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The problem of finding the effective conductivity tensor a, of a random inhomogeneous 
medium is solved. The tensor a, is obtained in the form of a series together with the 
convergence conditions. The boundary points a!") (here n is the multiplicity of the 
allowed interactions) of the region containing a, are also found. In the case of a mixture of 
two isotropic components (for n<3), the effect of the topological properties of the 
components on the statistical parameters determining the structure of the medium is 
investigated. Finally, for a self-consistent medium a solution asc is obtained that allows for 
macroscopic anisotropy. This solution is shown to describe the critical behavior near 
the percolation threshold. 

1. INTRODUCTION 

The problems that emerge when random inhomoge- 
neous media are studied macroscopically have attracted 
the unflagging attention of researchers (see, e.g., Refs. 
1-4). This is due, first, to the fact that such media differ 
substantially from homogeneous and regular- 
inhomogeneous media, which leads to additional mathe- 
matical difficulties, and, second, to the possibility of ob- 
taining results that have important applications. A key 
problem is that of finding the macroscopic (effective) ma- 
terial characteristics of an inhomogeneous medium from a 
given body of statistical data. Solution of this problem fol- 
lows three basic paths: ( 1 ) searching for exact solutions for 
real media and model structures, (2) determining the 
boundary points of the region containing the effective char- 
acteristics of a medium, and (3) calculating the approxi- 
mate values. 

The simplest exact solutions obtained by Wiener in 
1912 (see, e.g., Refs. 5 and 6 )  have the form 

where 

Here a, is the effective conductivity tensor of a medium 
whose N isotropic components constitute randomly alter- 
nating plane-parallel layers with a normal parallel to the 
third axis, and ua is the volume concentration of the ath 
component. The quantities 6 and C$ are also the bound- 
ary points of the region 

( p )  - I =  u_W<a*<a,W= ( a )  (1.3) 

properties of inhomogeneous media. This yielded several 
interesting  result^.^-'^ It also led to structures that allow 
for exact solutions. 

The self-consistent solutions obtained by ~ r u ~ ~ e m a n ~  
for two- and three-dimensional macroisotropic mixtures of 
two isotropic components are often used to interpret the 
results of measurements and in percolation 
theory.8,12, 14,16,17 

Starting from classical energy relations, Hashin and 
shtrikman6 developed a variational method for obtaining 
the boundary points z s ,  which, in contrast to the Wiener 
boundary points a y ,  allow for the statistical data con- 
tained in two-point probabilities. Partial allowance for 
three-point interaction, which was made by ~e ran , "  led to 
additional narrowing of the region in the cases of 
three-dimensional9 and two-dimensional19 macroisotropic 
mixtures of two isotropic components. 

Lifshitz together with co-workers suggested a method 
for calculating static2' and dynamic2' effective characteris- 
tics in problems of elasticity theory. This is based on solv- 
ing differential equations whose coefficients are random 
tensor fields. The solution is represented in the form of a 
series each term of which describes interactions of respec- 
tive multiplicity. The method of random-fields theory was 
found to be effective both in deriving approximate solu- 
tions and in selecting auxiliary fields used in variational 
methods. 

To calculate a, and the boundary points a(,") with n<3 
(the multiplicity of the allowed interactions is k~[O,n]) of 
the region containing a,, we develop below a method22 
that uses the advantages of both the method of random- 
field theory2G23 and the variational me th~d .~ ,~ . ' ' . ' ~  We find 
that for n<2 the boundary points a:) satisfy relationships 
that follow from Keller's theorem and Dykhne's 
 transformation^.^^^*^^^^'^^^^^^ A self-consistent solution is ob- 

containing the effective conductivity a, of the macroiso- tained for the case of an arbitrarily shaped inclusion. Fi- 
tropic mixture of N isotropic components. nally, the possibility of using this solution to describe 

Keller's theorem7 and Dykhne's symmetry trans- anomalous phenomena near the percolation threshold is 
formations8 gave a new impetus to the study of symmetry demonstrated. 
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2. THE EFFECTIVE CONDUCTIVITY TENSOR 

Let us consider the equations for a time-independent 
current: 

Representing the field E, according to (2.1), in the form 

where q is the scalar potential, and allowing for the mate- 
rial equation, Ohm's law 

where u is the random tensor field, we proceed from Eq. 
(2.1 ) to the Laplace equation 

for an inhomogeneous medium, which is solved with the 
boundary conditions 

Here S is the surface forming the boundary of volume V, 
and n the unit outward normal to S. 

Let us now introduce the Green function of the Pois- 
son equation with homogeneous boundary conditions: 

Here the subscript c marks quantities that refer to an aux- 
iliary (or complementary) medium, which macroscopi- 
cally (geometry in the large and the boundary conditions) 
is identical to the inhomogeneous medium considered and 
differs only in material characteristics. The operator LC 
obeys the ordinary restrictions imposed on an unperturbed 
operator: (1) the solution to problem (2.4), (2.5) for LC is 
known, and (2) the perturbation operator L' = L - LC is in 
a certain sense small, which ensures the convergence of the 
perturbation series. 

Using the mathematical tools developed in Ref. 22, we 
write the solution to problem (2.4), (2.5) for the field E 
specified by (2.2) in the form 

Here Q is specified as follows: 

and the angle brackets stand for averaging over the real- 
ization ensemble, which under certain  condition^^'^^'^^ co- 
incides with averaging over the volume. Finally, the oper- 
ator R that isolates the random component of a field I: 
satisfies the following relations: 

To describe macroscopically the conducting properties 
of an inhomogeneous medium we use the effective conduc- 
tivity tensor u specified by the following 
relations:6.8.15,17,18.20f 2-24 

which in combination with (2.7) yields22,24 
A , . a  

&,= (uA), ( A )  =I ,  IX=X.  (2.11) 

Generally, b, is an integral operator, but if, firstly, the 
dimensions of the inhomogeneous medium are large com- 
pared to the inhomogeneity scale of the mean field (E), the 
mean free path of the charge carriers, and the characteris- 
tic size of the region over which the averaging that replaces 
ensemble averaging is done; and secondly, the inhomoge- 
neous medium possesses the property of statistical homo- 
geneity, in view of which n-point probabilities of the ran- 
dom field u ( r )  are invariant under translations, then the 
operator 6, possesses the property of locality, and the ker- 
nel of b, can be represented in the form 

In the limit of macrohomogeneous boundary conditions, 
we have instead of (2.5) 

q ( r )  = -re (E), or j ,(r) =n . (j),  reS ,  (2.13) 

where (E) and (j) are constant vectors. 
In view of (2.12), combining (2.1 1 ) and (2.7) yields22 

Macroscopically, the problem of describing an inhomoge- 
neous medium is solved in a similar manner if, following 
(2.1 ), we write j in the form 

with t,b the vector potential. Allowing for the material 
equation 

where p is the random-resistances tensor field, we proceed 
from (2.1) to the vector equation 

Here eimk are the components of the Levi-Civita identity 
tensor. The procedure for solving Eq. (2.17) is similar to 
that described above. For the tensor p, specified by the 
equations 

it leads to the expression22 
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similar to (2.14), where operator k is related to operator Q 
through the equation 

Usually a, and p, are calculated on the basis of a 
limited body of information about the inhomogeneous me- 
dium, which yields the following approximate values for 
a, and p, : 

which allow for k-particle interactions between the inho- 
mogeneity regions (kc  [O,n]). Generally, a:") and pt) are 
not related via (2.19). Moreover, their position in relation 
to a, and p, often remains uncontrollable. Hence the im- 
portance of the problem of finding the boundary points 
02) (with n the greatest multiplicity of the allowed inter- 
actions) of the region containing a, . 

3. THE BOUNDARY POINTS d: FOR u* 

Studying the series in (2.7) leads to the following 
inequalities:22 

which form the sufficient conditions for convergence of the 
series. Also, the terms in (2.7) satisfy the conditions 

in view of which the position of a:) (2.21) in relation to 
a, is controllable at each step of the calculation procedure. 
Indeed, combining (3.1) and (3.2) yields the following 
inequalities: 

In the case of (2.15) the sufficient conditions for con- 
vergence of the respective series are 

For the terms of the series in (2.19) instead of (3.2) we 
write 

~ 2 k < O \ < ~ 2 k -  1, k> 1, pl>O. (3.5b) 

Thus, for k > l  the series in (2.19) is of constant sign if 
pl<O and an alternating series if pl>O. Combining (3.4) 
and (3.5) yields the following inequalities: 

n 

The inequalities (3.3a) and (3.6a) prove to be more 
convenient. Using them simultaneously yields two-sided 
boundaries for both a, and p, : 

For a macroisotropic mixture of N isotropic components 
this implies 

XO=Xc=maxX(a)=Xm, for n=O, (3.8a) 

N 

= C vJ(a) for n = l ,  (3.8b) 
a= 1 

where X(a)  is the value of X for the ath component. The 
boundary points in (3.8a) and (3.8b) are the best, in the 
volume n = 0 and n = 1 respectively, statistical information 
about the medium and are denoted by x:). 

For the sake of convenience we use below the language 
of conductivities. Bearing in mind the above, instead of 
(3.8) we get 

p;l+')<a , p)- + = a m ,  ampm>l ,  for n=O, 
(3.9a) 

1- ( 1 )  ( p ) -  =a- <u,<a(:)=(o), for n = l .  (3.9b) 

For n=2, according to (3.7), (2.14), and (2.19), we can 
write22 

a?'= (a )  - g ( ( ~ ~ ~ ) ~ ) a ; l ,  g+K= 1, 

where the geometric parameter g is a component of the 
depolarization tensor (for a macroisotropic medium 
g=d-', where d is the dimensionality of the medium's 
space). Tensor g is calculated via two-point probabilities 
and is determined by the shape of the surface of the effec- 
tive inhomogeneity grain.23 When the inclusions in a ho- 
mogeneous lattice are distributed at random, the effective 
grain is a sphere. 

The boundary points in ( 3 . 9 ~ )  are not the best in the 
information volume n = 2 that includes two-point probabil- 
ities. To narrow the region, Hashin and shtrikman6 devel- 
oped a variational approach in which they introduced a 
functional that in our notation has the form 

Using (3.10) we obtain from the classical theorems for the 
energy U of an electric field 
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Equality is achieved if we substitute the fields E  and T that 
satisfy Eqs. (2.1 ) and (2.5), and, in view of this, are cou- 
pled by the equation E = ~ T .  

The extremum of the functional S is an absolute min- 
imum for M1<O and an absolute maximum for M,<o.~ For 
such cases Eq. (3.1 1 ) yields 

where S+ and S-  are the extreme values of S[T] for Ml<O 
and M2<0, respectively. 

When macrohomogeneous boundary conditions (2.13 ) 
are employed, by combining (3.12) with (3.9a) we find the 
best boundary points for the effective conductivity a, in 
the case of n = 2 (Refs. 22 and 23): 

The first to obtain the boundary points (3.13) in a different 
form for a macroisotropic mixture of N isotropic compo- 
nents (d=3) were Hashin and ~htr ikman.~ 

Allowing for three-particle interactions involves cum- 
bersome mathematical calculations, in view of which the 
majority of papers dealing with this effect consider mac- 
roisotropic mixtures of two isotropic components. One of 
the first to attempt to use statistical information of volume 
n = 3 was ~ e r a n , ' ~  who suggested a simple modification of 
the variational approach. 

Irrespective of the choice of parameters o, and p,, the 
approximate values 02) and pt) are, according to (3.3) 
and (3.6), the upper boundaries for p, and p,, respec- 
tively. The arbitrariness of parameters a, and p, is used 
below to obtain more stringent boundaries in the case of 
n = 3. 

For a macroisotropic medium of two isotropic compo- 
nents Eq. (2.14) yields (here al <a2) 

a:)(u) = (a)  -gD,(2u-Ku2), uo,- 1, 

Here the geometric parameter j describing three-particle 
interactions is defined as 

and is related to the parameter J introduced in Ref. 22 
through the following formula: 

The coordinate dependence of the piecewise homogeneous 
approximating field T is fully determined by the indicator 
function f defined in (3.15). From (3.15) and (3.16) it 
follows also that 

The arbitrariness of the auxiliary parameter u makes it 
possible to minimize the function aF) (u )  defined in 
(3.14). This yields 

Similarly, for p y )  we get 

The solutions (3.18a) and (3.18b) can be represented in 
the form (3.13): 

Eqs. (3.19) and (3.13) yield for the limiting values of 
parameter j specified by ( 3.17) 

~ i l l e r ~  suggested a model of a symmetric medium 
whose statistical properties were studied in Ref. 13. (The 
components of a symmetric medium have the same geom- 
etry and differ only in the values of conductivity and bulk 
density.) At v l = v 2  such a medium satisfies the Dykhne 
equivalence ~ri terion.~ For a symmetric medium, as can be 

the region of possible values of the pa- 
rameter j narrows. Instead of (3.17) we have 

At v1 = v2 this implies jSM= 1/2, that is, only one structure 
in the inhomogeneous medium satisfies the Dykhne's re- 
quirement of total statistical symmetry.8 From (3.20) and 
(3.21) we see that in nontrivial cases (v2#0,1) the bound- 
ary points in (3.13) are unattainable for symmetric media. 
These points describe the conductive properties of an in- 
homogeneous medium formed by an ensemble of double- 
layer composite spheres (g=$) filling the volume under 
consideration and leaving no empty space.6 In view of what 
has been said, Hashin and Shtrikman's solution6 is not 
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FIG. 1 .  The set of values of the geometric parameter j .  The concentration 
dependence of parameter jSCM for self-consistent media. The set of values 
of jSM describing symmetric media. 

realized in the class of symmetric media. Following Mill- 
er's terminology,9 we will call such media asymmetric. 

Figure 1 shows the range of values of the geometric 
parameter j realizing all possible structures of inhomoge- 
neous media. The diagonals of the square specify the range 
of values of j describing various structures belonging to the 
class of symmetric media. The hatched regions bounded by 
parabolas and the horizontal sides of the square describe 
structures not realizable in the model of Miller, Beran, and 
~ i l n u t z e r . ~ " ~ ' ~ ~  The diagonal of the square depicted by a 
solid line specifies the set of values of j describing struc- 
tures that belong to the class of self-consistent media (see 
below). The point of intersection of the diagonals corre- 
sponds to a unique solution, a random8 or completely 
symmetric" Dykhne medium. 

4. KELLER'S THEOREM AND DYKHNE'S 
TRANSFORMATIONS 

Keller's theorem7 has been proved for the case of a 
two-dimensional mixture of two isotropic components: in- 
clusions of the same shape and size are distributed in the 
lattice in such a way that their centers form a rectangular 
lattice whose symmetry axes coincide with those of the 
inclusions. According to ~ e l l e r , ~  the xth component 
azx(al ,a2) of the effective conductivity tensor a,(al ,a2) 
of a medium whose lattice has conductivity a, and whose 
inclusions have conductivity a2 is related to the yth com- 
ponent 4 v ( a 2 , a l )  of the tensor u*(a2,u2) of a medium 

strictions imposed on the geometry of the inclusions. 
s end el son" did the same by a different method. 

We introduce the notation 

- - 
~ ~ u * ( o 2 , a 1 ; v 1  ,v2;hii), hii= 1 -gii, 1 gii= 1, 

i= 1 

where the gij are the components of the depolarization 
tensor g (Refs. 22 and 23) that determines the symmetry 
properties of tensor a, which can be shown to decrease as 
g increases:25 

For a two-dimensional medium Eqs. (4.1 ) and (4.2) 
yield 

a,Tv(a2,al) =a*(u~,a l ;v l ,~2;~22)  =T=Z*(g ) .  

In this notation Eq. (4.1 ) assumes the form 

a, (8) (g) = a,+.  (4.5) 

Solution a, specified in (3.13) obeys the following 

which means that us describes all possible real structures of 
inhomogeneous media. Hence, it must satisfy Keller's the- 
orem (4.5). We write (3.13), as we did (3.18c), as 

Allowing here for the definition (4.2), we obtain 

Substituting (4.7a) and (4.7b) into (4.5), we arrive at the 
equality 

- 
apC=ola2 ,  (4.8) 

which the parameters a, and 5, of "mutual" media (in the 
terminology of Ref. 14) must obey. 

Let us show that Keller's theorem in the form (4.5) is 
applicable to one-dimensional structures-layered media. 
Putting g= 1, we obtain from (4.7) and (4.2) a relation for 
the conductivity in the direction normal to the layers: 

with a lattice conductivity u2 and a; inclusion conductivity - 0 1  a2 
ol by the formula g = l ,  h = O j a  --=(p)-', &=[a ] .  (4.9a) *- [a1 

ffzx(ffl 9u2)$y(~2,a1) =01a2, O I < U ~ ,  (4.1 ) Similarly, putting g=O, we obtain from (4.7) and (4.2) a 

the intrinsic geometries of the media being the same. relation for the conductivity in the direction parallel to the 

~ ~ k h n e ~  discovered a symmetry transformation that con- layers: 
- 

nects these media. Using Dykhne's method,' ~ a l a ~ u r o v ' ~  - 
g=O, h = l j a , = ( o ) ,  o ,=ala2(a)- '= [PI-I .  

demonstrated that Eq. (4.1) is valid for less stringent re- (4.9b) 

496 JETP 77 (3), September 1993 A. G. Fokin 496 



Thus, "one-dimensional" random inhomogeneous media 
satisfy Keller's theorem. Comparing (4.9) with (3.9b), we 
conclude that the best boundaries for n =  1 agree with 
(4.5). The case of n =O (3.9a) is trivial. 

Let us now study the boundary points 02) (3.13), for 
which, according to (4.7), we write 

These yield the following equalities: 

which imply that the best boundaries for the case of n = 2 
obey (4.5). At g=f the values 02) describe the possible 
real three-dimensional structures calculated in Ref. 6. 

The boundary points 02) (3.19) allow for three- 
particle interactions. Hence, the model for which they are 
exact solutions must contain "three degrees of freedom," 
that is, must either be three-component or contain an ad- 
ditional parameter describing the orientation of nonspher- 
ical inclusions. In either case such a medium will not sat- 
isfy the restrictions of Keller's theorem, which is "linked" 
with two-component systems. 

5. SELF-CONSISTENT MEDIUM 

We consider below a particular case of a symmetric 
medium described by the effective conductivity tensor a, 
calculated via (3.13) with uc=u,. As can be shown,23 in 
this case u, is the solution of the equation 

For a mixture of two isotropic components we obtain from 
Eq. (5.1) [or, which is simpler, from (4.7a)l the equation 

whose solution 

for different values of i determines the principal values of 
usc . Solution (5.3 ) describes macroanisotropic self- 
consistent media and is the most general solution of this 
type obtained so far. The anisotropy in macroscopic con- 
ductivity is due either to the deviation (on the average) of 
the shape of inhomogeneity grains from spherical or to 
anisotropy in the spatial distribution of the For 
a macroisotropic medium (i=d- 1 ) the solution in the 
form (5.3) was obtained earlier by ~ r u ~ ~ e m a n . '  Later it 
was duplicated by various researchers (see, e.g., Refs. 16 
and 17). 

Solution (5.3) allows implicitly for many-particle in- 
teractions. Moreover, it is symmetric in its components, in 
view of which a medium described by us, belongs to the 

class of symmetric media. Following Ref. 13, we call a 
medium symmetric if its properties are invariant under the 
inversion: 

This invariance imposes fairly stringent restrictions on the 
statistical properties of the m e d i ~ m , ' ~ . ' ~  and, hence, ac- 
cording to (3.21 ), the range of values of parameter jSM 
narrows. 

Let us find the set of the values jSCM of parameter jSM 
that describe self-consistent media. Using the definition of 
us, and Eq. (3.9b), we can write 

which together with the reverse inequalities 

yields the following formula for j: 

In Fig. 1 the set of the values of jSCM that describe self- 
consistent media is depicted by the solid diagonal of the 
square. If we express the solution usc (5.3) in the form 
(5.5a), we find that the value of parameter j that must be 
substituted into (5.5a) to obtain (5.3) does not exceed v2. 
The explanation is that solution (5.3) allows for interac- 
tions of any multiplicity, while the boundary points speci- 
fied in (3.18) and (5.5) allow only for three-particle inter- 
actions. 

Among the self-consistent solutions there is a unique 
one, totally symmetric, that is invariant under the inter- 
change ul*u2 : 

Media of this type were considered by ~ r i s c h , ~ ~  ~ ~ k h n e , '  
  end el son, lo ~chul~asser ,  ' ' the present author,I3 
~ a l a ~ u r o v , ' ~  and ~hvidler." In Fig. 1 the point of inter- 
section of the diagonals corresponds to a totally symmetric 
medium. Combining (5.7) with (5.3), we find that 

For a macroisotropic medium ( i = d  - 1 ) this yields 

Expressing (5.9b) in the form (5.5a), we can write 

Here the substitution of R, for j is due to allowing for all 
many-particle interactions in the exact solution (5.3). In 
Eq. (3.18a), where the structural parameter j is used in 
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accordance with its definition (3.17), we have allowed only 
for three-particle interactions. The parameter R, (5.10) is 
interpreted in a broader sense than j. 

In terms of parameter R, (5. lo),  the boundary points 
(3.9) and (3.19) assume the following form: 

where for n>l  we have allowed for the following equa- 
tions: 

r- 

In the general case we can obtain in the same manner 
as we did in (5.11 ) a set of boundary points ~ 2 )  for suc- 
cessively narrowing regions of variation of parameter R, . 

6. CRITICAL BEHAVIOR OF THE CONDUCTIVITY OF 
SELF-CONSISTENT MEDIA NEAR THE PERCOLATION 
THRESHOLD 

In papers on percolation theory (see, e.g., Refs. 8, 12, 
14, 16, 17, and 26) systems whose conductivities are re- 
stricted by the inequality x( l  are of special interest. The 
behavior of conductivity 0, near the percolation threshold 
v2=vc resembles the behavior of the order parameter in a 
second-order phase transition.12 

Let us consider the asymptotic behavior of solution 
(5.3) for x(1: 

- - 
h - v2 

AE- g 
h H(v2-g) +- 

Iu2-SI ' 

U I U ~ ~ ?  1 if y)O, BE- 
( u2 -s) 

H(Y = kc=- 
lu2-g13 ' o if y <: 0, vlu2+gK ' 

(6.lb) 

We choose the statistical parameter g, whose size and sym- 
metry properties are determined by the nature of the spa- 
tial distribution of the regions occupied by the two com- 
ponents, to be the parameter that plays the important role 
in the description of the anomalous behavior of a,. The 
depolarization tensor g is equal to the singular component 
of the second derivative of the Green function (2.6) cal- 
culated for the effective grain.23 

The existence of a critical point u2=vC at which the 
structure of the medium is essentially altered suggests that 

the parameter gdetermined by this structure depends on v2 
and that this dependence changes significantly at point 
u2=vc.  

Let us introduce the notation 

where t and q are the critical exponents of percolation 
theory. l2 At d =  2 and t =q the functions g, (v) are related 
thus: 

Combining (6.1 ) and ( 6 . 2 ) ,  we arrive at the following 
expression for conductivity u,(x) in the neighborhood of 
the critical point v = v, : 

Another principal value of the effective conductivity tensor 
in the case of d=2  is obtained from (6.4) and (6.3) via the 
substitution 

This implies that when v> v,, the following clusters are 
formed: (1) a conductive ("metallic") cluster along the 
field, and (2) a nonconductive cluster (an "insulator") 
normal to the field. For the three-dimensional problem, the 
fact that 

complicates the relationship between g+ and g- . However, 
in this case, too, with each conductive cluster we can as- 
sociate a nonconductive one. 
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