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On the basis of quantum-mechanical sum rules for oscillator strengths we construct a 
complete system of estimates for the minimal Rosseland mean free path of photons lR for a 
plasma, under conditions of local thermodynamic equilibrium at arbitrary ion 
distribution in degree of ionization and state of excitation. For the case of a lead plasma 
compare the system of minimal estimates with the estimates of real values of lR . 

INTRODUCTION 

The correct treatment of radiative transfer in a plasma 
is of great importance in the hydrodynamics of high- 
temperature phenomena. For a plasma transparent to its 
own radiation (that is to say, for low densities) one must 
take into account bulk radiative energy losses. If the 
plasma is opaque or transparent in some range of radiation 
frequencies (the spectral path of the photons is less than 
the characteristic dimension of the plasma), the equations 
of thermodynamics should be supplemented by the equa- 
tions describing transfer of radiant energy. This type of 
problem arises, for example, in the description of targets 
for inertially confined thermonuclear fusion.' Under the 
typical conditions needed to initiate thermonuclear fusion, 
the plasma density in the target shell must be hundreds of 
times higher than normal, and the temperatures in the cen- 
tral regions of a hydrogen fuel of the order of 1 keV. For 
such conditions we need to know the spectral path in an 
inhomogeneous dense plasma, which in general is not an 
ideal gas. In such a plasma conditions of local thermody- 
namic equilibrium (LTE) are realized between matter and 
the proper radiation, and therefore the transfer of radiant 
energy can be viewed in the approximation of radiant heat 
conductivity. For the description of the interaction be- 
tween matter and radiation one needs here only the Rosse- 
land mean free path of the photons, which is defined as the 
integral of the inverse photon absorption cross section 
weighted with the Rosseland f ~ n c t i o n . ~  

To calculate the spectral dependence of the photon 
absorption coefficient in a plasma of multiply charged ions 
of heavy elements, it is necessary to take into account the 
distribution of the ions in various degrees of ionization, to 
sum an enormous number of transitions between quantum 
states, and, finally, to take into account line broadening 
due to the thermal motion of the ions. For a non-ideal 
plasma one should, strictly speaking, pass to a description 
of quantum states not of individual ions but of a group of 
interacting neighboring ions. For a known degree of ion- 
ization of the plasma, one can find with sufficient precision 
the contributions of bremsstrahlung absorption (free-free 
transitions) and scattering on free electrons. However, ob- 
taining the contributions from free-bound and bound- 
bound transitions, including the effects of line broadening 

and ion interactions, is still an extremely complex problem 
(see, for example, Ref. 3, where calculations were per- 
formed of the spectral coefficients in the framework of the 
modified Hartree-Fock-Slater model, with account taken 
of both the real structure of the excited states of the ions 
and the line broadening). Along with this it was noted that 
allowance for the effect of absorption in the lines (bound- 
bound transitions) is important, since it can result in a 
significant change of the Rosseland path calculated for an 
ideal plasma.4 

A simple method for obtaining estimates of the mini- 
mal Rosseland path of photons was proposed in Ref. 5 
starting from general principles, without the need for solv- 
ing the complex spectral problem. On the basis of the 
"golden sum rule" of Thomas-Reiche-Kuhn for oscillator 
strengths, we have formulated and solved a variational 
problem for the determination of the minimal path as a 
function of just the temperature T and the plasma density 

P . 
In this paper we shall use the remaining additional 

sum rules and obtain for the Rosseland path a complete 
system of estimates, which gives more realistic values for 
the minimal Rosseland mean free path. 

1. SUM RULES FOR CROSS SECTIONS OF PHOTO 
PROCESSES 

We give here without derivation for the oscillator 
strengths a sum rule which will be needed in the following 
(to avoid extra factors in the formulas we make use of the 
atomic system of units): 

As is well known, certain sum rules are expressed in 
terms of averages of quantum mechanical operators in the 
ground state of the quantum system.6 The sum Qo is given 
by the number of electrons of the atomic system N:Qo=N, 
and the sum Q-' is expressed through the mean square 
radius of the atom in the ground state: 

~ - ~ = ( 2 / 3 ) 7 ,  where f = 3  C (01z2klo>, 
k= 1 
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the sum Q+l is expressed through the mean square mo- 
mentum of the electrons in the ground state: 

Knowing the kinetic energy of the electrons of the atom - 
KO = p2/2 one can define the sum Q+ as Q+ = (4/3) KO. 
Using the virial theorem (Eo= -KO) we express this sum 
rule through the total energy of the atom Eo: 

The last nontrivial sum rule with a positive index Q+2 
is expressed in terms of the density of the electrons at the 
nucleus p (0) : 

where Z is the charge of the nucleus. The next positive sum 
Q+3 becomes infinite, which is due to the fact that in the 
region of high frequencies the photoionization cross section 
decreases like w(-~+", 0 < 7 < 1. Similarly all the expres- 
sions Q+, with n > 3 diverge. The sums Q-, for n)2 are 
defined by convergent integrals, however there are no sim- 
ple expressions for them in terms of ground state averages, 
as was the case for the other moments. However there are 
a priori constraints. Since u(w) is by definition a positive 
function we have the following inequality for the ratio 

In the following we shall use just the one inequality: 

For the simplest atom-the hydrogen atom-there exist 
exact values, which we shall use to normalize the model of 
the atom considered below: 

(To convert Qs from the atomic system of units it is nec- 
essary to multiply the result by $, co=me4/fi2 is the 
atomic unit of energy.) 

It should be recalled that the sum rules that we are 
using refer to the long wavelength-dipole approximation, 
which is applicable in the frequency range given by the 
inequalities: 

where a=e2/iic is the fine structure constant. Based on 
these constraints one can, generally speaking, also indicate 
the range of temperatures for which the dipole approxima- 
tion is valid. 

2. THE SYSTEM OF ESTIMATES OF THE MINIMAL 
ROSSELAND MEAN 

The Rosseland mean IR is defined as the integral of the 
inverse spectral absorption coefficient with weight function 
R (u)  : 

where R (u)  = ( 15/4v4)u4e-'( 1 -e-') -2 is the Rosseland 
function, k(  u ) =a( u ) n[cm-I] is the absorption coefficient 
per unit volume (the cross section, averaged over the mix- 
ture of various atoms and multiplied by the density of the 
atoms n [ ~ m - ~ ] ) ,  and u=.fiw/€' is the dimensionless fre- 
quency, 0=kT. The factor 1-e-' in the denominator is 
due to the condition of LTE and is introduced to correct 
for forced emission. Accordingly we define a modified 

* 
Rosseland function R ( u ) : 

and rewrite formula (3)  in the form 

Besides photo-ionization processes (acomp) one should 
take into account in the absorption coefficient processes of 
Compton scattering of photons by electrons ( u  ). It was 

p! 
shown in Ref. 5 that the corresponding modification of the 
estimate for the Rosseland mean, in the range of tempera- 
tures and densities of interest, is insignificant. Below we 
shall show that the effective Compton cross section can be 
taken into account by recalling that in the important for 
applications region of temperatures and densities one has 
uph)u~omp. 

We pose now the following variational problem: let 
k(u)  be an unknown function of frequency determined 
from the extremum condition of the functional (4) with 
the imposition of some additional Sth condition (1). In 
Ref. 5 was obtained the minimal estimate for the "golden 
sum rule" (S=O), which leads to IF)  o: 0 growing linearly 
with the temperature. Including the remaining acceptable 
sum rules we obtain additional powers of the temperature 
in the estimate of the photon path. And the resultant min- 
imal mean value in the low and high temperature regions 
turns out to be closer to the real values. 

Thus, using in the sum rules (1) the averaging over 
dimensionless frequency we obtain the following additional 
conditions: 

The variational problems (4) of interest, after imposition 
of the sequence of conditions (5), take the form: 
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TABLE I. The system of roots ( 8 )  for Pb, giving the temperatures at which the minimal mean free paths 
calculated from the sum rules using the atom model (at) and the ion model (ion) become equal, no:= 1, 
qeV], 1gs[cm] (br-bremsstrahlung). 

Here S enumerates the permissible values, SE - 2,2 (see 
below), and A: denotes the Lagrange multiplier for the 
corresponding variational problem. 

The extremum conditions give rise to the following 
equalities: 

where 

For convenience in going over t? other systems of units we 
give the explicit expression for l f )  : 

where ao=fi2/(me2) is the atomic unit of length. 
* 

We see from the definition of the coefficient fs that the 
integral exists only for S )  -2. Combining this with the 

restriction on S that follows from the sum rules, S < 3, we 
find that the system of estimates for the minimal Rosseland 
mean is the only one possible for those sum rules which are 
expressible in terms of averages over the ground state of 
the quantum system. We can obtain closed-form expres- 
sions for the integrals fs: 

where 5' is the Riemann function, I' the gamma function, * 
and the coefficients fs have to be found numerically. 

Thus we have obtained a system of estimates for the 
minimal Rosseland photon mean path, which can be called 
complete, since we have used all allowed discrete values of 
the parameter S belonging to the interval [-2,3). More- 
over the quantum-mechanical sum rules Qs are expressible 
in terms of expectation values of the quantum mechanical 
operators in the ground state of the quantum system. 
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3. APPLICATION OF THE SYSTEM OF ESTIMATES 

For each given temperature 8 of the plasma we have a 
certaif: series of values for the minimal Rosseland mean - 
path 1kS)(9), SE -2,2. By choosing the largest among 
them we obtain the best possible estimate of the minimal 
path. Exact values for the sums of oscillator strengths are 
available only for the hydrogen atom and it is possible to 
indicate the range of the 8(S)  interval in which the corre- 
sponding estimate is applicable. For the remaining ele- 
ments we shall make use of approximate expressions. 

The obtained estimates (7) can be applied to both the 
atomic system, without separating the electrons into bound 
and free, as well as to the average ion with degree of ion- 
ization ?(p,8), which is a function of the plasma tempera- 
ture and density that can be calculated on the basis of 
various models, for example, Saha-Raizer or Thomas- 
Fermi. In the case of the ion the contribution of the free 
electrons to the absorption coefficient is found relatively 
simply. However closed analytic expressions cannot be ob- 
tained in this way. Instead we determine the temperature 
intervals for two extreme cases: either for a non-ionized 
atom (this provides the lowest possible estimate) or for an 
ion with maximum degree of ionization (absorption by the 
K shell). The true value of the root O(S) for the given 
temperature and density is contained somewhere within 
this interval (see Table I and Fig. 1 ). 

When considering an average ion we determine the 
average dimensions, the electron kinetic energy and the 
density by starting from the ionization potentials. We nor- 
malize here the sum rules in the simplest way, such that in 
the passage to the case of the hydrogen atom the corre- 
sponding sum rules go over into the known exact values 
@!!).. For each element with charge Z we designate the 
first and last ionization potentials as 1(1)  and I ( Z ) .  The 
ionization potential of the hydrogen atom will be denoted 
by I ( H ) .  

The system of sums for the atom takes then the form: 

for a fully ionized atom we have: 

FIG. 1. The Rosseland mean free path in a 
lead plasma: sum rules calculated for the 
atom model (a)  and ion model (b).  The 
shaded region Indicates allowed values of 
the photon mean free path. The left-most 
point, from which the maximal degree of 
ionization can be deduced (see text), and 
the point at which several criteria of mini- 
mality are simultaneously satisfied, are 
marked. 

The sums Q+, are determined by the powers z3 and z2, 
since the probability density of the wave function at zero, 
* ( 0 ) ,  for "heavy" elements is proportional to $Z (Ref. 7, 
471). The sum Q+, for the atom is given in terms of the 
energy of the atom in the Thomas-Fermi model: E= 16 
z7/' [ e ~ ] . '  We take the dimensions of the atomic system to 
be proportional to the inverse of the ionization potential; 
this leads to the factors I ( Z ) / I ( H )  and I ( H ) / I (  1 ) in the 
expressions for the sums. 

Sorting out pairwise all possible sum rules we deter- 
mine the temperatures 8SpK, for which the paths deter- 
mined from different sum rules become equal: 

For the two cases of evaluation of the sum rules consid- 
ered, we give in Table I the corresponding system of roots 
(8)  for Pb. Of course, for heavy elements the scatter in the 
values of the roots is very large and a universal prescription 
for the determination of the minimal Rosseland mean can- 
not be given. Nevertheless, as can be seen from the exam- 
ples below, for a non-ideal plasma the table for the atoms 
of lead can give path values differing from the exact one by 
no more than a factor of two. A qualitative picture of the 
loc~tion of the roots is given by Fig. 1, which shows 
In IR as a function of In 8 for a neutral and for a fully 
ionized lead atom. To each estimate of the minimal mean 
value there corresponds the straight line with the appro- 
priate slope. 

It is interesting to *note that for the unionized atomic 
system the estimate of I;-'-') contains the square of the size 
of the atomic system 3, which, naturally, is independent of 
the degree of ionization and, consequently, of the teyper- 
ature. This is also in agreement with the behavior I;-') 
cc 80 found for this estimate from the variational problem. 

* 
The estimated l k - I )  is represented in Fig. 1 by a straight 

409 JETP 77 (3), September 1993 S. V. Molodtsov 409 



TABLE 11. Comparison of the Rosseland mean free paths for a lead plasma at 0=300 eV. 

line parallel to the In 8 axis. Since for the temperatures of 
interest in applications atomic-system dimensions exceed 
the characteristic dimensions of the Compton scattering 
process (Fat)%omp), we in effect take into account also the 
scattering prtcesses by considering the region above the 
straight line I;-'). That is to say, we need not complicate 
the formulation of the variational problem as was done in 
Ref. 5. 

The dashed line in the figure shows the mean path for 
the inverse bremsstrahlung process (free-free transitions, 
quasiclassical or Kramers approximation) with maximal 
degree of ionization, for nu:= 1: 

* * 
where fbr = . ~ ~ R * / ~ ( U ) U ~ ~ U .  

Since the atom density enters the formula (7) linearly 
and the formula (9) quadratically, they must be compared 
more accurately. Here we note only that the highest power 
of the temperature in the system of estimates (7) is 03, 
while the temperature enters formula (9) as e3.', therefore 
for any density p there exists a temperature starting with 
which the bremsstrahlung processes dominate. 

The dashed line of the bremsstrahlung processes acts 
as an upper bound of the Rosseland mean, since in the 
absorption coefficient for freefree transitions only positive 
terms should be added, that is, the real value of IR lies 
below the straight line of the bremsstrahlung processes. 
The region in which the Rosseland mean should lie is 
shown hatched in the figure. 

If the atom is not fully ionized the dashed line will 
move upwar: from the straight line with maximal degree 
of ionization I (br), and the extreme left point in the region 
of allowed values of IR will move to the left in the direction 
of lower temperatures. Conversely, under conditions of ap- 
plicability of the dipole approximation one can, given the 
temperature, determine from a known I,,, the maximal 
possible degree of ionization of the matter. 

Comparing the graphs for the neutral and the maxi- 
mally ionized atom we see that the region of allowed values 
of the minimal Rosseland mean is shifted in the direction 

of higher temperatures, and consequently in the direction 
of longer paths. In addition, it should be noted that there 
exists a temperature region, particularly noticeable for 
light elements and for maximally ionized atoms, where 
several estimates for the minimal Rosseland mean come 
close together. For this temperature region the minimal 
estimate is, apparently, close to the real value of the photon 
path. In this region the atom is, as it were, "blackest," 
since several criteria of minimality are satisfied at the same 
time. 

The straight line corresponding to the sum Q-2 is de- 
termined by the inequality (2)  and is therefore somewhat 
less rigorous. Unfortunately the sum Q-, is bounded from 
below, that is, we cannot say that the real value IR Fes 
strictly above this line. In that sense the straight line I i 2  
should be viewed as tentative. On the whole, however, the 
system of estimates correctly duplicates the behavior of the 
Rosseland mean as a function of temperature. 

In conclusion we examine how our system of estimates 
relates to existing calculational data for the Rosseland 
mean. We turn to the example of a lead plasma, which was 
considered in Ref. 5, where a table was given comparing 
the Rosseland paths with calculations: a )  by the 
Zel'dovich-RaYzer f o r m ~ l a , ~  valid for a rarefied plasma: 

b) by an estimate formula for the real path [formula (32), 
Ref. 51: 

where a, 6, and c are approximation coefficients, 
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TABLE 111. The Rosseland mean free path for a lead plasma at a density p= 11.34 g . ~ r n - ~ .  

c) and, finally, by a formula for the minimal Rosseland 
path [form$a (21), Ref. 51, in which in addition to the 
estimate of lk-') the electrons were separated into free and 
bound: 

6, eV I 100 1 316,2 

where A is the atomic number of the element. 
We shall utilize the data from Ref. 5 for the degree of 

ionization Tof the lead plasma, at temperature 8= 300 [eV], 
for a wide range of densities, and complement the table of 
Ref. 5 by the system of estimates (7),  specifying the sums 
Qs for an ion of multiplicity ?by the following expressions: 

(see Table 11). 
As is well known, in the case of a rarefied plasma the 

Zel'dovich-Ra'izer formula is applicable for lgR. The data 
of Table I1 show the closest to this estimate are: 
~ k - ~ ) ( p =  and lf;-')(p= lop2, p =  lo-'). Upon 
moving in the direction of higher densities the estimates of 
1Lp2) and lh-') no longer apply since the simple model for 
the calculation of the sum rules Q-2 and Q-, is too crude. 
In a dense plasma, for which the criterion of applicability 
for the estimates of and $' given in Ref. 5 is satisfied, 
we have: 

- 
I 18,57 34.26 47.55 53.65 

I, /e 4,56 4.25 3 3 4  3,30 

1 iL, cm 1,15.10-' 5.20. lo-' 1 .84.10-~ 3 ,85 .10-~  

I f ,  ern 1,73.10-' 5,17.10-' 1 . 2 2 . 1 0 - ~  1 ,39 .10-~  

1 kO,, cm 5,lO. lo-6 2.14-10-' 7,03.10-' 1 ,14-10-~  

1 2 ) .  a n  5.64. 1.09. lo-' 1.32. 3.69. 

If) ,  cm 2.44. lo-' 1.03. lo-' 1.90. 5,46. 

1 gR, cm 9.12.10-' 2.07. 3 .10.10-~ 3.33. lo-4 

750 

as can be seen from that same Table 11, we can use the 
estimates IF), l t ) ,  and lfi2). 

1000 

We discuss one more example. In Ref. 9 were given 
results of the calculations of paths in a plasma of gold and 
lead, under conditions characteristic of compressed shells 
of targets for inertial thermonuclear fusion. In Tables I11 
and IV these data are denoted by liL. Values of minimal 
mean values closest to the calculated ones are underlined. 
For finding the Rosseland mean in Table IV use was made 
of the simplest model for finding the sum of the oscillator 
strengths, in which the electrons are not separated into 
bound and free. As already noted above, the discrepancy 
from the "exact" value for the photon path does not exceed 
a factor of - 2. Calculations show that another model-the 
ion model-gives good results only for light elements. 

The data obtained by us show that as one progresses to 
increasing densities, it is necessary each time to pass to the 
corresponding estimate dictated by the diagram of allowed 
values. Since the system of estimates reproduces qualita- 
tively correctly the dependence of the absorption coeffi- 
cient on the temperature in the entire range of tempera- 
tures, the system of estimates (7) can be effectively for 
calculations of radiative gasodynamics, using only the data 
on the degree of ionization T(8). 

CONCLUSION 

To supplement the estimate of the minimal Rosseland 
mean obtained from the "golden sum rule" (the sum Qo is 
a function growing linearly with the temperature),5 we 
have obtained a complete system of estimates (the remain- 
ing sum rules give rise to divergent expressions), which 
reproduces qualitatively correctly the behavior of the spec- 
tral absorption curve in the whole range of temperatures, 
under the condition that the dipole approximation holds 
for the radiation. 

TABLE IV. The Rosseland mean free path for a lead plasma at a density p= 11.34 g . cm-3 in the atom 
model. 

6, eV I 100 I 316.2 I 750 I 1000 
1 iL, cm 1,15.10-' 5,20- lo-' 1 ,84.10-~ 3,85. 

1 &-2). cm 1.31 .lo-' 4 .13 .10-~  1 ,74.10-~ 1.31 . lo-6  

1 &-I), Cn1 5,91 .lo-' 5,919 5.91 . 5,91 . l o v 6  

1 g), cm 3.94.10-~ 1,25.10-' 2.96. lo-' 3,94.10-' 

I $ ) ,  ern 1.14.10-~ 3,60. lo-' 4.80. 1 ,14 .10-~  

1 f ) ,  cm 1,89.10-' 5,97. lo-6 7.96. lo-' 1,89. lo-' 
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In conclusion I express deep gratitude to V. S. Imsh- 
ennik and M. D. Churazov for interest in the work and 
useful remarks. 
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