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Stationary and quasistationary solutions of spinor and scalar wave equations with a deep 
potential well capable of producing pairs are considered. The physical meaning of these 
solutions in different regions of space-time is traced, as is the manner in which these 
solutions reflect the nonsingle-particle nature and the spin-statistics connection. A simple 
method is described for constructing quasiclassical spinor solutions and the corresponding 
wave-transmission amplitude cl ( E )  and wave-reflection amplitude c2(E) as functions of 
the energy. Exact solutions and amplitudes c1,,(E) for a deep triangular potential well are 
found. It is shown that for such a well the continuous spectrum of stationary-state 
energies contains resonance values of E for which reflection is absent, i.e., c2(E) =O. When 
the field of the well is weaker than the characteristic quantum-electrodynamic field 
m2c3/& the resonance spectrum differs by an exponentially small amount from the discrete 
spectrum of the energies Eo of the quasistationary states, which is determined, together 
with the corresponding widths I? of the levels, by the equation cl(Eo+iI?/2) =O. 

1. INTRODUCTION 

At the present time, because of the expansion of the 
experimental possibilities, interest has revived in processes 
of pair production by strong fields, the ground states of the 
pairs being characterized by a so-called charged vacuum. 
Such states arise when one of the particles of a pair created 
by the field turns out to be strongly bound by the field 
while its antiparticle goes away to In the one- 
particle interpretation of the solutions of the relativistic 
wave equations the production of pairs looks like the trans- 
mission of a wave through a sufficiently high potential wall 
(the Klein paradox7). According to nonrelativistic theory, 
a particle cannot pass through the potential wall, and 
therefore its motion in the well is bounded and the energy 
spectrum is discrete. In relativistic theory, because of the 
nonzero coefficient of transmission of the wave through a 
high wall, the motion of a particle in a sufficiently deep 
well takes on the appearance of unbounded motion. In this 
case solutions in the form of waves incident on the well 
from infinity are possible, i.e., the class of admissible solu- 
tions is expanded and the energy spectrum becomes con- 
tinuous. 

To explain the Klein paradox one must reject the one- 
particle interpretation of the solutions of the relativistic 
wave equations and assume that in certain regions of space 
these solutions describe a particle while in others they de- 
scribe an antiparticle. Moreover, in the interpretation of 
the solutions we must also take into account the spin- 
statistics connection, i.e., distinguish the free (vacant) and 
occupied  state^.^ In particular, decrease or increase with 
time of the amplitude of the quasistationary Dirac- 
equation solutions that correspond to the creation or ab- 
sorption of a pair by the field of the well implies that they 
describe vacant states inside the well. The Pauli principle 
does not extend to scalar particles, and, therefore, solutions 

of the Klein-Gordon equation describe occupied states in 
any region of space. 

One of the aims of this paper is to use the examples of 
a quasiclassical solution of the relativistic problem for a 
deep well and an exact solution for a well of special form to 
illustrate the non-single-particle aspect of the solutions and 
the manifestation of the spin-statistics connection in them. 
Therefore, we do not agree with the interpretation of the 
Klein paradox given by the authors of the well known 
monograph4 who write, on page 17, that "...incident elec- 
trons can eject an electron-positron pair from the surface of 
the wall...", and "...pair creation is stimulated by an inci- 
dent electron beam ...". Unfortunately, the problem under 
consideration is not yet completely solved, since it is not 
yet clear how to describe an electron in a level immersed in 
the lower continuum. Some ideas on this topic are con- 
tained in a paper by ~ i k i s h o v ~  (see also Refs. 1, 4, and 9). 

In Sec. 2 we consider the behavior of spinor particles in 
a deep potential well. We find formulas (previously known 
only for the scalar equation) relating the stationary quas- 
iclassical solutions to the left and right of the turning 
points. These formulas are combined into a 2 x 2 matrix of 
the coefficients c l ,  c2, c:, C: of the expansion of the so- 
lutions with a certain sign of the momentum to the left of 
the well in solutions with a certain sign of the momentum 
to the right of it. The coefficients c, and c2 contain all the 
information on the scattering, creation, and annihilation of 
particles and antiparticles in the field of the well. In the 
quasiclassical approximation we obtain for the width of a 
quasistationary level a general expression that is negative 
or positive for states corresponding to the creation or an- 
nihilation of a pair. This implies that spinor quasistation- 
ary states inside the well describe vacant states. The same 
questions for a scalar particle are considered in Sec. 3. The 
widths of the levels in this case are found to be opposite in 
sign to the spinor widths, i.e., the solutions of the Klein- 
Gordon equation describe everywhere occupied states. 
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2. PHYSICAL MEANING OF SOLUTIONS OF THE 
RELATIVISTIC WAVE EQUATIONS (THE SPINOR CASE) 

FIG. 1. 

Section 4 is devoted to the exact solutions of the Dirac 
equation and Klein-Gordon equation for a potential well 
U(z) = e& I z I , where + E is the intensity of the electric field 
along the z axis for z><0 (see Fig. 1). The solution of the 
wave equation has the form 

In the nonrelativistic approximation there are symmet- 
ric and antisymmetric solutions: 

Here, a =  (+i2/2rne&) 'I3 is the characteristic nonrelativistic 
length, and Ai(z) is the Airy function. The energy spec- 
trum is determined from the equations 

The relativistic solutions form a stationary and a qua- 
sistationary system, satisfying different boundary condi- 
tions. Analytical expressions are found for the coefficients 
c , ,~ (E) .  The zeros of the complex function cl(E) deter- 
mine the discrete spectrum E=Eo+iT/2 of the quasista- 
tionary states. It is shown that for an energy close to Eo the 
real function c2(E) =0, i.e., in the stationary solution the 
reflected wave vanishes and the well occupied by a particle 
becomes transparent to an incident antiparticle as a conse- 
quence of the coherent process of annihilation and creation 
of a pair. 

In conclusion we note that we share the opinion, ex- 
pressed in a number of papers of ~ ik ishov,~*~, 'O that the 
solutions of the wave equations contain all information on 
the behavior of many-particle systems possessing zero or 
unit charge, if we disregard radiative corrections. 

In this section we shall consider solutions of the Dirac 
equation 

with a potential A, = (Aslo), where A =O and the function 
U(z) =e~O(z)  is, as yet, arbitrary. The operators -ido, 
-id,, and -id2 commute with the operator ifi, and, there- 
fore, the solution can be chosen in the form ( 1 ), where 
p (z )  will now be a bispinor. This solution is an eigenfunc- 
tion of the polarization operator iy5i, if the spacelike vector 
s, is orthogonal to the plane of the motion, i.e., to the 
electric field and the vector pl ,,= (pl ,p2,0,0) : 

s,= (p2, -PI ,O,O)pl l, ( 6 )  

since in this case the commutator [ifi,iy,~=2y5s,II" on 
the solutions ( 1 ) possesses zero eigenvalues. Following 
Ref. 11, we introduce four linearly independent constant 
bispinors u ~ ,  that are eigenvectors of the commuting op- 
erators iy$ and yoy3 : 

~ Y S ~ U A +  =AuA*, Y O Y ~ U A *  = + UA, . (7)  

It  is obvious that A =  * 1 is twice the value of the projec- 
tion of the spin on the direction of s. We fix the relative 
phase of uA+ and uA- by the relation 

The two bispinors uA, form an orthonormal basis: 

in which the spinor function pA can be expanded, with 
scalar functions qA, as coefficients: 

Henceforth, when considering solutions with a definite 
value of A, we shall omit this index. Substituting (1)  and 
( l o )  into Eq. ( 5 ) ,  we obtain 

The four-current density and energy density of the 
spinor field are given by the formulas 

0 TOO= (E- U ) j  . (13) 

The energy density TOO is negative in the region where 
U(z) > E (i.e., in the Klein region). For a real particle, 
such a situation is unacceptable. Therefore, in the Klein 
region a positive value of j0 must be interpreted as the 
probability density for finding not a particle but an anti- 
particle. In this connection we shall consider stationary 
states in a deep potential well. 

We shall assume that the function U(z) has the 
form of a deep well with a single minimum and without 
maxima. Then for the deep energy levels the equation 
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(E- u12-m: =O for the turning points has four roots 
zl < z2 < z3 < z4 (see Fig. 1 ). The functions q * have the 
quasiclassical asymptotic forms 

where 

and zo is an arbitrary point, chosen by considerations of 
convenience. The quantities ?r, , generally speaking, are 
complex, and satisfy the relations 

if the cut in the complex T, plane is drawn along the 
negative real axis. Then the following equalities will be 
valid: 

Following ~ ik i shov , '~  we introduce the spinor functions 

which are such that +q, (+q,  ) have, for Z > Z ~ ( Z  <z,), 
the quasiclassical asymptotic form a e'S, while -q, ( -q* ) 
have the asymptotic form a e-", i.e., the asymptotic forms 
of waves with positive and negative momentum 
r3 = * dS/az, respectively. In other words, -q and +q are 
waves converging on the well and +q and -q are waves 
diverging from the well. Of the four functions * q and ,q, 
only two are linearly independent, and, therefore, the fol- 
lowing relation should be fulfilled: 

where cl and c2 are functions of E and p: . From Eqs. 
(1 l ) ,  the asymptotic forms (14), and Eq. ( 18c) it follows 
that by choosing the phases and normalizations we can 
ensure fulfillment of the relations 

Then, for the current densities corresponding to the solu- 
tions *q and ,q, the equalities -j3= -+j3 and 
- j3 = - + j3 will be valid. We now require that the equal- 
ities * j3= + j3 be fulfilled. Then the coefficients cl and c2 
will satisfy the condition 

From (20)-(22) follow expansions for the other three 
functions: 

Although the relations (20), (22), and (23) have kept the 
same form as in the nonrelativistic theory [see (25.6) in 
Ref. 121 the coefficients contain all the information about 
the scattering of particles and antiparticles and the creation 
of pairs by the field of the well." 

To determine the coefficients cl and c2 in the WKB 
approximation we shall obtain equations relating the solu- 
tions to the left and to the right of the points z,, j= 1, ..., 4, 
where d changes sign. By convention we shall regard the 
roots of positive quantities as real and positive. Then, ac- 
cording to Eq. (14), the quasiclassical solutions in the re- 
gions $50 adjacent to the point zj can be written in the 
form 

Since Eqs. (11) are linear, the coefficients a,, bj and 
A,, Bj are linearly related: 

Aj=aja,+fl,bj, B,= yjaj+Sjb,. (25) 

The corresponding formulas for the quasiclassical solutions 
of the simpler, scalar equation are found in Ref. 13. Re- 
peating the arguments given there and assuming, for defi- 
niteness, that 4 > 0 for z > z, , we find without difficulty 
that 

It follows from the relations ( 18a) that, for real a, and bj 
in the region I ?rO I < m, , the inequality 

should be fulfilled. The functions q: and q, are described 
by the same equations ( 11 ), and, therefore, the equality 
(27), which is fulfilled in the region I ?rO I < m, , will also 
be valid in any other region. Thus, for real a, and b, the 
relation Af = + Bj is valid, whence we have 

af  = ,L, y,, flf= *a,, (28) 

where the upper sign corresponds to the transitions 
0 I rr; 1 < m, t;> m. , and the lower to the transitions 

In I <m, t?r <-ml [see (18b) and (18c)l. The coef- 
ficients a, and y, can be found from the conservation law 
for the current density: 
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Equating the right-hand sides of the expressions (29) and 
(30) and taking the relations (25), (26), and (28) into 
account, we obtain 

a , - L i d 4  - e + (31) 

where pi is a real parameter that cannot be determined by 
the WKB method. Thus, the formulas relating the solu- 
tions to the left and to the right of the point zj have the 
form 

where 

and the upper signs correspond to the transitions 
0 I T: 1 < ml s; > m, , and the lower to the transitions 

).rr 1 <ml e n  <-m, . ~ n t h e c a s e w h e n ~ > ~ f o r z < z ~ ,  
we must make in Eqs. (32) the replacement 
a j e  bj, A j s  Bj. We note that the expressions (29) and 
(30) for the current density remain unchanged here. 

We shall now make use of Eqs. (32) to find the coef- 
ficients cl and c2. We introduce the notation 

The scalar components +q* of the function +p, which 
appear in the left-hand side of (20), have in the region 
z < z1 the quasiclassical coefficients 

In the region zl < z < z2, according to Eqs. (32), the coef- 
ficients of +q, are equal to 

a - - i d 4  Q,, bl= -ei"I4. (36) 

To go over into the region z2 < z < z3 we rewrite the func- 
tion +q, in the region zl < z < z2 in the form 

Then it follows from comparison of (37) with (24) that 

and again we can use Eqs. (32). By repeating the above 
procedure several times, we find ourselves finally in the 
region z >  z4 and obtain for the coefficient A4 of the wave 
moving away from the well to + co the expression 

and for the coefficient B4 of the wave incident on the well 
from + co the expression 

which differs from A, by the replacement of Q4 by - P4 and 
by the factor -i. It is not difficult to verify that 
IA41 2- I B41 '= 1, as should be the case by virtue of the 
conservation of the current density [see (30) and (32)l. 
An important point here is that for real E we have 
M-' = M* and Qj = q, while L and R are real quantities. 
It follows from Eqs. (20), (24), and (35) that A4,B4 co- 
incide with the coefficients cl, ca of the expansions (20) 
and (23), respectively. Thus, Eqs. (39) specify the coeffi- 
cients cl ,  c2 for the potential well U ( z )  in the WKB ap- 
proximation. Only the real parameters p j  ( j  = 1, ..., 4) re- 
main undetermined here. 

The results can be expressed compactly in matrix lan- 
guage. If we denote the 2 X 2 transformation matrix in Eq. 
(32) by G,(pj), and that in Eq. (38) by HL=diag 
(L, L-I) [HR and HM are defined analogously], the trans- 
formation of the coefficients A,, B1 of an arbitrary solu- 
tion to the left of the well into the coefficients A4, B4 of the 
same solution to the right of the well will be implemented 
by the matrix 

It is clear that the transformations determined by the ma- 
trix (40) and its inverse are equivalent to the relations 
(20), (23) in which the coefficients cl and c2 in the WKB 
approximation are given by Eqs. (39). We note also that 
the relation between the WKB solutions to the left of the 
well and the solutions inside the well are implemented by 
the matrix 

which, like the matrix (40), has a determinant equal to 1: 

The unimodularity of these matrices is ensured by the 
conservation of the current density. The different signs of 
the quantities I cl ( - I c2 1 and I c; 1 - I C; 1 are caused by 
the fact that the matrix (40) relates solutions in regions 
with the same signs of TO, while the matrix (41) relates 
solutions in regions with the opposite signs of TO [see (30)l. 
In the former case TO changes sign an even number of times 
between the regions, and in the latter case an odd number 
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of times. The matrix (41) and its inverse lead to the rela- 
tions (20), (23) with the replacements cl.2 -+ C ; , ~  and cT2 
+ -cl* ,,,, after which, together with Eq. (43), these rela- 
tions coincide with Eqs. (5.17)-(5.18) of ~ikishov.  lo 

We note that the relativistic motion of an electron in a 
centrally symmetric field in the quasiclassical approxima- 
tion has been considered by Mur, Popov, et ~1.'" '~ How- 
ever, because of the restriction to particular solutions that 
are finite at r=O, expressions for the coefficients c ~ , ~  were 
not obtained by them. 

Up to now we have considered stationary states, for 
which E is a real parameter. Quasistationary states are 
characterized by the presence at f co of only diverging or 
only converging waves. We consider the latter first. For 
z < zl the function describing such a quasistationary state 
should coincide with +p, and for z> z, it should coincide 
with -p. It follows from the relation (20) that this is 
possible if 

cl (E)  =O. (44) 

However, Eq. (44) cannot have real roots, since, if it had, 
the relation (22) would be violated. We shall show that it 
has complex roots with a negative imaginary part. In view 
of the complicated nature of this problem, we shall solve it 
in the quasiclassical approximation, and, therefore, for cl 
we shall use Eq. (39a) (we recall that A, in this formula 
coincides with cl).  We shall seek the solution of Eq. (44) 
in the form E=Eo+ir/2, assuming r to be small in com- 
parison with Eo. Since L and R in the quasiclassical ap- 
proximation are exponentially small, in the first approxi- 
mation we can set E=Eo,  L=R=O, and M=Mo 
=M(Eo). Then Eq. (44) goes over into M ~ + M ~ '  =o, 
whence we obtain an equation for Eo: 

This is the relativistic analog of the Bohr-Sommerfeld 
quantization rule. In the second approximation we can re- 
tain in Eq. (44) only the terms linear in L2 and R2, after 
which it acquires the form 

In the terms containing L2 or R2 we can assume that r = 0  
and that Eo satisfies (45). Then, in these terms, 

2 M=Mo=i(-I)" ,  and L =DL,  R ~ = D ~ ,  where 

are the real positive coefficients of transmission through 
the left and right walls of the potential well, respectively. 
In the first two terms of (46) we replace the function 
M(Eo+iT/2) by the first two terms of the expansion in 
powers of r: 

The quantity T coincides with the period of the oscillations 
of a classical relativistic particle with energy Eo in a poten- 
tial well. Now, using (45), from Eq. (46) we obtain 

Thus, the quantity r has been found to be negative. We 
note a remarkable fact: The unknown quantities pi have 
dropped out of the final result. 

We shall consider now the quasistationary states that 
are characterized by the presence at * w of only diverging 
waves +p and -9. According to the second and third 
equations in (23), the complex energy of such states 
should be determined by the equation cT(E) = 0. In the 
WKB approximation under consideration, for real E the 
function cf (E)  differs from cl (E)  by the replacement of 
quantities in the square brackets in (39a): L2-+ - L ~ ,  
R2-+ -R2, and Ql,,+P1,, and, therefore, the spectrum of 
the energy levels is determined by the previous equation 
(45) while their width is determined by Eq. (50) with the 
opposite sign, i.e., r > 0. For more detail about quasista- 
tionary states with r > 0 see Ref. 19. 

Equations (12) contain the density of the conserved 
probability current. Since in the Klein region outside the 
well the directions of the current and momentum of the 
spinor wave are opposite [see (30)], in quasistationary 
states with converging waves the probability inside the well 
decreases, while in states with diverging waves it increases. 
This agrees with the signs T><O in the first and second 
cases. On the other hand, a probability current opposite to 
the momentum of the wave for .no < -m, should be re- 
garded as a probability current for finding an antiparticle. 
Therefore, in the former case a pair is created: The anti- 
particle moves away from the well, and the particle occu- 
pies a state inside the well. In the latter case an antiparticle 
incident on the well is annhilated with a particle inside the 
well. The decrease of the probability inside the well in the 
former case and its increase in the latter case can be un- 
derstood only if we assume it to be the probability of find- 
ing an unoccupied (vacant) state. Thus, the quasistation- 
ary solutions of the Dirac equation describe, inside the 
well, the evolution in time of unoccupied states: The cre- 
ation of a pair implies the occupation (vanishing) of a 
vacant state, and the annihilation of a pair implies the 
formation of a vacant state. This interpretation of spinor 
quasistationary solutions implies that the particle and an- 
tiparticle obey Fermi statistics. 

We turn now to the interpretation of stationary solu- 
tions in the language of particles and antiparticles. Here we 
use the formula u3=a3/a0 for the velocity of the particles 
(a0 > m, ) and antiparticles (ao  < -m, ) and the fact that 
the particles and antiparticles arrive from the past and go 
off into the future. Then the relation 
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FIG. 2. 

which expresses a solution with positive momentum to the 
left of the well in terms of solutions with positive and 
negative momentum inside the well, can be depicted by 
means of the t, z diagram of Fig. 2a and interpreted as 
follows. A state 

initially not occupied by a particle remains unoccupied 
with probability wo = I c;/c; 1 ', after reflection from a wall 
of the well and is occupied by the particle and antiparticle 
of a pair (generated by the field in the region where 
1 ?rO 1 < ml ) with probability wl = I l/c; 1 '; the particle of 
the pair is described by the function +q in the region where 
?rO>ml , and moves away from the wall into the well, 
while the antiparticle is described by the function +q in the 
region where ?rO < -m, , and moves away to - a. It is 
clear that wo+ wl= 1. For the WKB solutions explicit ex- 
pressions for the probabilities follow from (42): 
wo= 1 - D L  and wl = D L .  The latter expression agrees with 
Eq. (50) for a quasistationary state with converging waves, 
according to which the probability of decay of the vacuum 
state as a result of the formation of a pair in the effective 
time of collision with the left and right walls is equal to 
I r 1 r= DL+ DR (we have considered above, collision only 
with the left wall). A negative sign of r corresponds to a 
decrease of the amplitude of the reflected wave in compar- 
ison with the amplitude of the incident wave, i.e., to a 
decrease of the probability of preservation of an unoccu- 
pied state as a result of the creation of a pair by the wall. 

In an analogous way the relation 

can be depicted by the t, z diagram of Fig. 2b and inter- 
preted as the formation (as a result of annihilation of a 
pair) of a state +q = -c;*/c;*-q - l/c;*-v (not 
occupied by a particle) that was, at first, unoccupied with 
probability wo = I c;/c; 1 ' and occupied by a pair with prob- 
ability w1 = I 1/c; ( ', the particle having been situated inside 
the well and the antiparticle to the left of the well. A 
positive sign of r in the corresponding quasistationary 
state with diverging waves (i.e., antiparticles incident on 
the well) implies an increase of the amplitude of the re- 
flected wave inside the well in comparison with that of the 
incident wave, i.e., an increase, from wo to 1, of the prob- 
ability of finding an unoccupied state because of annihila- 
tion of a pair. 

Finally, the representations 

can be depicted by the t,z diagrams of Figs. 3a and 3b, 
respectively. The first of these describes the creation of a 
pair by the right wall of the potential barrier, as a result of 
which an initially unoccupied antiparticle state -q has 
only a probability wo of remaining unoccupied and a prob- 
ability w, of being occupied by a pair, with the particle 
going off to + and the antiparticle remaining under the 
barrier. The particle and antiparticle are described by the 
functions +q and +q, respectively. The second represen- 
tation (54) describes the annihilation of a pair at the right 

FIG. 3. 
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wall of the barrier, as a result of which an unoccupied 
antiparticle state +p is formed that was previously unoc- 
cupied only with probability wo and occupied by a pair 
with probability w,. It is possible to show that the quasis- 
tationary states corresponding to Figs. 3a and 3b have 
r < 0 and r > 0, respectively, implying a decrease or in- 
crease of the probability of finding an unoccupied antipar- 
ticle state under the barrier. 

Thus, the relations ( 5 1 ), ( 53 ), and ( 54), after division 
by the coefficient c;, can be given a probabilistic interpre- 
tation and it can be assumed that they describe the vanish- 
ing or formation of unoccupied states -p, +cp, -q, +q. If, 
however, we assume, e.g., that the state -4) in (52) is 
occupied by a particle, then by virtue of the Pauli principle 
the creation, by the field, of a pair with an antiparticle in 
the state +g, is forbidden, since in this case the particle of 
the pair should be in the state +q, which is occupied by the 
incident particle reflected from the wall. This is confirmed 
by the zero probability of the transition -q,- + q , t ,  with 
relative amplitude 

and by the unit probability of the transition -q,-+q~,t, 
with relative amplitude 

Here, d3fl = dxdydt, n =pl ,  p2, E, A. According to 
~ e ~ n m a n , ~ '  the relative amplitudes become absolute after 
they are multiplied by the amplitude for the vacuum to be 
maintained in its original state. In our case it is equal to 
c;,/c;,. The formulas (55) and (56) follow directly from 
the representation (7') of ~ i k i s h o v ~ l  for the causal Green 
function. 

The parameters Eo and r play the role of the energy 
and width of a level for the stationary states as well. We 
shall consider, e.g., a solution -4) with an energy E for 
which there are Klein regions to the left and right of the 
well. From the relation -q=A-p+ B+q, where 

it follows that this solution describes an antiparticle inci- 
dent on the well from - a ,  reflected from the well with 
probability ( B 1 2, and passing through it to + with 
probability I A 1 2. Passage of the antiparticle through the 
well can be interpreted1 as annihilation of the antiparticle 
with a particle inside the well and creation of a new pair, 
the particle of which remains in place of that which has 
been annihilated while the antiparticle goes away to + CO. 

If the energy E of the antiparticle is close to the energy E,, 
of the level determined by (44), then expanding the func- 
tion c l (E)  in a Taylor series about the point Eo+iT/2, 
where it vanishes, and using the condition I rl cEo,  we 

obtain c l (E)  =cl(Eo) (E-Eo-ir/2) +..., where c l (E)  
E dcl (E)/dE. Then the probabilities of transmission and 
reflection of the antiparticle depend on E in a resonant 
manner, with a resonance width r :  

At energy E=Eo the quantity IA 1 can reach values al- 
most equal to l ,  so that reflection of the antiparticle from 
the well will be absent. In Sec. 4 it is shown that for a 
triangular well such resonance values of the energy, at 
which the well is completely transparent to antiparticles 
incident on it, really exist. These values are exponentially 
close to Eo in a weak field. In nonrelativistic quantum 
mechanics, particles passing over a well or barrier may also 
fail to be reflected under certain conditions.12 

3. PHYSICAL MEANING OF SOLUTIONS OF RELATIVISTIC 
WAVE EQUATIONS (THE SCALAR CASE) 

A scalar particle is described by the Klein-Gordon 
equation (n2+ m2)$=0, whose solution we shall choose 
in the form ( 1). Then the function p(z)  will obey the 
equation 

[$+ (E- U)'-m, q = O .  I 
The four-current densities and the scalar-field energy den- 
sities are given by the formulas 

Unlike in the spinor case, the energy density TOO of the 
scalar field is everywhere positive. However, in the Klein 
region the quantity j0 is negative, and should therefore be 
interpreted not as a probability density but as a charge 
density (in units of e).  The negativity of j0 in the Klein 
region obviously implies that there the solutions of the 
Klein-Gordon equation describe an antiparticle. 

The quasiclassical asymptotic form of the function q, is 
7 

where 4 and S(z)  are the same as in ( 15) and ( 16). The 
functions *4) and ,g, are introduced in analogy with the 
corresponding spinor functions. The relationship between 
them is given by the same formulas (20), (22), and (23), 
if we take it into account that now, instead of (21), the 
relations 

are fulfilled. In the quasiclassical approximation the coef- 
ficients cl and c2 can be found, as in the spinor case, by 
means of the relationship between the solutions to the left 
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and to the right of the turning points. The latter are given 
in Ref. 13 and coincide with Eqs. (32) with the upper sign. 
Therefore the following matrix equality is valid: 

It follows from (64) that the coefficients cl and c, differ 
from the analogous coefficients in the spinor case by a 
change of sign of L2 and R~ in the square brackets in Eqs. 
(39),  and also by a change of sign of the right-hand side of 
Eq. (39b). Therefore, the spectrum of the energy levels of 
the quasistationary states is determined as before by Eq. 
(45), while the width of the levels is determined by Eq. 
(50) with the + sign ( r  > 0) for states with converging 
waves and with the - sign (I? < 0) for states with diverg- 
ing waves. Thus, the widths of the levels of the scalar and 
the spinor quasistationary states have opposite signs. This 
is due to the fact that a solution of the Klein-Gordon 
equation always describes occupied states, and jp  is the 
electric-current density and not the probability density. 
The signs of the electric current j3 = I A 1 '- 1 B 1 and mo- 
mentum r3 always coincide [see (62)], but the antiparticle 
velocity u3=r3/'lr0 is opposite to the electric current and 
momentum of the waves. Therefore, as in the spinor case, 
quasistationary states with converging or diverging waves 
describe the creation or annihilation of pairs. However, the 
creation of a scalar pair does not require the previous ex- 
istence of a vacant state inside the well; it is considered as 
an increase of the charge inside the well. 

The relation between the scalar WKB solutions to the 
left of the well and the solutions inside the well is imple- 
mented by the matrix 

where 

c;= L-'(l +ele2L2) ,  c;=iL-'(l - Q ~ P ~ L ~ ) ,  (66) 

It follows from (65) that the relations (51), (53), and 
(54) are valid for the scalar solutions, but with the oppo- 
site sign of c; j .  Therefore, the diagrams of Figs. 2 and 3 
illustrate the processes described by the scalar solutions as 
well. Now, however, 1 c; 1 > 1 C; 1 [see (67)], and, there- 
fore, the quantities I c;/ci 1 and I l/c; 1 2, which we denote 
here by no and nl ,  can no longer be interpreted as proba- 
bilities. For creation (annihilation) processes no has the 
meaning of the average number of particles or antiparticles 
emitted by (incident on) a wall, while nl has the meaning 
of the average number of pairs created (emitted) by the 
wall per incident (emitted) particle or antiparticle. The 
quantities that now have the meaning of probabilities are 
wo= I c;/c; 1 and w1 = I l/c; 1 2. For creation (annihilation) 
processes wl is the probability that an emitted (incident) 
particle or antiparticle is created (absorbed) by the wall, 
and wo is the probability that the particle or antiparticle is 

not created (is not absorbed) but is reflected, i.e., wo co- 
incides with the probability that the vacuum is preserved 
upon scattering in the state under consideration: 

On the other hand, in Nikishov's paper21 it is shown that 
the squares of the moduli of the relative amplitudes of the 
transitions -p,-+cp, and -p,-+q,, which have the 
meaning of the relative probability of backward scattering 
of a particle and the relative probability of production of 
one pair by the field, are equal to wo and wl. Then the 
relative probability of the production of 0, 1, 2, ... pairs is 
equal to l + ~ ~ + w ~ + . . . = ( l - w ~ ) - ~ = w ~ ~ ,  and the abso- 
lute probability is equal to C,wgl= 1 (as it should be), if 
we take Eq. (68) into account. The absolute probability of 
scattering of a particle with the accompanying creation of 
0, 1, 2 ,... pairs is also equal to 1 (Ref. 21 ). 

The inequalities I c; 1 >< I c; I in the spinor and scalar 
cases [see (43) and (67)] express the spin-statistics con- 
nection for solutions of the relativistic wave equations. In 
fact, because of the Pauli principle, the creation of a pair 
(see Fig. 2a) in the spinor case must be regarded as occu- 
pation of a vacant state by a particle, as a result of which 
the probability current of the vacant state is decreased 
upon reflection, and in the scalar case must be regarded as 
an increase of the charge, so that upon reflection the flux of 
charge density is increased. 

To conclude this section we note that in strong fields 
condensation of bosons into the ground state can cancel 
completely a field capable of creating pairs.3 Therefore, 
quasistationary states of bosons in such a field have mean- 
ing if the condensation time is sufficiently long. 

4. EXACT SOLUTIONS OF THE WAVE EQUATIONS WITH 
THE FIELD OF A WELL OF SPECIAL FORM 

We shall consider the exact solutions of Eqs. ( 1 1 ) with 
the potential AO(z) = e I z I (ee > 0) of a triangular well. The 
general solution, continuous at z=0, car1 be expressed in 
terms of parabolic-cylinder functions and contains two ar- 
bitrary constants A and A, : 

Here, 
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The quantities F, G, and H a r e  connected with each other 
by the relation 

f l ( x ) = 2 & e m / 2 ~ m [ e - ' f f / 4 ~ i v ( e i f f / 4 x ) D *  rv- 1 (eiff'4x)] 

- 
Here and below, f ( x )  = f ( -x). We note also the equality 

These formulas are easily obtained from general relations 
for parabolic-cylinder functions.,, 

We shall find the functions *q and ,q. The action 
S(z)  for the potential under consideration has the form 

The Klein region is determined by the inequality 8 > 1, and 
the quasiclassical limit by the conditions 

The asymptotic forms of the functions ~ ~ ~ - ~ ( e ' " / ~ f )  for 
f > 2  & (more precisely, for 8- l%vP2I3, v%l)  are given 
by Darwin's formulas:23 

In the region 8+ 1 4  - v - ~ / ~ ,  v) 1 they can be obtained 
from the relation23 

D. ( - e'"/4f) = e f f ~ - ' " ~ ~ .  (e'"/4f) 
rv-p rv-p 

- 

and from Eq. (77). Comparing the asymptotic forms of the 
parabolic-cylinder functions with the asymptotic forms 
(14), we can verify without difficulty that the functions 
-q+ and -q+ should be expressed in terms of ~ , ( e ' " / ~ f )  
and ~ z ( e ' ~ / ~ ~ ) ,  and the functions +q+ and +q+ in terms 
of D,-I (e'ff/4f) and Dz-I (eiffl4f). Thus, the general so- 
lution (69a) reduces to one of the functions * q+ , ,q+ if 
the coefficients A,, A, satisfy one of the conditions 

Expressing one of the coefficients Al, A, in terms of the 
other, substituting the resulting expressions into (69a), 
and using the relations (72) and (74), we obtain 

where 

Here, A and S are arbitrary complex and real constants. 
The functions * q- and ,q- can be obtained from (80) by 
means of the relations (21 ). Substituting the resulting ex- 
pressions for ,q and +q into (20), we find the coefficients 
cl and c2 : 

The normalization of the functions x1,,(z) is chosen in 
order that c l ,  c2 satisfy the relation (22) [see (74)]. We 
note that cl(E) is an entire function of E, while c2(E) is 
the real part of an entire function on the real axis. It fol- 
lows from (82) that Eq. (44), which determines the spec- 
trum of the complex energies of the quasistationary states 
with converging waves, has the form 

Equation (83) can be decomposed into two simpler 
equations: 

=o . 

The functions are related by 

which permits us to write Eqs. (84) in the form 

The equations (84) or (86) determine the s- and a-series of 
complex energy values of the quasistationary states. In the 
nonrelativistic limit 
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the roots of these equations are obtained in the Appendix. 
Using them, and also taking it into account that 
m1 z m  +p; /2m, we obtain 

where the length a is defined in (3), and k("') are the roots 
of Eqs. (4).  Thus, in the nonrelativistic approximation the 
real part of the energy of the quasistationary states coin- 
cides with the energy (3) of the nonrelativistic levels, while 
the imaginary part is exponentially small and vanishes as 
Y+ a. By analogy with the nonrelativistic case, the qua- 
sistationary states with a complex energy satisfying Eqs. 
(84s) or (84a) will be called symmetric or antisymmetric. 

From Eqs. (84) there follow the equalities 

corresponding to an antisymmetric and a symmetric state. 
Substituting (84) and (90) into (80) and (81), we obtain 

The parameter 6 in this formula is complex. 
We shall show now that the wave functions of the 

quasistationary states in the nonrelativistic approximation 
(87) go over into the nonrelativistic wave functions (2). 
For this it is convenient to introduce in place of u, another 
basis: 

in which the function q = q + u +  +p-u- is written in the 
form 

In the standard representation the bispinors ul and u2 have 
the two lower components and the two upper components 
equal to zero, respectively. It  is not difficult to see that in 
the nonrelativistic limit the two lower components of the 
relativistic bispinor q vanish, and the two upper compo- 
nents form a nonrelativistic spinor. In fact, for pl <m we 
have a-n-/4, and for the symmetric solutions we obtain 

while for the antisymmetric solutions we have 

-pl (z) z ~ ~ e "  sgn z . X- (6) , 

-p2(z)  ZAG^'%+({). ( 94a 

In the region (87), using the asymptotic forms given in the 
Appendix for the parabolic-cylinder functions we obtain 

where y= 2?13 ( 1 + 9) z I z 1 /a - k("'), so that the quasis- 
tationary states (94) go over into the nonrelativistic sta- 
tionary states (2). We note that these states are vacant. 

We now consider the behavior of stationary solutions 
when their energy E is close to the energy Eo of the qua- 
sistationary levels. As shown in the Appendix, for e-2"< 1 
the spectrum of values E,, given by the equation 
cl (Eo+ir/2) =0  or H( - x )  =0, differs by an exponen- 
tially small amount from the spectrum of the resonance 
energies E l ,  determined by the equation c2( El) = O  or 
P(  - x l  ) =0, where x l  = 2 &~, / rn ,  . Therefore, for 
E= El z Eo it follows from (82) and (74) that c2=0 and 
Icl 1 = 1, i.e., the well is completely transparent for waves 
with this resonance energy. If we make use of Eqs. (72), 
(74), and (78) at E= El ,  we obtain for the combinations 
- q ~ ~ , ~ ( z )  = -q+ (2) F i-q- (z), which are important for 
the nonrelativistic limit, the expressions 

The solution (96) describes the following process: An an- 
tiparticle is incident from - 03 on to the left wall of the 
well and, without reflection, is annihilated with a particle 
situated inside the well, while at the right wall a pair is 
created, the antiparticle of which goes away to + m. Ac- 
cording to (A1)-(A3), in the nonrelativistic limit -q,(z)  
inside the well goes over into the nonrelativistic wave func- 
tions (2), while -q2(z) outside the well is exponentially 
small in comparison with -ql (z) inside the well. Thus, the 
incident and transmitted fluxes of antiparticles are expo- 
nentially small for v-+ in comparison with the probabil- 
ity density inside the well. The probability of creation of a 
pair by the field of the well is then also exponentially small, 
and coincides exactly with the probability of annihilation 
of a particle incident on the well. We note that the station- 
ary solution that we are considering describes, inside the 
well, an occupied state. Thus, the interpretation of the 
spinor solutions inside the well depends on the boundary 
conditions at k a. In the nonrelativistic limit one obtains 
from the quasistationary states and stationary states with a 
resonance energy the usual nonrelativistic stationary states, 
but in the former case they are vacant while in the latter 
case they are occupied. 

We note that the resonance effects described require 
that the energy be fixed with accuracy AE 5 r ,  whence for 
the spatiotemporal size of the wave packet we obtain 
L-CT wir-I. 

We shall compare Eqs. (89) for a triangular well with 
the transmission coefficient DR at one of its walls (the right 
wall) : 

The solution of the corresponding stationary problem leads 
to the result 
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In the nonrelativistic limit, using the asymptotic formulas 
in the Appendix, we obtain 

Assume that the energy E of the stationary problem 
with the wall (97) coincides with the energy E, of a qua- 
sistationary level in the triangular well, and that the width 
r of the level is sufficiently small. The quantity x l=2  
fi~drn, satisfies then the equation p (  - x ) = 0, and, ac- 
cording to Eqs. (A8)-(A10) and (98), (99), the relation 

holds, where 7-' is the frequency of collision with the 
walls by a classical particle with maximum longitudinal 
momentum pll . In the nonrelativistic approximation the 
validity of the relation (101) can be seen directly from 
comparison of the expressions (89) for r and Eqs. ( 100) 
taken at k=k(s)  or k("). 

In the scalar case the general solution of Eq. (59) for 
the potential under consideration has the form 

where the first and second subscripts on A correspond to 
z > 0 and z < 0. The quantities 

satisfy the relations (72) and (74) if the function P (x )  is 
defined as 

The asymptotic forms of the functions Div- (eiffl4f) 
for 8- 1,v-2/3 and B+ l ( - ~ - ~ / ~  can be obtained from 
(77) and (78). Using these asymptotic forms and the re- 
lations (72) and (74), we find expressions for the func- 
tions +q, and +q,: 

where 

The functions -q, and -9 can be found from (105) by 
means of the relations (63), and the coefficients cl and c2 
can be found by substituting +q, and * q, into the equality 
(20) : 

As in the spinor case, the function c l (E)  is entire, while 
c2(E) is the real part of an entire function on the real axis. 
The energy levels of quasistationary states with converging 
waves are determined by the equation H=O, which is 
equivalent to the two alternative equations 

The first of these corresponds to symmetric states, and the 
second to antisymmetric states. In the nonrelativistic ap- 
proximation these equations are solved in the Appendix. 
The result differs from (89) only that r is positive, in 
agreement with the results and considerations of Secs. 2 
and 3. The wave functions -q, of the symmetric and anti- 
symmetric quasistationary states have the following form: 

- ~ ( z )  =AG~-'* sgn z .  D,-1/2(eiff/4{). (109a) 

In the nonrelativistic limit they go over into the wave func- 
tions (2) (see the Appendix). 

The stationary-state resonance energies, determined by 
the equation c2(E) =O or P (  -x l )  =0, differ as in the 
spinor case from the energies of the quasistationary states, 
but this difference is exponentially small for v ~ l  [see 
(A15)l. 

The transmission coefficient at the potential wall (97) 
is equal to 

In the nonrelativistic approximation for DR we again ob- 
tain the result (100). For energy values coinciding with a 
quasistationary-level energy in the triangular well and for a 
sufficiently small width of the levels, the relations (A1 1 )- 
(A13), (1 lo) ,  and (1  11) lead to the relation 
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It is not difficult to see that the condition of sufficient 
smallness of the level width, which led to Eqs. (A8), 
(A1 1), (101), and (102), has the form 

and is equivalent to the condition DR<l. There are 
grounds to suppose that an exact relationship between r 
and DR, not restricted by the condition that DR be small 
and taking the place of the relations ( 101 ) and ( 112) for 
the Fermi and Bose cases, is given, respectively, by 
constant-sign and alternating-sign series in powers of DR 
(cf. Refs. 24 and 25). 

The authors are grateful to A. I. Nikishov for many 
discussions and valuable advice, and also to V. S. Popov 
and V. D. Mur for numerous useful comments. 

APPENDIX 

Asymptotic expressions for the parabolic-cylinder 
functions of interest to us in the neighborhood of the points 
8= * 1 for Y) 1 have been obtained by Nikishov and Ritus 
by the method described in Ref. 26: 

where 

Here, z=2 &8, y=?I3( 1 - e2), and the first and second 
rows pertain to the regions I O r  1 I 5 Y - ~ / ~ (  1, respectively. 
We give only the leading terms of the dominant and reces- 
sive series, corresponding to the contributions of the high 
and the low saddle points in the contour integral for 
Div-,. We shall give also the asymptotic expression for the 
combination 

=: C(v,O) + 2 [2Ai (y) + e-2rv+2ffi/3~i (e2ri/3y) 1, 
(A31 

valid for Y> 1 near 8= - 1, when ( 8+ 1 I 5 Y - ~ / ~ (  1. 
Finally, the following formula is useful:23 

It follows from ( A l )  and (A3) that the equations 

for the complex energy levels of antisymmetric spinor and 
scalar quasistationary states in the nonrelativistic region 
(v>l ,  8=: - 1) go over, respectively, into the equations 

The complex roots y=yl + iy2 of these equations possess a 
very small imaginary part ( 1 y2 ( < 1 ). We can therefore re- 
place Ai(y) by Ai(yl) +iyzAi1(y1) in the first term of the 
left-hand side of (A5) and we can replace y by y, in the 
second term. Then it follows from (A5) that 

In the latter equality we have used the value of the 
Wronskian Ai(y) Bi' (y) - Ai' (y)Bi(y) = T, which is inde- 
pendent of y. 

The equations (86s) and (108s) for the complex en- 
ergy levels of the symmetric spinor and scalar quasistation- 
ary states differ from (A4) by differentiation with respect 
to x, and therefore the corresponding nonrelativistic equa- 
tions differ from (A5) by differentiation with respect toy. 
Then, in place of (A6), we obtain 

For the zeros of the Airy function and its derivative, and 
also their numerical values, see Ref. 23. 

We note that by using certain exact relations for the 
parabolic-cylinder functions we can obtain for the complex 
energy levels equations whose validity is limited only by 
the condition that the field be small (eC2""41 ). In fact, 
setting x = x l  + ix2 and assuming that I x2 I is sufficiently 
small ( a  weak field), we replace the first of Eqs. (A4) by 
its linear expansion in x2. Then 

where the dot denotes the derivative with respect to -xl 
and we have used Eq. (85) and, for the Wronskian, the 
expression 8.2( 1 1 ) from Ref. 22, according to which, for 
any real x l ,  

At the same time, according to (73), I ~ ( x - x + * )  
-- epmI2p( - x1 ), and, therefore, the quantity x2 will be 
real if x l  satisfies the equation 

Analogously, the second Eq. (A4) in the approximation 
linear in x2 gives 
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- sv/2 
- - [ l - iP(-xl ) ]  

21 ~ i ~ - 1 / ~ ( - e ~ ~ / ~ x ~ )  1 2 '  ( A l l )  

In fact, for real x l  the imaginary part of the numerator 
coincides with half the Wronskian 8.2(11) from Ref. 22: 

and its real part is equal to e-m/2fl( - x l  ). Therefore, the 
value of x2 will be real if 

Using for D and X- and their derivatives in the nonrela- 
tivistic limit the dominant terms of the asymptotic forms 
( A l )  and (A3) and their derivatives, we see that Eqs. 
(AS) and (A10) lead to Eqs. (A6) with the upper sign, 
while Eqs. (A1 1 )  and (A13) lead to Eqs. (A6) with the 
lower sign. 

For the symmetric spinor and scalar quasistationary 
states, Eqs. (A8) and (A1 1) are replaced, respectively, by 

It can be seen that the quantities x2 will be real under the 
same conditions (A10) and (A13) on x ,  . In the nonrela- 
tivistic limit these conditions, together with (A14), reduce 
to (A7). If we solve Eqs. (A4) retaining the next terms of 
the expansion in x2, we obtain in place of (A10) and 
(A13), respectively, 

where x2 is determined by Eqs. (A8) and (A1 1 )  for 
P(-x l )  =O. 

We note that for the scalar case the function P(x) can 
be expressed in terms of the real function W(Y,X) that is 
defined and tabulated in Ref. 23: 

It follows from the tables that for Y =  1 the first three neg- 

ative zeros of the function P(x) correspond to the reso- 
nance energies E/m, = 1.47, 2.06, and 2.43. With increase 
of Y these values approach 1.  
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