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A theory of light scattering by polarized systems is developed. Expressions, extending the well- 
known results of Placzek, are derived for the differential and total cross sections for 
scattering of arbitrarily polarized radiation by polarized systems. It is shown that up to second- 
order multipoles (orientation and alignment) of the state of a polarized system can 
appear in the total cross section, and multipoles of up to fourth order, inclusive, can appear 
in the differential cross section. The characteristics of the atomic scattering are 
examined. For atoms with a single electron outside a closed shell the radial and angular parts 
are completely separated in the reduced matrix elements of the light-scattering tensor. 
The example of s-s scattering, when orientation of the atom can be manifested only near 
resonance, is worked out in detail. 

1. INTRODUCTION 

In Placzek's theory of light scattering (see Ref. 1) the 
scattering system (atom or molecule) is assumed to be 
freely oriented, i.e., unpolarized (states with different pro- 
jections of the angular momentum are equally populated). 
As far as we know, light scattering by polarized systems 
has never been studied. Only the Compton effect on polar- 
ized electrons has been considered.' But systems with po- 
larized atoms have now been studied for quite a long time.2 

Polarized atoms can be easily produced, during differ- 
ent excitation processes, with the help of optical 
pumping2,3 and other methods, which give a nonuniform 
population of states with different values of the projection 
of the angular momentum on some direction. Although 
experiments on light scattering by polarized atomic (mo- 
lecular) gases are more complicated, it seems to us that 
they should be of interest to investigators. A polarized sys- 
tem becomes asymmetric, which results in a significant 
change in the angular distribution of the scattered radia- 
tion. For a definite type of polarization the target also be- 
comes optically active, which is manifested as circular di- 
chroism in the total cross section of the process. Thus the 
polarization state of an atom can be in principle deter- 
mined from the scattering of light. 

We note that photoprocesses such as emission and ab- 
sorption of light3 and the atomic photoelectric 
have been investigated in detail for polarized atoms. The 
theory of multiphoton ionization of polarized atoms is de- 
veloped in our recent paper.6 

In the present paper our aim is to fill the above gap. 
We develop below a theory of light scattering by polarized 
atoms. The next section is of a methodological character: 
we describe a polarized atom and show how to simplify 
usefully the solution of the problem. In Sec. 3 expressions 
are derived and analyzed for the differential and total light- 
scattering cross sections of polarized systems. In Sec. 4 the 
specific nature of atomic scattering is discussed, expres- 
sions are obtained for the reduced matrix elements of the 
scattering tensor for atoms with a single electron outside a 

closed shell, and the interesting example of s-s scattering, 
when the polarization (orientation) of an atom can be 
observed only near resonance is examined. 

2. SPECIFICATION OF THE INITIAL STATE OF A 
POLARIZED ATOM. THE LIGHT-SCATTERING TENSOR 

An atom1) with angular momentum j #O  is polarized 
when states with different values of the projection m of the 
angular momentum on some direction n are not populated 
equally. We assume below that the state of a polarized 
atom is an incoherent .mixture of states with different pro- 
jections of the angular momentum on the axis n, so that the 
density matrix of the atom is diagonal with respect to m in 
an atomic coordinate system (ACS) whose z, axis is ori- 
ented along the vector n. It is well known that such polar- 
ization states arise if the excitation of the atom was axially 
symmetric with respect to n.3 

We shall specify the state of a polarized atom not by 
the 2 j  independent occupation numbers of magnetic 
sublevels-the diagonal elements p:, of the density matrix 
in the ACS-but by the irreducible components of the den- 
sity matrix, which are called the multipole  state^:^ 

. . 

Obviously, the multipole pk ( 1 ) of the state is proportional 
to the average value of the zeroth component of an irre- 
ducible tensor quantity of rank K, characterizing the po- 
larized atom. An unpolarized atom corresponds to equal 
populations of magnetic sublevels, and 

In the general case, however, there are 2 j + 1 different state 
multipoles: 
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where the overbar indicates statistical averaging: 

An atom is said to be oriented if pl#O and aligned if 
p;+. 

For analysis of the results obtained below, we note that 
the states of a polarized atom can be separated into mirror- 
symmetric and mirror-asymmetric. In mirror-symmetric 
states the magnetic sublevels with opposite projections of 
the angular momentum are equally populated, i.e., 
pkm = p l m ,  - m. The populations and multipoles ( 1 ) of the 
state transform as follows under the inversion operation, 
when the polarization axis n is inverted;: 

In mirror-symmetric states all state multipoles of odd rank 
K are thus zero. For mirror-symmetric states of polariza- 
tion to arise, the excitation of an atom must obviously be 
not only axisymmetric but also mirror-symmetric (for ex- 
ample, excitation by unpolarized or linearly polarized ra- 
diation). 

Using the law of transformation of multipoles of the 
state under rotations, the density matrix of a polarized 
atom in an arbitrary coordinate system can be represented 
in the form (a more detailed discussion is given in Ref. 6) 

where Y(& are spherical  harmonic^.^) 
With the help of the Kramers-Heisenberg formula1 

and the results of Ref. 3, the initial expression for the cross 
section for the scattering of a photon with frequency w and 
polarization vector e by a polarized atom can be repre- 
sented in the following form (the atomic system of units is 
employed in this paper): 

Here w' and e' are the frequency and polarization vector of 
the scattered photon (both Rayleigh and Raman scattering 
are considered), a is the fine structure constant, the indices 
1 and 2 designate the initial and final states of the atom, 
and v denotes all atomic quantum numbers other than the 
angular momentum j and its projection m. In Eq. (4) 

repeated Cartesian tensor indices i, k, i', and kt are 
summed over. The matrix element of the scattering tensor 
cik is determined as follows: 

where d is the dipole-moment operator of the atom, En is 
the energy of the corresponding atomic state, 
El + w = E2 + w', and the summation extends over all pos- 
sible states of the atom, including the states of the contin- 
uous spectrum. 

In Ref. 1 the matrix element (5) of the operator cik is 
called the scattering tensor. In the present paper it is ter- 
minologically more convenient to call the scattering tensor 
the operator cik itself. If we now introduce the resolvent of 
the Hamiltonian for the atom 

whose matrix elements are the atomic Green's function, 
then the scattering tensor, according to Eq. ( 5 ) ,  must be 
written in the form 

The scalar product of the tensors cik and ef*ek in Eq. 
(4) can be expressed as a sum of the scalar products of the 
irreducible parts of these tensors. We employ the following 
notation for the irreducible parts of the tensor ei*ek :' 

where C'&q2 are Clebsch-Gordan coefficients. We define 
the irreducible component of the scattering tensor (6) as 
follows: 

In Eqs. (7) and (8) the components of vectors are taken to 
be the spherical components: 

We express in terms of spherical components the scalar 
product of the considered tensors; 

Next we substitute here the expansion of cqlq2 in irreducible 
parts [inversion of Eq. (7 )]: 

and, using the symmetry property of the Clebsch-Gordan 
coefficients, we arrive at the desired expression: 
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In the matrix elements of the irreducible parts of the 
scattering tensor (8) the dependence on the magnetic 
quantum numbers can be separated with the help of the 
Wigner-Eckart theorem and we can introduce the reduced 
matrix elements of the scattering tensor (v j211tjJlvl j l ) ,  
where k=0,1,2: 

Then, using expression (3) for the density matrix of the 
atom, the summation in Eq. (4) over the projections of the 
angular momenta is easily performed and the geometric 
and dynamical parts are separated. 

In the next section we present the final expression for 
the cross section in the most general case of partial polar- 
ization of the scattered radiation. The state of partial po- 
larization of light is given by the polarization density ma- 
trix with the matrix elements p:, . We employ below the 
laboratory coordinate system (LCS), whose z axis (it is 
also the quantization axis of all angular momenta) is ori- 
ented along the direction of propagation of the incident 
radiation. Then the polarization density matrix of the pho- 
ton in the basis of states with definite helicity (the basis 
vectors are unit vectors with right- and left-hand circular 
polarization) is expressed in the standard manner in terms 
of the Stokes parameters qi:3 

We recall that the parameter q2 determines the degree of 
circular polarization, q3 determines the degree of linear 
polarization with respect to the x and y axes of the LCS, 
and 7, determines the degree of linear polarization with 
respect to two mutually perpendicular axes making an an- 
gle of 45" with the x and y coordinate axes. The Stokes 
parameters 7, = 7, =O and q2 = f 1 correspond to right 
(left) -hand circular polarization, and = q2 = v3 = 0 cor- 
respond to unpolarized light. 

The initial expression for the scattering cross section 
for partially polarized light is obtained by averaging Eq. 
(4) over two statistically independent states of elliptic po- 
larization (eigenvectors of the density matrix), whose in- 
coherent superposition is partially polarized light, and then 
switching to the basis of states with definite helicity. This 
operation is equivalent to the formal substitution 

in Eq. (4). Here the unit vectors e, describing the right- 
(left-) hand circular polarization of the photon are ex- 
pressed in terms of the first two unit basis vectors of the 
LCS: 

e,l= 3=2- 'I2 (ex iey ) . 
The spherical components (9) of these vectors in the LCS 
are 

3. CROSS SECTION FOR LIGHT SCATTERING BY 
POLARIZED SYSTEMS 

The irreducible-tensor technique described in the pre- 
ceding section makes it possible to separate easily in the 
expression for the light-scattering cross section the angular 
and dynamical parts (the latter appear in the reduced ma- 
trix elements of the scattering tensor) in the case of an 
arbitrary polarized system. In this section, for definiteness, 
we refer to atoms. 

Substituting into Eq. (4) the formulas (3), ( lo) ,  and 
( 11 ), making the substitution ( 13), and summing over the 
magnetic quantum numbers, we arrive at the following 
expression for the cross section for scattering, by a polar- 
ized atom, of partially polarized light described in the LCS 
by the polarization density matrix ( 12): 

Since the irreducible tensor (7) satisfies the relation 

{el* e e)&= ( - 1 )k-q{e' e e*)k,-q, 

the inner sum over q and q' in Eq. (15) can be written in 
the form of an irreducible tensor consisting of four polar- 
ization vectors:' 

We note that the case of pure polarization of the scattered 
light is obtained in Eq. ( 15) by choosing the appropriate 
Stokes parameters in the polarization density matrix ( 12). 
Scattering of right (left)-hand circularly polarized radia- 
tion corresponds thus to 

The expression for the cross section for the scattering of 
linearly polarized radiation is simplest if the LCS is rede- 
fined by orienting the z axis along the polarization vector 
eo. In this case the cross section is obtained from the cor- 
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responding expression for the scattering cross section for 
circularly polarized radiation, in which the polarization 
indices A and A' are formally set equal to zero. It should be 
kept in mind that in the case of pure polarization, given by 
the vector 

the elements of the polarization density matrix can also be 
represented in the form 

For this reason, the scattering cross section can be written 
[in essence, starting from Eq. (4)] in terms of the polar- 
ization vector e, dropping in Eq. ( and the summa- 
tion over the polarization indices A and A', and removing 
the polarization indices of the vectors. In this form the 
expression for the scattering cross section will be valid in 
any coordinate system, in particular, in the ACS, where 

However, the LCS is apparently more convenient for find- 
ing the explicit form of the angular distribution of the 
scattered radiation. 

The explicit dependence of the scattering cross section 
on the polar and azimuthal angles 8' and q', which deter- 
mine the direction of motion of the scattered photon, can 
be derived quite simply. The irreducible tensors (7), each 
consisting of two polarization vectors, must be written in 
terms of the spherical components of these vectors (expres- 
sions ready for use are given, for example, in Ref. 7). The 
spherical components of the vectors e~ in the LCS are 
given by Eq. ( 14). In the case when the scattered photon is 
circularly polarized the spherical components of the polar- 
ization vectors e:, are also determined by Eq. ( 14), but in 
the coordinate system x'y'z' of the scattered photon with 
the z' axis oriented in the direction of motion of the pho- 
ton. These components are transformed into the LCS by 
the standard method in terms of Wigner's functions (see, 
for example, Ref. 8). The result is 

e: ,,,= 2112 sin 8'; (18) 

In the general case of elliptically polarized scattered light 
the vector e' can be represented in the form 

e' = e: cos fl+ e;ei8 sin fl , 

where e l ,  are Cartesian unit vectors in the system x'y'z' 
and 6 and fl are real parameters. The parameter S is the 
phase difference between two waves linearly polarized 
along the x' and y' axes. The case S=O corresponds to a 
wave linearly polarized at an angle fl to the x' axis. Trans- 
forming to a spiral basis, we write the vector e' in the form 

e' = 2ll2(iei6 sin fl-cos fl)e; +2112(ie" sin fl 

and with the help of Eq. (18) we easily find its spherical 
components in the LCS. The spherical components of the 
vector that is the complex conjugate of e' can be found 
according to Eq. (9) from the formula 

Evidently, when the scattered radiation is linearly polar- 
ized the scattering cross section (in the dipole approxima- 
tion) should depend only on the direction of the polariza- 
tion vector e;. For this reason, for given e; the scattering 
cross section will be the same in all directions perpendic- 
ular to the polarization vector. 

We note that having determined the differential scat- 
tering cross section for right- and left-hand circularly po- 
larized scattered photons and also for linear polarization 
[S=O in Eq. ( 19)] at angles P=O, ~ / 2 ,  ~ / 4 ,  and 3 ~ / 4  to 
the x' axis we can find the Stokes parameters and the 
polarization density matrix of the scattered light. 

In the case of unpolarized atoms the multipoles of the 
state p; are determined by Eq. (2), where we must set 
j = j,. From the selection rules in 6 j  and 3 j  symbols con- 
tained in Eq. ( 15) it follows that in this case k= k'. Thus 
the cross section separates into a sum of three independent 
parts, whose intensity is determined by the squared moduli 
of the reduced matrix elements of the scattering tensor of 
ranks k=O, 1, and 2, respectively. The components of the 
irreducible tensors 6 can be expressed in terms of the sca- 
lar (k=O), antisymmetric (k=  1 ), and symmetric (k= 2) 
tensors into which the scattering tensor separates.' Thus 
we arrive at the well-known result obtained by Placzek: 
The light-scattering cross section of freely oriented (unpo- 
larized) systems can be expressed as a sum of scalar, anti- 
symmetric, and symmetric scatterings. Calculating the 6 j  
symbol in Eq. (15) [it also gives the selection rule 
A ( j j2 ,k)] and writing the irreducible tensor product of 
the four polarization vectors ( 16) with k=O in terms of 
the scalar products of these vectors (see, for example, Ref. 
7), we represent in the standard form [Ref. 1, Eq. (60.7)] 
the cross section for the scattering of light with definite 
polarization e by unpolarized atoms: 

where 

flk=(2jl+l)- ' l  (vj2lltckllvj1) 1 2 .  (20) 

The parameters Pk,  introduced above in Eq. (20), are es- 
sentially identical to the quantities Go, G a, and GS,' deter- 
mining the intensity of the scalar, antisymmetric, and sym- 
metric ~cat ter in~s:~)  
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We now discuss some peculiarities of light scattering 
by polarized atoms. First, it is obvious that in this case the 
scattering cross section does not separate into a sum of 
three independent parts: Eq. (15) will contain terms which 
in turn contain the product the reduced matrix elements of 
the irreducible parts of a scattering tensor k of different 
ranks. The angular distribution of the scattered light and 
the dependence of the angular distribution on the polariza- 
tion of the incident and scattered radiations will change 
significantly. In addition, the scattering cross section ( 15) 
depends, as it should, on the orientation of the polarization 
axis n of the atom. 

It is interesting to note that, as follows from Eq. (15), 
only the atomic state multipoles p l  of rank K<4 can ap- 
pear in the differential light-scattering cross section of a 
polarized atom (see the selection rules in 6 j  and 3 j  sym- 
bols with K,K1 =0,1,2). In this connection we recall that in 
the case of dipole emission and absorption of light by a 
polarized atom only the state multipole p;( with Kg2  (ori- 
entation and alignment) can appear.3 

The total light-scattering cross section integrated over 
all directions of motion of the scattered photon can be 
easily obtained from Eq. (15). For this we note that 

where q,ql =0, * 1. Substituting into Eq. ( 15) the irreduc- 
ible tensors constructed from two polarization vectors in 
the form (7), we take Eq. ( 14) into account and integrate 
the differential cross section over R', using the formula 
(22). We transform next the sum of the product of three 
3 j  symbols over the projections of the angular momenta in 
the usual manner (see, for example, Ref. 8)  into the prod- 
uct of 3 j  and 6 j  symbols and write the final expression for 
the total cross section in the following form: 

In the case of unpolarized atoms we substitute into Eq. 
(23) the state multipoles pk in the form (2) ( j =  j , )  and 
after calculating the sum over the photon polarization in- 
dices 

and the 6 j  symbols we obtain the following expression for 
the total light-scattering cross section: 

where the parameters Pk are determined by Eq. (20). After 
summing the cross section (24) over two polarizations of 
the scattered photon (i.e., multiplying by 2) we obtain Eq. 
(60.8) of Ref. 1 [see Eq. (21)l. The total cross section of 
light scattering by an unpolarized atom (spherically sym- 
metric system) (24) is naturally independent of the direc- 
tion of incidence of the initial photon or of its polarization. 
Therefore the averaging of the cross section over the direc- 
tions of incidence and polarizations, which is discussed in 
Ref. 1, is superfluous. 

The total cross section for light scattering by polarized 
atoms (23) depends on both the direction of the incident 
radiation (on the orientation of the polarization axis n of 
the atom in the LCS) and the type of polarization of the 
radiation. The cross section does not reduce to a simple 
sum of amplitudes of the scalar, antisymmetric, and sym- 
metric scattering amplitudes, as in the case of unpolarized 
atoms [see Eq. (24)l. It is also interesting to note that only 
the orientation and alignment of the polarized atom, i.e., 
the multipoles pl,2 of the state [see the selection rules in the 
6 j  and 3 j  symbols in Eq. (23)], can be manifested in the 
total scattering cross section. We recall in this connection 
that state multipoles of rank up to 4, inclusive, can be 
observed in the differential scattering cross section. 

We now discuss in somewhat greater detail the cases of 
circular and linear polarization of the incident radiation. 
As follows from what was said above, the total scattering 
cross section for these cases is obtained if the polarization 
density matrix of the photon in the form Eq. (17) is sub- 
stituted into Eq. (23): 

Here A = * 1  correspond^ to right (left ) -hand circular po- 
larization of the incident photon. The case of linear polar- 
ization corresponds to A =0, and then it is also necessary to 
assume that the z axis of the LCS is oriented along the 
polarization vector eo. 

The total scattering cross section (25) depends only on 
the angle 8 between the polarization axis n of the atom and 
the direction of propagation of the incident radiation (the 
direction of eo in the case of linear polarization). A depen- 
dence on only the angle 8 remains also when the photon 
polarization density matrix in Eq. (23) is diagonal, 
i.e., when the incident radiation is an incoherent mixture of 
left- and right-hand circularly polarized waves (in partic- 
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ular, this includes also the case of unpolarized light). In all 
these cases the directions in the xy plane of the LCS are 
equivalent. 

If the atom is oriented, i.e., p;#O, then, as follows 
from Eq. (25), al#a-l. Thus oriented atoms scatter 
right- and left-hand circularly polarized light differently. 
This circular dichroism effect in the total light-scattering 
cross section is consistent with conservation of parity in 
electromagnetic interactions, since an oriented atom is in a 
mirror-asymmetric polarized state (see Sec. 2). Con- 
versely, if an atom is only aligned, i.e., p;#O but pY=O, 
then circular dichroism is not observed in the total scat- 
tering cross section (25). The absence of circular dichro- 
ism in the total light-scattering cross section of unoriented 
atoms is a consequence of the parity conservation (cf. the 
analogous discussion in Refs. 6 and 11 for multiphoton 
ionization of polarized atoms). From these same consider- 
ations, which are based on parity conservation, it follows 
that in the case of arbitrary polarization of an atom the 
total scattering cross section should not change when the 
direction of propagation of the incident radiation is re- 
versed and simultaneously the circular polarization 
changes from right (left) -hand to left (right) -hand polar- 
ization. This symmetry of the total cross section (25) can 
be seen directly. 

In the case of scattering of linearly polarized light the 
atom orientation set by the pseudotensor py cannot be 
manifested in the total cross section a,,. This also follows 
directly from Eq. (25) (cf. the analogous situation for 
multiphoton ionization by linearly polarized radiation, 
when odd-rank multipoles of the state are not manifested 
in the total cross section1 ) . 

4. ATOM WITH ONE ELECTRON OUTSIDE A CLOSED 
SHELL 

We assume that the atom is polarized in a state with a 
definite total angular momentum jl of the electron shell. 
For an atom with one electron outside a closed shell 
jl = I, 1/2 and Il are, respectively, the total and orbital 
angular momenta of the valence electron. The quantum 
numbers which specify the state of the atom in Eqs. (4) 
and (11) are (v,j ,m)= (n,I,j,m), where n is the principal 
quantum number of the valence electron. 

We employ below the single-electron approximation, 
which gives good results in calculations of the probabilities 
of multiphoton transitions in alkali-like atoms in the opti- 
cal frequency range.12'13 For group-I11 atoms the single- 
electron approximation can be used reliably to study tran- 
sitions between the excited states of t . e  valence electron. In 
the single-electron approximation GE in formula (6) for 
the scattering tensor must be interpreted as the Green's 
function of the valence electron. 

Using the Wigner-Eckart theorem to separate the de- 
pendences on the magnetic quantum numbers in the matrix 
elements of the dipole moment dq of the valence electron, 
and then summing over the magnetic quantum numbers, 
we obtain for the matrix element of the irreducible com- 
ponent of the scattering tensor (8) an expression of the 

form ( 1 1 ) . Then the reduced matrix elements of the scat- 
tering tensor will be determined by the following formula: 

(26) 

Here 

is the reduced matrix element of the unit vector.14 

is a radial composite second-order matrix element, where 
Rnl is the radial wave function, and glj is the radial Green's 
function of the valence electron. Semiempirical methods- 
the quantum-defect method and the model-potential 
meth~d'~.'~-have been developed for finding the radial 
Green's function of the valence electron and for calculating 
composite matrix elements. 

Equation (26) is valid both near and far from reso- 
nance. Far from resonance, when the detuning from inter- 
mediate levels significantly exceeds their fine-structure 
splitting, which, generally speaking, is of order a2, the fine 
structure of the intermediate levels can be neglected and 
g l j z g l .  For this reason, dropping the total angular mo- 
mentum index j in the radial composite matrix element 
(27) and transforming the sum over j of the product of 
three 6 j  symbols in Eq. (26) with the help of the well- 
known addition rule (see, for example, Ref. 8),  we obtain 
the following expression for the reduced matrix elements of 
the scattering tensor: 
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In connection with the use of the expressions (26) or 
(28) for the reduced matrix elements of the scattering ten- 
sor, it should be kept in mind that as resonance is ap- 
proached not only does the cross section increase, but the 
character of the light scattering by polarized atoms itself 
changes. We illustrate this with the help of a simple exam- 
ple. Let the initial state of the atom be an s state, i.e., 1, =O 
(for example, the ground state of an alkali-metal atom). 
From the selection rules with respect to orbital angular 
momenta and parity, contained in the reduced matrix ele- 
ments of the unit vector, it follows that the final state of the 
atom can be either s or d .  For s-d scattering, far from 
resonance, there arises only symmetric scattering [k = 2 for 
12=2, as follows from A(ll,12,k) in the 6 j  symbol (28)], 
while j2= 3/2 near resonance at k =  1 and 2 [see Eq. (26)] 
and, as discussed in detail in Sec. 3, interference of sym- 
metric and antisymmetric scatterings will therefore be ob- 
served in the light-scattering cross section of the polarized 
atom. For j2= 5 / 2  only the symmetric scattering remains 
in the resonance region, just as far from resonance. 

The case of s-s scattering (coherent or Raman) is even 
more interesting. Here jl = 1/2 and the polarization of the 
atom reduces simply to nonuniform population of two of 
its magnetic sublevels, i.e., orientation (pl#O; p;t-0 for 
j l=1/2 by definition (1) i fK> 1). If11=12=0, only scalar 
scattering remains far from resonance, i.e., k=O [see Eq. 
(28)]. In final analysis, the coefficient in front of the mul- 
tipole p l  of the state in the expressions for the differential 
( 15) and total (23) light-scattering cross sections, which is 
proportional to the corresponding 6 j  symbol, vanishes and 
the polarization (orientation) of the atom is not mani- 
fested at all. This result can be easily understood on the 
basis of simple physical considerations. The polarization of 
an atom with an s electron outside a closed shell reduces to 
orientation of the spin of a valence electron. For s-s scat- 
tering, when the levels in the initial and final states of the 
atom have no fine structure and the fine structure of the 
intermediate levels far from resonance can be neglected, 
the relativistic effects are negligibly small ( -a2). But in 
the nonrelativistic limit the light scattering cannot depend 
on the initial projection of the electron spin, so that no 
atom should not be observed. Analysis of the nonrelativis- 
tic expression (28) for the reduced matrix elements of the 
scattering tensor leads to the same conclusion. 

Conversely, at frequencies such that the resonance 
with the intermediate levels En,, has a detuning that ap- 
proaches their fine-structure splitting, the fine structure of 
the intermediate levels (relativistic effect) cannot be ne- 
glected. For detunings A 5 a2 the manifestation of orienta- 
tion in s-s scattering should be of the order of unity (com- 
pare with resonance multiphoton ionization of atoms 
oriented in the s state6). It can be stated that in this case 
there arises the additional parameter a2/h, so that near 
resonance the relativistic effect increases sharply. We now 
consider this case in greater detail. 

Calculating the 6 j  symbols in Eq. (26), we obtain the 
following expression for the nonzero reduced matrix ele- 
ments of the scattering tensor: 

Here fjk) is the combination of radial compound matrix 
elements (27): 

If the energy w does not exceed the ionization threshold of 
the atom from the initial state, then fy) can be assumed to 
be real. In the resonance region of interest to us we can, in 
addition, confine ourselves in the calculation of the radial 
compound matrix element to the resonance (pole) approx- 
imation. Far from resonance, at a detuning b>a2,  the ra- 
dial matrix elements with two values of the intermediate 
angular momentum are approximately equal and, there- 
fore, f @ = f$i - f (k). More accurately, 

As a result, only the reduced matrix element ( IItJI ) [it can 
also be found from Eq. (28)], which determines the scalar 
scattering of light, remains nonzero. 

Substituting the obtained reduced matrix elements of 
the scattering tensor (29) into Eqs. (15) and (23), we can 
find the differential and total light-scattering cross sections. 
We present the final expression for the total cross section 
for scattering of circularly polarized radiation propagating 
at an angle 6 to the polarization axis n of an atom [see Eq. 
(2511: 

+v%pY cos 6 .  ~e[(f$::-f\::)(2 f{y:+4fi?: 

Here A = * 1 corresponds to right (left) -hand circular po- 
larization of the incident radiation. Equation (31 ) de- 
scribes also scattering of linearly polarized radiation (with 
A=O), but in this case, as noted in Sec. 3, the orientation 
of the atom is not manifested in the total cross section. 

In order that the expression (31) be valid for quite 
small detunings, comparable to the natural linewidths, the 
widths of the corresponding intermediate levels must be 
introduced in the standard manner1 into the denominators 
of the composite matrix elements. 

From Eq. (3  1) follow explicitly the circular dichroism 
effect in the total light scattering cross section of an ori- 
ented atom as well as the symmetry associated with tran- 
sition from right- to left-hand circular polarization accom- 
panied by reversal of the direction of propagation of the 
radiation (see end of Sec. 3). 

Far from resonance, when h>a2,  the term with the 
multipole p; of the state in Eq. (31) can be neglected [see 
Eq. (30)] and orientation of the atom will practically not 
be manifested. 
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