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The applicability of the local-density approximation, on which practical applications of the 
density-functional method are based, to calculations of the exchange-correlation part 
of the free energy of a many-electron system is investigated. Locality breakdown mechanisms 
occurring when the scale of the inhomogeneity becomes equal to the Debye screening 
radius are determined in density and temperature ranges in which the electron gas is weakly 
inhomogeneous and is characterized by weak interaction. It is found that the local- 
density approximation is literally justified only in the high-density limit, is wrong even 
numerically and in the opposite limit of high temperatures. The situation in the range where 
the electron gas is strongly inhomgeneous is discussed briefly. 

1. INTRODUCTION 

The density-functional method, widely and success- 
fully employed in the theory of many-electron systems, is a 
"first principles" approach in the arsenal of modern com- 
putational physics.' It  is based on the expressions for the 
energy (at temperature TfO-the free energy) in the 
form of a functional F[n] of the particle number density 
n (x) ,  given near its equilibrium distribution which is de- 
scribed by the equation ( p  is the chemical potential) 

The complexity of the formalism of the theory of many 
interacting particles, which reflects the diversity of objects 
described by the theory, is manifested in the density- 
functional method by the fact that it is impossible to write 
down a closed expression for the exchange-correlation part 
I;,, of the density functional. Thus it would be unthink- 
able to apply such a method without radical simplifica- 
tions. The local-density approximation is usually employed 
for this purpose. This approximation consists of identifying 
at each point x the properties of an initial inhomogeneous 
system having a density n (x)  with those of a homogeneous 
system whose constant density n is equal to n(x). Accord- 
ingly, the local-density approximation corresponds to the 
substitution 

in the expression Fxc= Vf (n)  for a homogeneous system 
of volume V. 

It is obvious that a sufficient condition for this approx- 
imation to be applicable is that the density be continuous in 
space 

where L is the spatial scale of the inhomgeneity and 1 
includes all other system parameters having the dimension 
of length: the average distance d between particles, the de 
Broglie wavelength A (exchange-correlation radius), the 
Debye screening radius r~ (the force correlation radius ) , 

and so on. Since the accuracy of the local-density approx- 
imation is determined by the smallness of the ratio l /L ,  it 
would be natural to regard the inequality (1.3) as a nec- 
essary condition for this approximation to be applicable. 

The real situation, however, has been found to be 
much more complicated and confused. It has turned out 
that the local-density approximation is actually applicable 
in an unexpectedly wide range: calculations based on this 
approximation agree well with experiment even for a num- 
ber of strongly inhomogeneous "cold" systems. This is es- 
sentially why the density-functional method is so popular. 
In order to explain it, general arguments based on the 
satisfaction of special sum rules, on the presence of aver- 
aging over angles, etc., have been put forth.' 

The wide applicability of the local-density approxima- 
tion is all the more surprising because the conditions ( 1.3) 
are satisfied only for densities or temperatures which are so 
high that the electron-electron and electron-nucleus inter- 
actions are insignificant. Under these conditions the elec- 
tron gas is practically homogeneous and the substitution 
(1.2) becomes superiluous. In the rest of the (n,T) dia- 
gram, which is the region of real interest, the conditions 
(1.3) break down due to the existence of the relation 

which is crucial for our further analysis and indicates that 
according to the values of the parameters the local-density 
approximation should not be valid. The relation ( 1.4), to- 
gether with doubts about the applicability of this approxi- 
mation, was discussed by one of us many years ago.2 These 
doubts were later confirmed when the problem of the col- 
lective oscillations of an electron shell of an atom was 
~ o l v e d . ~  

To understand this situation we present below a mi- 
croscopic analysis of the expressions for Fxc in a wide 
range of values of n and T (Sec. 2). Of course, it would be 
of greater physical interest to analyze not Fx, itself but 
rather its derivatives. This more complicated problem falls 
outside the scope of this paper, however, and the solution 
is unlikely to yield qualitatively new results. The expres- 
sion for Fxc is amenable to such an analysis, since it can be 
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represented in explicit form (Sec. 4) in that part of the 
(n,T) diagram where, together with Eq. ( 1.4), the weak- 
coupling condition 

is also satisfied (Sec. 3). It is to this part of the diagram 
that the analysis presented below refers. 

Microscopic analysis can shed light on the problem of 
the applicability of the local-density approximation. In 
particular, it can answer a number of questions associated 
with the relation ( 1.4) : 

1) What are the mechanisms of the breakdown of lo- 
cality of the quantity Fxc which correspond to the ratio 
r d L  not being small (Sec. 5 ) ?  

2) How does the effectiveness of these mechanisms 
depend on n and T (Secs. 6 and 7)? 

3) Do there exist conditions when FXc no longer de- 
pends on the parameter r d L  and the applicability of the 
local-density approximation is guaranteed by the values of 
the parameters (Sec. 6)? 

4) Do there exist conditions when, conversely, the 
local-density approximation is obviously inapplicable (Sec. 
7)? 

5) Why are the mechanisms under discussion ineffec- 
tive in the strongly inhomogeneous systems for which the 
results agree with experiment? Although the restriction 
( 1.5) precludes direct discussion of the last question, a 
number of considerations concerning this question are pre- 
sented in the Conclusions. 

The following units and notation are employed below: 
Boltzmann's constant is set equal to unity, brackets indi- 
cate quantum-mechanical and statistical averaging, and the 
symbol d3p denotes the quantity dp/(2d13. The matrix 
and operator notation for two-point functions is often em- 
ployed to simplify the formulas: 

the trace of the matrix d (operator 2) being defined by 
the expressions 

where 

[ A ] ,  = exp ( - ipx/fi)A exp (ipx/fi). 

Similar formulas with p replaced by the wave vector 
k =  p/fi are also employed. 

2. GENERAL RELATIONS . 
The exchange-correlation free energy is, by definition, 

FXC=F-FO-F', (2.1) 

where Fo is the free energy of an inhomogeneous ideal gas 
and 

is the sum of the self-consistent interaction energy and the 
energy Ue in an external field. The expression for the total 
(self-consistent + external) Hartree potential 

SF' 
U(x) =-- 

a n ( ~ )  Ix-X' ( 
+ U,(x), 

which determines the quantity n,= -hu/4?re2, which is 
the total charge density divided by the electron charge e, 
and the expression for the exchange-correlation potential 
appearing together with u in the Kohn-Sham equation1 

follow directly from Eq. (2.1 ). The equation ( 1.1 ), which 
can be set in the form 

is used to switch to the functional argument n(x) by elim- 
inating the combination p- U arising in the microscopic 
calculations. The nonequilibrium value of this argument in 
a fixed field U, can be assumed to be an equilibrium value 
in an appropriately altered field; this makes it possible to 
use Eq. (1.1). 

We employ below less formal approaches instead of the 
standard Green's functions method. Generalizing the cor- 
responding low-temperature procedure,' it is convenient to 
employ the well-known formula4 

The e2-dependent part of the Hamiltonian H differs from 
Eq. (2.2) in that n is replaced by the operator 6 = $:$,, 
where (6) =n, and that the self-action 

is subtracted out, which reduces to eliminating an infinity 
of the type 1/0 (this regularization is designated below by 
the index R) .  Equations (2.1) and (2.2) yield the expres- 
sion 

where the correlation function 

clearly reflects the exchange-correlation character of the 
quantity (2.1 ). 

We note that the differentiation in Eq. (2.4) and the 
integration over e2 in the subsequent formulas are per- 
formed at constant volume and at constant total particle- 
number density N=Jdxn(x). In the homogeneous case 
this corresponds to a fixed density n. It is significant that in 
the indicated operations the e2-dependence of n(x) can be 
neglected even in the inhomogeneous case (see also Ref. 
1 ). This result follows from relation ( 1.1 ) and from the 
condition that N must be constant: 
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Returning to expression (2.5), we apply to it the 
fluctuation-dissipation theorem4 that expresses the correla- 
tion function in terms of the susceptibility R-the function 
characterizing the "charge to external charge" response 
Sn =9 (Sn,-Sn) (in matrix form; see the Introduction). 
The corresponding relation 

gives an expression for Fxc in terms of the susceptibility 

f i  2 de2 ih 
Fxc= -- Jo --p I,* d u  cth(2T)~m t r R 9  ( o ) .  

27r 
(2.6) 

The relation 

expresses the susceptibility in terms of the polarization op- 
erator II-the "charge to a potential U" response function 

and in terms of the effective interaction 

which describes the screening. Transforming to the time- 
dependent representation, and taking into account the de- 
lay of the response II ( t )  =O at t < 0 and the formula 

5- lom d o  sin(ox)cth(oy) =- cth 
2~ 

we find 

X eth [$ (I+ t' ) ] t rRn (t) Y ( t l ) ,  (2.10) 

3. CHOICE OF THE PHYSICAL CONDITIONS 

When the electron-electron interaction is weak (aver- 
age distance d between the interacting particles) the re- 
sponse functions in the formula for Fxc (Sec. 2) can be 
expressed in closed form. On the other hand, the appre- 
ciable inhomogeneity of the system is a consequence of the 
quite strong interaction of the electrons with the nuclei and 
with the average distribution of the other electrons (the 
average distance between the particles participating in such 
an interaction is z'13d, where Z)1 is the charge of a nu- 
cleus). It is known that the condition for the interparticle 
interaction to be weak is that the average interparticle dis- 
tance must be small compared with the Debye screening 
r a d i ~ s . ~  For this reason, the (n, T )  diagram region consid- 
ered below, where the microscopic analysis can be per- 
formed and the local-density approximation is nontrivial, 
is determined by the conditions 

corresponding to a wide range of density and temperature. 
We confine our attention below to two important limiting 
cases: A)  the degenerate case 

and B) the Boltzmann case 

where m is the electron mass. 
The electron de Broglie wavelength A is of the order of 

d in case A and must less than d in case B. Thus substi- 
tuting Eq. (1.4) (see Eq. (3.8) below) into the left-hand 
inequality in the relation (3.1 ) gives A( L, which indicates 
that the electron motion is quasiclassical. Introducing the 
quasiclassical distribution function3 

where the characteristic momentum is 

we obtain the well-known expressions for the density 
in the case A 

in the case B 

as well as for the Debye electron radius 
in the case A 

and in the case B 

Here ao=fi2/me2 is the Bohr radius and we have employed 
the general function 

The right-hand side inequality in Eq. (3.1 ) means that 
the Debye radius is small compared with the average dis- 
tance between the nuclei, so that the nuclei do not partic- 
ipate in the screening which is of a purely electronic char- 
acter (this screening is accomplished by the production of 
a shortage or excess of electron density with respect to the 
uniform distribution). This is what enables us to employ 
Eqs. (3.5). Since we are not interested in phonon effects, 
we can assume that the mass of the nuclei is quite large and 
we can regard the nuclei simply as fixed sources of an 
external field. ') 

The inhomogeneity scale L mentioned in the Introduc- 
tion is given by the formula 
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and by Poisson's equation 

where n, is the number density of the nuclei. In the purely 
homogeneous case, when the positive charge is uniformly 
"smeared" over space, the right-hand side of Eq. (3.7) is 
zero and L + a. In the case of fixed point nuclei, however, 
the external sources in Eq. (3.7) can be altogether 
dropped, since L, together with r ~ ,  is less than the dis- 
tance between the nuclei and the inhomogeneity is formed 
in the space between them. From Eq. (3.6) we indeed 
arrive at the relation ( 1.4) 

which reflects the fact that the screening and the formation 
of the inhomogeneity are both Coulomb effects. We note 
that the result (3.8) is not related to the weak-coupling 
approximation and remains in force when the left-hand 
inequality in Eq. (3.1 ) breaks down. 

Thus we consider below a classical system of electrons 
with weak coupling in a field of fixed external sources (nu- 
clei) under conditions corresponding to the following band 
in the (n,T) diagram [see Eqs. (3.1) and (3.5)]: 

case A 

case B 

e2n1/3 & T <, ~ 2 / 3 ~ 2 ~  1/3 

4. POLARIZATION OPERATOR 

In the weak-coupling approximation the exchange- 
correlation terms are small and the polarization operator 
(see Sec. 2) can be calculated in the Hartree approxima- 
tion. The corresponding equation for the statistical opera- 
tor jj has the form4 

In the unperturbed state (corresp~ding to the subscript 
0)  jjo is a function of the variable Ho-p and the distribu- 
tion function is fo(x,p) = [fiOlp (see Eqs. ( 1.6) and (3.3) ). 

Introducing into the Hamiltonian the small perturba- 
tion SU(x,t), we find from Eq. (4.1) the corresponding 
perturbation of the statistical operator 

where 

% ( t) = exp (iHot/fi) x exp ( - iHot/fi) 

is the Heisenberg operator representation of the coordi- 
nate. This expression, together with what was said above 
about the operator jjo, gives 

The expression (4.2), together with the last identity, 
makes it possible to find the density perturbation. 

The definition (2.8) of the polarization operator leads to 
the expression 

d3p[6(f ( -t) -x') 
iti 

where the momentum operator appearing in % must be 
replaced by p-ifi#V (the gradient operates on the distri- 
bution function). 

In the quasiclassical limit (ti-0) the coordinate oper- 
ator passes into the classical law of motion x(t) of an 
electron in a field U, where 

The acceleration term in this Newton's integral equation 
starts to have an effect at times 

Passage in Eq. (4.3) to the limit fi-0 gives 

We also give an expression for the quantity II(x,xl,w) at 
w =0: 

The expression (4.6), which depends explicitly on the clas- 
sical trajectory of the electron, has also been used in the 
case T = o . ~  

We note that in order for the quasiclassical approxi- 
mation to be valid, the de Broglie wavelength must be 
small compared with not only the length L (Sec. 3) but 
also the quantity I x- x' I .  The last condition does not hold 
for short times 

when this quantity, equal to, according to Eqs. (4.4) and 
(4.6), the path pot/m traversed by a particle over the time 
t, is too small. When the condition (4.8) is satisfied %(t)  in 
Eq. (4.3) must be interpreted as a quantum operator even 
in the limit fi-0. 

Fortunately, this operator has, in this case, the form of 
the free-motion operator 

Indeed, thanks to the conditions (4.8) and A-fi/pog L the 
time t is shorter than the time (4.5), when acceleration 
starts to have an effect. With allowance for the known 
Hausdorf formula2 

the relation (4.3) gives the expression 

481 JETP 77 (3), September 1993 D. A. Kirzhnits and 0. V. lvanov 481 



which differs from the standard formula of the homoge- 
neous case only by the coordinate dependence of the dis- 
tribution function and which, for this reason, is local and 
can be found in accordance with the local-density approx- 
imation. 

We note that the formulas presented for II express this 
quantity in terms ofp; [see Eq. (3.3)]. The relation (2.3), 
which assumes the form 

is used to switch here and below to the argument n. In the 
case of weak coupling this relation takes the form (3.4). 

5. SOURCES OF NONLOCALITY 

The expressions presented in Sec. 2 for Fxc depend, in 
the general case, on n in a nonlocal manner. Our micro- 
scopic approach makes it possible to determine the sources 
of nonlocality and assess their effectiveness. There are two 
types of nonlocality: "weak" nonlocality, corresponding to 
the parameter A/L 5 d/L which is small in the region 
(3.9) studied in this paper (but is appreciable in the 
strongly inhomogeneous case) and "strong" nonlocality, 
corresponding to the parameter r d L  which is comparable 
with unity even in the region (3.9) (see Sec. 3). 

The source of weak nonlocality is the nonzero value of 
the de Broglie wavelength, which results in quantum gra- 
dient corrections to the quasiclassical expressions for any 
characteristic of the system.2 In particular, corrections to 
Fo [see Eq. (2.1)], for which the local-density approxima- 
tion leads to the Thomas-Fermi model,3 have been studied 
in detail. This quantity contains the characteristic lengths 
d, A, and L and the applicability of the local-density ap- 
proximation to it is limited only by weak nonlocality. 

The situation is different for the quantity Fxc of inter- 
est to us. Here an additional parameter comes into play- 
the Debye radius r ~ ,  which engenders strong nonlocality. 
Two mechanisms lead to such nonlocality: (a )  the polar- 
ization operator II and (b) the effective interaction V [see 
Eqs. (2.6) and (2.7)]. The first mechanism corresponds to 
dependence of n on the law of motion x(t),  which, owing 
to the presence of an acceleration term in Eq. (4.4), de- 
pends in a nonlocal fashion on and on the density [gra- 
dients of all possible orders of such quantities arise in iter- 
ations of Eq. (4.4)]. According to the condition (4.5) the 
mechanism (a)  is ineffective when2) 

where wi=4.rre2n/m is the squared plasma frequency. This 
mechanism is inoperative for free motion [in particular, 
when the condition (4.8) is satisfied]. It is also inoperative 
in the special case w=O, owing to the factor O(t)a/dt in 
the expression for II, which singles out the value t=O [see 
Eqs. (4.6) and (4.7)]. 

The second mechanism operates also when the polar- 
ization operator itself is local but varies in space (nonuni- 
form screening). In this case V is nonlocal owing to the 
action of the operator (matrix) A-' in Eq. (2.9) on n. 
This can be seen, for example, from the expansion of V in 
terms of II: 

At high frequencies (short times t) this expansion reduces 
to its first local term-the electron does not have enough 
time to respond to a fast action. It  can be shown that the 
second mechanism is not effective under a condition, coin- 
ciding with (5.1 ) 

t < q l .  (5.3) 

At the same time, for w=O, when all values of t are im- 
portant and when the equation for V is especially simple 
[see Eqs. (2.9) and (4.7)] 

the second mechanism, in contrast to first one, operates in 
full force. 

Thus the general condition for the absence of strong- 
nonlocality effects is that the characteristic times in Eq. 
(2.10) satisfy the inequality 

We note, writing the trace in Eq. (2.10) in the form 
P 

that there is another trivial source of nonlocality of this 
expression-the fact that the first two arguments of II and 
V, which determine the point in space to which p i  and the 
density refer, are different [see Sec. 4 and Eq. (5.4)]. The 
condition (5.5) guarantees that this source is also ineffec- 
tive in view of the relation I x-x' I -pot/m (see Sec. 4) .  

Thus the solution of the question of strong nonlocality 
entails an estimate of the times t and t', and it is this 
estimate that we obtain below for different values of n 
and T. 

6. DEGENERATE CASE 

We start our detailed analysis of the expression for 
Fxc with the low-temperature case (3.2a), when 
fo(x,p) =O(P~-p2) [see (3.311 and 

[see Eq. (4.6)]. Here the substitution p-+p,(x)n in Eq. 
(4.4) is implied, and the overbar indicates averaging over 
the directions of the unit vector n. The expression (2.10) 
assumes the form 
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Substitution here of the zeroth term of the expansion This term corresponds to t=O, and according to Eq. (5.5) 
(5.2) gives the following expression for the purely ex- it does not have strong nonlocality. Direct calculation of 
change free energy this term indeed gives the well-known Gell-Mann- 

fie2 
Brueckner formula2 for the homogeneous case with the 

F ~ =  -- Jom f J dxdXf 
n(x,xl,t) 

(6.3 ) substitution ( 1.2) in accordance with the local-density ap- 
257 Ix-x'I ' proximation: 

Here strong nonlocality does not arise-for the mechanism 
b due to the trivial form of V and for the mechanism a for 
the following reason. Substituting Eq. (6.1 ) into Eq. (6.3 ) 
and using Eq. (4.4) leads to strong divergence of the inte- 
gral at t=O. This divergence reflects the fact that the qua- 
siclassical description cannot be used to describe exchange 
effects, which are inherently of a quantum nature. This 
means that the short times 

fim 
t-74w0-1 

Po 

[see Eq. (4.8), satisfying the criterion (5.1 )], play the main 
role in Eq. (6.3). Using instead of Eq. (6.1) the quantum 
expression (4.9) and switching to the argument n with the 
help of Eq. (3.4a) we obtain the well-known formula for 
the uniform case with the substitution ( 1.2) ,4 correspond- 
ing to the local density approximation: 

The correlation effects correspond to the remaining 
terms in the expansion (5.2), which leads to a series in 
powers of the small [in the region (3.9)] interelectron in- 
teraction constant. However, thanks to the infrared diver- 
gences, the contributions of the terms of this series become 
comparable at long times t-w,'. For this reason, it is 
sufficient to take into account, with logarithmic accuracy, 
only the second term in the expansion (5.2), introducing a 
"cutoff' of the integral over tin Eq. (6.2) at the value a;'. 
The divergence arising in so doing at short times t means, 
as above, that quasiclassical approximation is not applica- 
ble and requires an additional lower cutoff at t - - ~ m / ~ $ .  
This gives 

where 

A(x,x',~) =po(x)/(x(-t) -XI(. 

The substitutions t' -+ ts and x' = x - ty reduce the expres- 
sion (6.5) to an integral of the type Jdt f (t)/t, which must 
be cut off in the manner indicated above. 

The term that is logarithmically large in the parameter 

is separated from this integral with the help of the formula 

1-1112 e2 
dxn ln (aon 'I3 - . 

a0 

However, the nonlogarithmic terms [second term in Eq. 
(6.6) and the contribution of the higher order terms in the 
series (5.2)] are determined by long times t-o;', which 
destroys both criteria (5.5) and makes the local-density 
approximation inapplicable, at least literally. We present 
without derivation an expression for the gradient correc- 
tion to the logarithmic term (6.7) 

which is characterized by a very small numerical coeffi- 
cient. 

We note in concluding this section that if the inequal- 
ity L < r~  were realized, the following change would ap- 
pear in Eq. (6.7) 

This is the situation in the special case of a homogeneous 
system with randomly distributed impurities, where the 
electron mean free path plays the role of L ( L  <r , ,  
~ n " '  > 1 ). For t < Lm/po electrons move freely, and over 
longer times they diffuse with a diffusion coefficient 
Lpdm. Using the well-known expression for the probabil- 
ity of displacement of a diffusing particle, and averaging 
the exprression (6.5) over the corresponding distribution, 
it is easy arrive at the substitution (6.9). 

7. BOLTZMANN CASE 

In the high-temperature case [see Eq. (3.2b)I there are 
no exchange effects (the first term of Eq. (5.2) does not 
contribute after regularization; see below) and the corre- 
lation free energy (2.10) assumes the simple form 

In accordance with what was said in Sec. 5 the mechanism 
a in this case is ineffective [t=O in Eq. (5.5)] and the 
mechanism b operates in full force (t' runs through all 
values). With allowance for Eq. (3.5b), the equation (5.4) 
takes the Debye-Hiickel form4 but with variable coeffi- 
cients: 

The formula (7.1 ) has then the form 
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Here the regularization (Sec. 2) means substitution of 

V(x,xl) -e2/I x-x' I 
for V(x,x) in the limit x' -x. This corresponds directly to 
elimination of the self-action, as done in the elementary 
Debye-Hiickel theory.4 

The other, operator formulation based on the relations 
(2.9), (4.7), and (7.1 ) leads to the expression 

or, with allowance for Eq. ( 1.6), 

(7.4') 
where r i 2 = 4 a e 2 n / ~ .  If the function n(x) were to vary 
sufficiently smoothly in space, the noncommutation of the 
operators in the first logarithm in Eq. (7.4') could be ne- 
glected and we would arrive at the well-known Debye- 
Hiickel formula for a homogeneous system with the sub- 
stitution ( 1.2): 

In reality, however, the variation of n ( x )  is determined 
by Poisson's equation (3.7), which assumes, substituting 
Eq. (3.4b), the form 

It is evident directly from Eq. (7.6) that in accordance 
with Eq. ( 1.4) the scale L of the inhomogeneity is identical 
to the Debye radius. For this reason, the gradient correc- 
tions to Eq. (7.5), which are associated with the noncom- 
mutation of the operators appearing in Eq. (7.4'), are not 
literally small compared with the zeroth term, which is in 
fact how the mechanism b is manifested. Calculation of 
these corrections by the standard method2 (see also Ref. 5) 
shows that it corresponds to introducing into the integrand 
in Eq. (7.5) the additional factor 

where a correction only of second order in the gradients is 
given. A complicated expression for fourth-order correc- 
tions is presented in a paper by ~irzhnits '  and the follow- 
ing inequality is also derived from Eq. (7.6): 

It can be shown that the left-hand side of Eq. (7.7) nec- 
essarily falls between 0 and 1.' 

Numerical calculations of the ratio FC/Fc from the 
relation (7.4) are now being conducted with the help of the 
special method of Ref. 5 for determining the logarithm of 
the determinant of an operator, having the form of a non- 
relativistic Hamiltonian, by reducing the problem to a scat- 
tering problem. Here the problem reduces to determining 

the values of the wave function (solution of the corre- 
sponding Schrodinger equation) for zero energy at the or- 
igin of coordinates. Omitting the details, we give the pre- 
liminary  result^:^) 

It  follows from everything said above that the local- 
density approximation is quantitatively inapplicable for 
calculating the correlation free energy of a weakly inhomo- 
geneous Boltzmann gas. 

8. CONCLUSIONS 

The above analysis refers to the region of the (n,T) 
diagram that is most favorable for application of the local- 
density approximation as a nontrivial approximation. Even 
in this region there arises a factor (the Debye radius coin- 
cides with the inhomogeneity scale) that engenders a series 
of specific mechanisms of nonlocality which prevent appli- 
cation of the local-density approximation (first question in 
the Introduction). Their effectiveness depends on the den- 
sity and temperature, and increases with increasing tem- 
perature (question 2). It is only at T=O and high density 
that these mechanisms are inoperative and the applicability 
of the local-density approximation is guaranteed by the 
values of the parameters (question 3). In the opposite 
limit-the case of high temperatures-this approximation 
is clearly inapplicable (question 4) .  

Thus the applicability of the approximation considered 
here not only is not universal but, in addition, it is more of 
an exception. The arguments given in the Introduction in 
support of this approximation, which by virtue of their 
generality should also hold in the Boltzmann case, are 
guaranteed by the answer to question 4. More precisely, 
these arguments are simply qualitative considerations sup- 
porting the local-density approximation, which themselves 
do not solve the problem but must be checked quantita- 
tively in each specific case. Such a confirmation exists, in 
particular, for the purely exchange energy of a degenerate 
system (see Ref. 1). This quantity is, however, of little 
interest, since the mechanisms leading to breakdown of 
locality do not operate for it (see Sec. 6). 

As for the ability to explain the local-density approxi- 
mation, as applied to a number of strongly inhomogeneous 
"cold" systems (question 5 of the Introduction) by the 
arguments advanced above, the contents of this paper are 
not directly applicable to such systems. Nonetheless the 
results of the present paper also make it possible to say 
something about this ability. 

First, we underscore that the local-density approxima- 
tion is successful not because the parameters are small but 
because the corresponding numerical coefficients are 
anomalously small: In the region of strong degeneracy at 
T=O the parameters d/L and /Z/L also become of the 
order of unity together with r d L .  The possibility of the 
appearance of such an anomalous smallness is illustrated at 
least by the relations (6.7) and (6.8). Another instructive 
example is the problem, already mentioned above many 
times, of collective atom oscillations whose damping was 
found to be anomalously smaller (by 3 4  orders of mag- 
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nitude) than their energy.336 In this example, just as in the 
problem studied in the present paper, owing to the small- 
ness of the numerical coefficients the answer (zero damp- 
ing) obtained within the dynamical theory using the local- 
density approximation approaches the exact answer. It is 
not excluded that this coefficient also arises in the nonlog- 
arithmic term of the correlation energy of a weakly inho- 
mogeneous "cold" system (see Sec. 6 ) ,  and this favors the 
local-density approximation. 

Is this smallness a purely empirical fact or is there a 
profound theoretical basis for it? This question can hardly 
be answered at the present time. In any case, such laws 
cannot be simple and general: This is already indicated by 
the complicated and nontrivial situation in the above- 
studied region of applicability of the weak-coupling ap- 
proximation. For this reason, the success of the local- 
density approximation in application to strongly 
inhomogeneous systems, so important for practical appli- 
cations of the density functional method, must for the time 
being be considered as a "gift of fate," whose range of 
applicability is unclear and obviously limited. 

We thank L. V. Keldysh and participants of his sem- 
inar, especially V. L. Ginzburg and E. G. Maksimov, for 
helpful discussions. 

"we note that, by virtue of the same inequality, the electron-nucleus 
correlations are not equal to the nucleus-nucleus correlations. This is 

manifested, in particular, by the existence of intact atomic shells in the 
region under study. This fact makes it impossible to circumvent the 
problem of the local density approximation in the case B by considering 
a two-component plasma (electrons+nuclei) that has a uniform Gibbs 
average. Such difficulties do not arise when the problem is formulated in 
the manner adopted above (the "hot" atom model3). 

"1t is because the condition (5.1) breaks down that the local density 
approximation is inapplicable in the problem of colletive oscillations of 
an atom (see above) with frequencies of the order of w, and character- 
istic times of the order of m i ' .  

 he nonconstancy of (7.7) arises as follows. At first glance this relation 
should be equal to a constant, because the only system parameter ap- 
pearing in Eqs. (7.4) and (7.6) is r, .  However, the boundary condi- 
tions to Eq. (7.6) also lead to the appearance of other parameters: At 
short distances from a nucleus there is a "cold" core (the condition 
(3.2b) is violated) and at large distances there is the boundary of a 
neutral cell, where dn/dr=O (an isolated "hot" atom does not exist, 
because the coulomb center cannot prevent the gas from expanding). 
The is why the temperature, pressure, and nuclear-charge dependences 
arise in Eq. (7.8). 
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