . It 
is known that the spin-orbit interaction is small for the 
~ n ~ +  ion; consequently, describing the relativistic effects 
by adding a single-ion anisotropy to the Hamiltonian ( 1 ) 
cannot be fully correct. [The absence of single-ion anisot- 
ropy in CsMn13 is also confirmed by the fact that 
w2(0) =0, since the existence of an anisotropy of the form 
(6) would be obligatory if the electronic shells of the 
~ n ~ +  were distorted by the crystal environment]. Appar- 
ently it is more correct to introduce a different-ion anisot- 
ropy between nearest neighbors (this is often called an 
exchange interaction anisotropy) and to replace the 
Hamiltonian ( 1 ) with a Hamiltonian 

Mean-field calculations based on (22) analogous to those 
carried out in Ref. 8 give 

By introducing the two parameters Dl and D2 to describe 
the anisotropy, we can reconcile the experiments on inelas- 
tic neutron scattering with the resonance measurements. In 
principle, these data are enough to determine the three 
quantities J', Dl,  and D2. Substituting the results of these 
measurements into Eqs. [(24) and (25)], we obtain for 
them the following estimates: 

The relativistic effects to first order in v2/c2 (i.e., the spin- 
flop field, the gap 01 (O), the angle of deviation of the spins, 
and the splitting of the exchange frequencies) are deter- 
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mined by averaging the spin-orbit in (22) over the unper- 
turbed 120" structure. Hence we may describe them by 
using an effective single-ion anisotropy with D= D, + D2. 
However, in studying higher-order phenomena in v2/c2 
[the branch m 3 ( H ) ] ,  for whose existence it is necessary to 
have a somewhat small distortion of the exchange spin 
structure, the specific form of the spin-orbit interaction 
becomes important. We note that the accuracy of this pro- 
cedure for determining these constants is not high, since 
the ratio D2/D1 is very sensitive to even rather small 
changes in the angle of inclination of the spins to the hex- 
agonal axis. 

To sum up, we can say that by using a natural modi- 
fication of Eq. ( 1 ), which consists of introducing two an- 
isotropy constants instead of one, we can describe all the 
experimental data known today regarding the spin struc- 
ture and energy spectrum of CsMn13. 

In conclusion, the authors want to express their grat- 
itude to Professors A. F. Andreeva and V. I. Marchenko 
for valuable advice and discussions of the problem, and 
also to Sergei Sosin for his assistance in the calculations. 
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for reading through the manuscript and for his comments. 
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