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We have investigated the thermodynamic properties of a two-band system with low carrier 
density near the superconducting-transition temperature T,, with account taken of all 
possible carrier pairings. A bell-shape dependence of T, on the electron density, and have 
demonstrated a possible onset of HTSC. The absolute and relative jumps of the 
electron heat capacity (Cs-CN) and (Cs-CN)/CN at the point T =  T, have been calculated 
and the density dependence of these quantities calculated. The theory yields both small 
values (CS- CN)/CN < 1.43 and large ones (Cs- CN)/CN > 1.43. Favorable conditions have 
been manifested for an experimental observation of a bend on the chemical-potential 
plot p' T' at the point T = T, . 

1. INTRODUCTION 

Many theoretical papers have by now been published 
on various aspects of the two-band model.lv2 The great 
interest in this model and in its generalizations is due, 
firstly, to band  calculation^^*^ showing that in metal-oxide 
ceramics the energy bands on the Fermi surface overlap (a  
similar situation obtains, apparently, also in systems with 
heavy fermions5), and secondly to the possibility of using 
the aforementioned model to describe the properties of sys- 
tems with two groups of electrons (e.g., layered 
compounds). Of particular interest, however, is that the 
use of this model to describe the properties of high- 
temperature ceramics can explain many superconducting- 
characteristics anomalies observed in experiment. In par- 
ticular, by using the two-band model and assuming 
moderate values of the coupling constants one can obtain 
high T,, two energy gaps 2Al/T,> 3.5 and 2A2/Tc< 3.5, 
large values of negative d In TJd In V ( V is the volume), 
a positive curvature of the upper critical field near the 
transition temperature, and others."" Furthermore, in the 
two-band model it is possible to describe the decrease of T, 
with increase of the oxygen disorder, as well as when cop- 
per atoms are replaced by a nonmagnetic dopant (Al, Zn, 
etc). 1 2 9 1 3  

An important role in the determination of the thermo- 
dynamic and magnetic properties of a two-band supercon- 
ductor is played also by the location of the Fermi level, 
which is changed by doping or by introduction of oxygen. 
It is particularly important to take this change into ac- 
count in an analysis of a many-band system with assump- 
tion of a non-phonon superconductivity mechanism. Par- 
ticular interest attaches to the possibility of obtaining a 
bell-shaped dependence of T, and of the heat-capacity dis- 
continuity (CS-CN) at the point T =  T, on the carrier 
density.14 It is possible then to obtain high T, even if all the 
intraband (A-11,A22) and interband (Al2) interactions cor- 
respond to repulsion between carriers, but the relation 
A1 -A:~  < 0 is satisfied. In the three-band model with a 
nonphonon superconductivity mechanism it is possible to 
obtain the "step" which is observed for Y1Ba2C~307-6 in 

the dependence of T, on the carrier density.'5316 An inves- 
tigation by one of us, of the properties of high-temperature 
ceramics, based on allowance for energy-band overlap of 
the energy bands and for electronic topological transitions, 
was reviewed in Ref. 17. One can find there references to 
experimental research results that can be described by al- 
lowance for the singularities in the electron energy spec- 
trum of complex systems. 

An increase of the number of energy bands on the 
Fermi surface increases the overall electron-state density 
and leads to the onset of an additional interband electron- 
electron interaction that contributes to the onset of super- 
conductivity. This interaction violates the universal BCS 
relations and leads to a substantial dependence of a number 
of physical characteristics on the properties of an aniso- 
tropic  stern.'^-^^ An interesting feature of the two-band 
model is independence of the superconducting-transition 
temperature of the sign of the interband-interaction con- 
stant. This model can therefore be used for the usual 
electron-phonon mechanism of superconductivity as well 
as for a mechanism based on the repulsion between carri- 
ers. In all the references cited above, the two-band model 
can be used to describe the properties of superconductors 
for which the relation p $  T, is satisfied ( p  is the chemical 
potential). This relation is satisfied in a number of cases 
also in high-temperature compound. The existence of this 
relation between ,u and T, makes it possid~e to use in the 
calculations an approximation diagonal in the band 

which leads to neglect of off-diagonal parame- 
ters such as AI2 and A21. 

In systems with low carrier density, however, the re- 
lation p % Tc does not hold. It becomes therefore necessary 
to develop a superconductivity theory for two-band sys- 
tems, without constraints on the Fermi energy. This is the 
task of the present paper. We consider simultaneously two 
possible superconductivity mechanisms-phonon and elec- 
tron. A characteristic feature of systems with low carrier 
density is a substantial dependence of the chemical poten- 
tial p on the order parameter in the superconducting 
phase. This circumstances has been noted in many papers, 
and the feasibility of experimentally observing anomalies in 
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the temperature dependence of the chemical potential was 
first suggested in Ref. 23. It was shown there, with the BCS 
model as the example, the p (  T )  curve has an experimen- 
tally observable bend at the point T =  T,. We shall show 
below that in the two-band case this effect is enhanced by 
the presence of four order parameters (A,,; n, m= 1,2) 
and is manifested at p values easier to observe in experi- 
ment. 

The plan of our paper is the following: 
In Sec. 2 we present a system Hamiltonian that takes 

into account all possible intraband and interband interac- 
tions, and obtain a self-consistent system of equations for 
the order parameters A,, and the chemical potential p. 

In Sec. 3 we investigate the anomalous behavior of the 
chemical potential p (  T )  . 

In Sec. 4 we investigate the system properties near the 
superconducting-transition temperature ( T - T,) and de- 
termine the dependence of T, on the carrier density for 
different ratios N2/N1 of the electron state densities of the 
two bands. 

In Sec. 5 we calculate the discontinuity of the electron 
heat capacity (Cs- CN) at the point T =  T, and investigate 
its dependence on the carrier density. We investigate also 
the density dependence of the relative heat-capacity dis- 
continuity (Cs- CN)/CN. 

The research results are summarized in the last sec- 
tion. 

2. SYSTEM HAMILTONIAN AND BASIC EQUATIONS 

The considered two-band system is described by the 
Hamiltonian 

1 
H= 2 [ ~ , ( k )  2 ci;;(k-k1; 

nko m l  ... m4 
kk' 

where a&, and anko are creation and annihilation operators 
for a band-n electron with spin u and quasiwave vector k, 
p is the chemical potential, and cim: are the intra- and 

interband interaction constants. Expression ( 1 ) is a gener- 
alization of the BCS-Bogolyubov model Hamiltonian to 
include the two-band case. Account is taken here of all 
possible methods of electron pairing within each band and 
of electron pairing from different bands. If ml =m2 and 
m3=m4, the Hamiltonian ( 1) is equal to that of the 
Moskalenko model,' which considers only intraband pair- 
ing and transitions of a Cooper pair as a whole from one 
band to another are considered; this model is widely used 
to describe the properties of high-temperature 
s ~ ~ e r c o n d u c t o r s . ~ ~ ~  Examination of the more general 
Hamiltonian ( 1 ) uncovers additional possible onsets of su- 
perconductivity (on account of single-particle hybridiza- 
tion and of all interband-interaction constants) and makes 
possible a description of the properties of a system with a 
low density of states ( p  - T,). 

Consider the one-particle temperature Green's func- 
tions (normal and anomalous) 

and also the matrix Green's functions 6 and $made up of 
the Green's functions (2) 

Applying the Green's-function method24 to the Hamil- 
tonian ( 1 ) we obtain in the nkw representation a matrix 
equation for the Green's-function components 

The superscript "t" labels here the transpose of a matrix 

pn=p+Aa,  A,= C (2Vk;- V;:)(a:ktamkT), 
km 

A, is a quantity that renormalizes the chemical potential in 
the self-consistent-field approximation. Simple matrix 
transformations based on (4) and (5) yield for the Green's 
functions G,,(w ) and F,,(w) 

where 
- 

~;=E;+A;,, E,=E,-p,, 
(11) 

~(12)=All/~223 ~(13)=All/A12, ~(14)=All /~21,  

D(z)= (2-6:) (2-6;) +2A12~21(~1~2-2) 

+ ( ~ l 1 ~ 2 2 - ~ 1 2 ~ 2 1 ) ~ - ~ ; 2 ~ 2 1 .  (12) 

The Green's functions GZ2, G21, F22, and F,, are easily 
obtained from Eqs. (7)-(12) by interchanging the sub- 
scripts 1 and 2. We obtain then for the order parameters 
A, the set of equations 
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+ vLP21 (iw) I .  (13) 

In the case A12, A21gAll, A22 (this condition is satisfied in 
ordinary superconductors in p ) T,) expression 
( 13) goes over into the known result of the model of Ref. 
1. Substituting expressions (9) and (10) in (13) and sum- 
ming over w, we reduce the set of equations for the order 
parameters A, to the form 

1 I ( d - ~ + 2 * 1 2 ~ 2 1 i l + l / ~ , 1 2 , )  
A =- z VnpA,l "* 4v klr d 

where 

The system (14) determines the order parameters All and 
A22 of an ordinary superconductor (and can be simplified 
in this case by putting A12=A21 =0), as well as of a super- 
conductor with low carrier density p - T,. 

3. ANOMALOUS BEHAVIOR OF CHEMICAL POTENTIAL 

We supplement the system (14) with the expression 

Substituting in (17) the definition (7) of the Green's func- 
tions and summing over w, we obtain 

(18) 
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The self consistent set of Eqs. (14) and (18) determines 
the order parameters A,, and the chemical potential p for 
a specified temperature T and a carrier density No. A char- 
acteristic feature of the ground state in a system with low 
carrier density is a substantial change of the position of the 
Fermi level following the onset of the superconducting gap. 
The order parameters A, become of the same order as the 
chemical potential p ( p  - A,). This leads to an anomalous 
behavior of the chemical potential as a function of temper- 
ature. In particular, in the single-band BCS and in 
the Hubbard the chemical potential has in rarefied 
systems a kink at the point T =  T,. As first noted by Van 
der ~ a r e 1 , ~ ~  this kink is observable in experiment and con- 
sequently its observation can help explain the supercon- 
ductivity mechanism. Van der ~ a r e 1 ~ ~  has demonstrated 
the possibility of a kink at p(2 meV, which is the lower 
limit of present-day accuracy.26 Since the overlap of the 
energy bands plays a major role in the explanation of the 
properties of high-temperature superconductors, it is of in- 
terest to investigate the anomalous behavior of the chemi- 
cal potential in a two-band model with low carrier density, 
and the possible onset of a kink at values of p more con- 
ducive to experimental observation. We represent the order 
parameter A,, near the superconducting transition tem- 
perature T - T, in the form 

The expression for the chemical potential p near T, is now 

where po( T )  is the chemical potential of the normal phase, 
and Ro is determined from the constancy of the carrier 
density in the superconducting and normal phases. Substi- 
tuting (19) in (20) we readily obtain a jumplike change of 
dp/dT. Contributions to this change are made by all the 
order parameters A,,, so that the results can differ from 
those for the case of one band.23 

4. SELF-CONSISTENT SYSTEM OF EQUATIONS FOR T= T, 

To investigate the properties of a two-band system near 
the superconducting-transition temperature we expand in 
Eqs. ( 14) and ( 18) in terms of the small parameters A,, 
and A,, with account taken of expansions ( 19) and (20). 

We introduce the dispersion law of the nth band 

and change in these equations from summation over k to 
integration over the energy in accordance with the disper- 
sion law (21) (E,O=~,-pon, pOn=pO-A,): 

where N, = rn,k;,/2(2~)~ is the density of the electron 
states in the nth band. 

The integration limits are chosen to be able to consider 
simultaneously two possible superconductivity mecha- 
nisms: the values of D, = 70, - 6, < W D ~  and DC,, = 

* ~ n  
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(aDn is the phonon cutoff frequency in the nth band) cor- 
P ( x )  = loX y-Sh 

respond to the phonon mechanism of superconductivity, Y 
dy, 

4y3 ch2 - 
and the quantities D, = v0, - cn and D,, = gc, - 70, (Ccn is 2 
a cutoff energy of the order of that of the electron; 
qn= -pan corresponds to the hole mechanism. 

x y-shy dy 
Integrating next over the energy and equating the co- , 

efficients of equal powers in the difference (P-PC), we Y r1 
4y2 ch2 - y-- 

obtain for c,, and c:: the set of equations 2 l+bb  

Here 

The quantities F, ,  Tip, and r are analogously differences 
4 +- 

of type (25), where 

x-shx 
Hlp(x) = x ri + Jox "rl 

4x2 ch2 - X-- 
2 l+bb  

Y-- 
1 +blp 

1 -bnr 
- rzn (1+bn,l2 Equation (18) for the carrier density is transformed into 
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where is defined in (26), while ,yg and xl  are differences 
of the type (25), where 

We introduce quasiband indices in accord with the rule 

and also the symbols: 

Equations (23) and (24) take formally in the "pseudo- 
band" representation (30) and (3 1 ) the form of the "four- 
band" model: ' s 

4 

c ( ~ ) =  - 2 N(m)U(n)(m)c(m), (32) 
(m)=l 

4 4 

c ( l ~  (n) -  - - C N(m~~(n)(m)c(m)- (1) C Q,(m)U(n)(m), 

( m )  = 1 (m)  = 1 (33) 

where 

We omit hereafter the parentheses of the pseudoband sub- 
scripts. Changeovers to the true band indices will be spe- 
cially stipulated. It is convenient to rewrite Eqs. (32) and 
(33) in the matrix form 

where c, d l ) ,  and Q, are single-column matrices in the 
indices 1 to 4, and 

From the condition that the system (32a) have a solution, 
we obtain an equation for the critical temperature T,: 

I l  Doll =09 (35) 

where ( I . . . ( (  designates the determinant of a matrix. It fol- 
lows from the system (33a) that 

cI1) = I I D I I I / I I  DO)). (36) 

Since 1 1  Doll =0, we get 

11D111=0~ (37) 

where Dl is a 4 x 4 matrix that differs from Do in that the 
first column is replaced by the elements of the matrix Q. 

The condition (37) leads to the relation 

where 8, and Fn are defined in (25)-(27). 

A. is the cofactor of the first diagonal element of the matrix 
Do, and L, are matrices that differ from the matrix A. in 
that the (n- 1)st column is replaced by the column 
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and 

where X, is the cofactor of the "nn" diagonal element of 
the matrix Dl .  

We have on the basis of (37a) 

Assuming the particle number No to be fixed and using 
the expansion (19) for the chemical potential near T, we 
obtain 

where 

and po is determined from the equation 

Expressions (39) and (40) obtained for c: and Ro as well 
as (20a) and (28a) for the chemical potential p and for p0 
complete, in a self-consistent manner, the set of equations 
(32)-(34) for the order parameters A, near T,. It is 
therefore possible to calculate the dependence of the super- 
conducting temperature T, on the carrier density No for all 
values of the interaction constants A,,= N,U,, (n,m = 1 
-4), and also the temperature dependence of the chemical 
potential p ( T ) .  

Figure 1 shows the dependence of the superconducting 
temperature T, on the carrier density No/2N1 for different 
degrees of hybridization: a )  weak: A l l  =A22=0.2, 
A12=A21=A33=A44=0.01, A34=A43=0.105, the remaining 
ones: iln,=0.001 (n, m=1-4); b) strong All=A2,=0.2, 
A12=A21=A33=A,=0.1, A34=A43=0.15, the remaining 
ones A,,=0.01 (n, m= 1-4). 

Calculations are performed for the following values of 
the parameter 

It follows from Fig. 1 that one can obtain a bell-shaped 
dependence of T, on No (curves 1-3). Inclusion of strong 
hybridization lowers T,. The character of the dependence 
of the transition temperature T, on the carrier density No 
is strongly influenced by the relation between the 
electronic-state densities of the different bands. Lowering 
the ratio N2/N1 slows down the growth of T, with increase 
of No (for case b) and accelerates the decrease for both 
cases (a, b). 

FIG. 1. Dependence of T ,  on the carrier density N,JZN, in the case of 
weak (1-3) and strong (curves 4, 5) hybridization for N2/N,= 1 (curves 
I and 4); 0.75 (2); 0.5 (3, 5) .  

In the case of weak hybridization (curves 1-3) the T 
(No) plot acquires two maxima. The degree to which then 
become pronounced, given the parameters A,,, is deter- 
mined by the electron state-density ratio N2/N1. The pres- 
ence of weakly pronounced maxima (curve 1 )  corresponds 
to the case N1 and N2, and more strongly pronounced 
maxima (curves 2 and 3)  appear at N1/N2 and are deter- 
mined by the anisotropy of the system (by the difference 
between the bands). Each of these maxima is connected 
with the occupation of the corresponding band. In the ab- 
sence of interband interaction (energy-band overlap) the 
plot would consist of two nonoverlapping curves. The on- 
set of interband interactions produces simultaneous super- 
conductivity in both bands, with a single superconducting 
temperature determined by all the interaction constants 
A,, . With increase of the interband-interaction constants 
(A34,A43-A11,i122) the contribution due to the overlap of 
the two bands begins to predominate over the individual 
contribution of each band, so that the Tc(No) plot is a 
single bell-shaped curve (4, 5). 

Figure 2 shows the temperature dependence of q =  -p 
for a non-phonon superconductivity mechanism at various 
carrier densities No and with weak hybridization. We see 
that this plot has at T =  T, (curves 1-3) a kink that be- 
comes less peaked with increase of the carrier density and 
vanishes at 7 - 8 meV (curve 4). The behavior of q ( T )  
under strong hybridization is similar. The anomaly of the 
temperature dependence of the chemical potential q =  -p 
at the point T =  T, is due to the appearance, on the Fermi 
surface, of a superconducting gap that does not differ ex- 
cessively from the chemical potential. This gap influences 
substantially the chemical potential f at T < T,, since the 
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FIG. 2. Temperature dependence of the chemical potential (v= - p )  for 
various values of the carrier density No.  Curve 1 corresponds to 
N d 2 N l = 0 . 0 1 ;  2 4 . 0 1 5 ;  3 4 . 0 2 ;  W . 0 3 .  (c,s-cA7)/cN 

values of 7 and A,, are self-consistently determined from 
b 

the set of equations ( 14) and ( 18). 
Allowance for the energy-band overlap leads to a kink 

on the temperature dependence of the chemical potential at 
T =  T ,  for the sufficiently high values qg8 meV ( ~ ( 2  meV 
in the single band case23), which undoubtedly facilitates 
experimental verification of this effect. 

1 . 0 -  

5. HEAT-CAPACITY JUMP AT THE POINT T= T, 

In the preceding section we changed over to the o,s - 
pseudo-band representation, which allowed us to write 
down Eqs. (32) and (33), as it were, for a four-band 
model. 

It can also be shown that the difference between the 
free energies in the superconducting and normal phases in 0 ' I I 

100 200 
the pseudoband representation generalizes the correspond- N, / zA~ , ,  meV 
ing expression of the Moskalenko two-band model.',l8 We 
obtain 

-= x loAp &Am (au-')nm SAP, (41) ( C s - C N ) / C N  electron-temperature jumps on the carrier density 
FIG. 3. Dependences of the absolute ( C s - C N ) / V N l  and relative 

SAP V nmp N d 2 N , .  The curves labels are the same as in Fig. 1. 

where n, m, and p are the pseudoband numbers (n, m, 
p= 14 ) ,  and Up' is the inverse of the interaction matrix U 
(3 1 ) . We expand, in the pseudoband formalism, the set of 
Eqs. (14) for the order parameters An in powers of the Using the calculation method of Refs. 18 and 14 for 

small quantity (PA,)~  in the vicinity of the critical tem- Eqs. (41) and (42), we obtain for the heat-capacity jump 

perature T, :  at the point T  = T ,  

where Jn and Fn are defined in (25)-(27). Substituting expression (39) in this equation, we get 
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The equation for the electronic heat capacity in the normal 
phase isI4 

where 

In accordance with Eqs. (44) and (45) we have for the 
relative heat-capacity jump 

Using the rules (30) and (31) for the change to the usual 
band representation, we can obtain on the basis of Eqs. 
(25)-(27), (38a,b), and (45) analytic expressions for the 
absolute and relative jumps of the electron heat capacity at 
the point T = T, . 

Figure 3 shows the dependences of these quantities on 
the carrier density No, obtained by numerical methods us- 
ing the equations given above. The numbers of the curves 
in these figures are the same as in Fig. 1. 

As seen from Fig. 3a, the dependence of (Cs 
- CN) T =  Tc on No has a maximum. At the same time, this 
dependence does not duplicate the behavior of T,(No). 
This circumstance indicates that a substantial contribution 
to the dependence of (Cs - CN) T = T ,  on No is made not 
only by T, but also by the complicated function in the 
right-hand side of (44). Analysis of the curves of Fig. 3 
shows that the charater of the plot of (Cs - CN) T= T ,  ver- 
sus No is determined by the type of hybridization (strong 
or weak) and by the ratio N2/Nl of the electron-state den- 
sities. It is possible for T, and ( Cs - CN) T= Tc to have max- 
ima at one and the same value of No (curves 4 and 5). This 
situation is observed in experiment, for example in 
La2-xSrxCu204 (Ref. 27). 

The possibility of obtaining small ( Cs- CN)/CN 
< 1.43, as well as large (Cs- CN)/CN > 1.43 values of the 
relative jump of the electron specific heat is demonstrated 
by Fig. 3b. This picture is observed in low-temperature 
c e r a m i c ~ . ~ ~ - ~ l  The complicated dependence of the relative 
electron-heat-capacity jump, shown in Fig. 3b, is deter- 
mined by the competition between the behavior of the dif- 
ference Cs--CN shown in Fig. 3a as a function of N,, on 
the one hand, and the quantity C, which increases as No 
increases. Just as for single-band superconductors, in our 
case the ratio (Cs- CN)/CN> 1.43 is governed to a con- 
siderable degree by the smallness of CN in the region in 

FIG. 4. Dependence of the chemical potential (q= -p )  on the carrier 
density N d 2 N 1 .  The numbering of the plots corresponds to the same 
N d N I  as in Fig. 1. 

question compared with the case of fast metals (or by the 
faster increase of Cs- CN than that of CN as No increases). 

We have considered in the present study quasi-two- 
dimensional systems with a simple dispersion law (21 ). 
This approach is dictated, in particular, by the lower di- 
mensionality of a number of high-temperature ceramics. 
Since, however, the electron-state densities N,(E), n= 1, 2 
have no singularities for the dispersion law (2 1 ), we obtain 
the very same equations also for a three-dimensional sys- 
tem. Only the values of N, will differ. Just as in the case of 
single-band  semiconductor^,^^ in our case the ratio 
Cs- CN/CN > 1.43 is governed to a considerable degree by 
the small CN in the considered range of No compared with 
the case of ordinary metals (or by the faster increase of 
Cs- CN with increase of No compared with the increase of 
CN. 

Note that our investigations were made in the mean- 
field approximation, and it is in this approximation that the 
proposed superconductivity theory, with two overlapping 
energy bands, describes the properties of the system for an 
arbitrary ratio of T, to No. The mean-field approximation 
itself, however, may turn out to be insufficient when very 
low carrier densities are considered. It becomes necessary 
here to take into account the fluctuations of the order pa- 
rameters near the superconducting transition temperature. 
Our numerical calculations were made mainly for values 
T ~ / E ~ -  10-1-10-2 (cf. the data of Figs. 4 and I ) ,  and in 
this respect we can be assumed to have a physical picture 
that is qualitatively close to the real one. To be sure, we are 
still faced here with the question of the nature of the su- 
perconductivity, namely, will it be based on the Cooper- 
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pair production mechanism or will it be determined by the 
Bose condensate. Good results in the ground state are ob- 
tained in the BCS theory for A( Ip I, but a condensate of 
nonineractiong bosons is produced in the opposite limit. 
Analysis of the intermediate region at finite temperature is 
still an unsolved problem, and our results are an interpo- 
lation of the BCS mechanism to this intermediate region. 
The nature of superconductivity in systems with low car- 
rier density has been the subject of many studies (see, e.g., 
Refs. 23 and 32-35). 

6. CONCLUSION 

We have developed a superconductivity theory for a 
system with two overlapping energy bands on the Fermi 
surface. This theory is valid in the weak-field approxima- 
tion for any carrier density, including a low one ( p  - T,). 

The main results are the following. 
1. We have introduced a system Hamiltonian (1) 

which can account for superconducting pairing of elec- 
trons both within each band and from different bands. A 
system of self-consistent equations was derived for the or- 
der parameter A,, (14) and for the chemical potential p 
(18). 

2. We have used a sub-band representation, in which 
the basic equations at temperatures close to critical can be 
expressed as the set (32)-(35) for the four-band model. 
This set can be used to consider both the phonon and 
non-phonon superconductivity mechanisms and can be 
used to describe superconductivity in a system with low 
carrier density (p-  T,). The low carrier density notwith- 
standing, this system can lead to rather high T, in view of 
the inclusion of more interband interactions than in Ref. 1, 
which are connected with formation of superconducting 
pairs of electrons from different bands. 

3. Our model offers more possibilities of describing 
various two-band systems, since a major role is played in 
the theory by the ratio N2/N1 of state densities of electrons 
from different bands, as well as by interaction constants 
A,, ( n ,  m = 1-4). The foregoing is in fact clearly demon- 
strated in Figs. 1 and 3a which show respectively the de- 
pendences of the critical temperature T, and of the elec- 
tronic heat capacity (C, - C,) T =  Tc on the carrier density 
for a nonphonon superconductivity mechanism and strong 
(curves 4-5) hybridization. 

4. The plot of the chemical potential of a supercon- 
ductor with low carrier density versus temperature has at 
the point T =  T, a sharp kink that becomes less peaked and 
vanishes when the carrier density is increased. It vanishes 
at p CL 2 meV in the BCS and at p CL 8 meV in the 
two-band case (Fig. 2).  Overlap of the energy band pro- 
duces thus favorable conditions for revealing anomalies in 
the p (  T )  dependence and hence for elucidating the super- 
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