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We discuss the interaction of electrons with two-level systems that emerge in some cases 
when a quantum defect is captured by a heavy immobile impurity. We show that the infrared 
renormalizations caused by this interaction lead to a nontrivial temperature dependence 
of the kinetic coefficients of metals containing two-level systems. 

As demonstrated by Kondo (see, e.g., Ref. l ) ,  the 
interaction of electrons in a metal a t h  mobile quantum 
defects (hydrogen isotopes, helium) leads to strong infra- 
red renormalizations of the Green function of the quantum 
defects (defectons) and the electron-defecton interaction 
vertex. As a result the renormalized quantities acquire an 
additional temperature dependence of the Tg type, with g 
depending on the properties of the given metal, that is, the 
dependence is not universal.' The value of the rate of elec- 
tron relaxation caused by electron-defecton scattering, 
re;:, differs from that for electrons scattered by randomly 
"frozen" defects of the same chemical nature, by a 
factor of (T/Eo)g, with Eo the width of the electron con- 
duction band.2 

Such a temperature dependence of the relaxation rate 
leads to a nontrivial temperature dependence of the metal's 
kinetic coefficients in the TK to 8 temperature range, where 
8 is the Debye temperature and TK the temperature at 
which the phases with high and low defect concentrations 

For example, the contribution of scattering on 
defectons to the electrical resistivity has the form 

with po the residual resistivity in the case of randomly 
"frozen" defects of the same chemical nature,' and 

where integration with respect to k and k' is over the 
Fermi surface (FS) , Vo (q) is the initial electron-defecton 
scattering amplitude, and ~ ( k )  specifies the dispersion for 
conduction electrons. By order of magnitude 
g = 2 ~ ~ ( 0 )  v;, with N(0) the density of electron states on 
the FS. For values of N(0) characteristic of metals and 
Vo- 1 eV we have g- 1.0-1. 

Defecton clustering, which leads to the defectons be- 
coming "frozen," hinders the observation of nontrivial 
temperature dependences in the kinetic coefficients of a 
metal containing quantum defects. In some cases, however, 
a situation emerges when as a result of a defecton being 
captured by a heavy fixed impurity a two-level system 
(TLS) is created. The phenomenon is observed in niobium 
when hydrogen is captured by heavy impurities such as 
oxygen, nitrogen, or carbon. The latter occupy the octahe- 

dral interstices in the body-centered lattice of niobium, 
while the hydrogen atoms occupy the tetrahedral inter- 
stices. As a result of the interaction with a heavy C, N, or 
0 impurity, a hydrogen atom occupies at T <  150 K one of 
the two equivalent equilibrium positions corresponding to 
the two closest tetrahedral interstices (Fig. 1) (see Ref. 7). 
A TLS emerges owing to tunneling between these two po- 
sitions of equilibrium, with the quantum defect partially 
retaining its mobility below the clustering temperature as 
well. Hence, it is natural to expect that in this case obser- 
vation' of the nontrivial temperature dependences is possi- 
ble at T <  T K .  

The Hamiltonian of a separate TLS has the form 

where ci+ and c, are second-quantization operators for a 
defecton in the jth potential well, fj represents the TLS 
asymmetry caused by the presence of other crystal defects, 
and Jo represents the splitting of the TLS levels caused by 
tunneling (at f =O). For hydrogen in niobium Jo is of the 
order of 2K (see Ref. 8). 

The interaction of the TLS with electrons is described 
by the Hamiltonian 

where a+(p )  and a(p)  are the electron creation and anni- 
hilation operators, summation with respect to p and p' is 
over the first Brillouin zone, and R, represents the coordi- 
nates of the TLS minima. 

Diagonalizing ZTLS yields 

where 

In terms of this basis the Hamiltonian assumes 
the form 
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FIG. 1. A two-level system in a niobium single crystal: 0 correspond to 
niobium atoms, stands for a heavy impurity atom, and the X designate 
the equilibrium positions of hydrogen atoms. 

Calculating the infrared renormalizations of the initial 
defecton Green function and Vo is a fairly simple task for 
k p < l ,  where a=R2-RI, when we can assume that 
e ' ( p - ~ ' ) . ~ =  1 in Eq. ( 7 ) .  The procedure is similar to that 
used in studies of the anomalies in the x ray emission and 
absorption spectra.9 

In the parquet approximation ( g " l n ( ~ d ~ )  4 1 ) and 
in the T>E temperature range, the quantum-defecton 
Green function t + b j , j ( ~ k )  is given by the following expres- 
sion: 

where E~ is the Matsubara frequency, 5' is the chemical 
potential of defectons, and 

In this approximation the renormalizations of Jo and E can 
be ignored. 

The most divergent parquet diagrams for the self- 
energy part of Y ., . ( E ~ )  and for V ( k )  are depicted in Figs. 

1.1 
2 and 3, respectively. All vertices except the initial are 
equal to Vo and are diagonal in j. 

Let us estimate the asymmetry of TLS on the basis of 
the assumption that the asymmetry is caused by the pres- 
ence of randomly distributed frozen defects of concentra- 
tion c and that the contribution of mobile defects to the 
asymmetry is small compared to that of the heavy impu- 
rities. In the opposite case collective effects in the system of 
mobile defects become important. 

The resulting long-range interaction between impuri- 
ties is given by the sum 

where We], ( R ) is the elastic interaction between defects, 

 gel(^) is the interaction via Friedel oscillations of the 
electron density, R the distance between defects, R the 
elementary cell volume, and b=R/R. Depending on the 
orientation of vector b  in relation to the crystal-lattice axes, 
W ( b )  is either positive or negative, and 

- Pi- ------ +m 
- -- @* FIG. 2. Diagrams for the self-energy part of the 

defecton Green function. The solid and dashed 
lines depict the zeroth Green functions of elec- 
trons and defectons, respectively, and the wavy 
line the V,(q) interaction. 
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FIG. 3. Diagrams for the vertex of the electron- 
defecton interaction V(q). 

where kF is the Fermi momentum, and &(k,O) the static 
dielectric constant. For the interaction between defects of 
different types, I Vo(2kF) I must be replaced by 

where the subscripts 1 and 2 refer to the type of impurities. 
The quantity f is given by the formula 

where summation is over the coordinates Rm of all the TLS 
except the chosen one. 

The reader can easily see that because of the rapid 
variation of cos 2kFR the main contribution to { is pro- 
vided by the interaction via Friedel oscillation of the elec- 
tron density (the elastic-interaction contribution contains 
the smallness parameter d/R): 

x sin ] s i n ( 2 k ~ l ~ - ~ , 1 ) ,  (14) 

where R=R,  + f a, and summation is over fixed (station- 
ary) defects with coordinates R, . 

Since sin 2kF 1 R-R, I rapidly oscillates over atomic 
distances, we consider a simplified model in which we as- 
sume that the product of sines in Eq. ( 14) assumes a value 
in the interval ( - k+, k+) with a probability independent 
of /R-R,I. 

In this case the problem of the distribution of { is 
similar to that of the dipole magnetic-resonance 
linewidth.'' in the c(1 range the distribution of 6 is 
Lorentzian with a characteristic width 

TLS asymmetry can also be formed by elastic interac- 
tion. Deforming the lattice lifts the degeneracy of the TLS 
minima in energy. This leads to TLS asymmetry equal to 

where y is of the order of atomic energy if crystallograph- 
ically the interstices are not equivalent, and of the order of 
the defecton-heavy impurity binding energy if they are 
crystallographically equivalent. Since the deformation gen- 
erated by a point defect falls off like u o f l / ~ I  as the distance 
R increases, the asymmetry caused by this deformation 
also falls off like R-I. The final expression is 

S=c[  Wel,,(d) + Wd(d)k+l. (17) 

The interaction of TLS with other defects changes the 
quasiclassical action S, which determines the tunneling 
probability, by an amount S': 

In order of magnitude, So= m, where M is the mass 
of the tunneling particle, and m the electron mass ( f i=  1 ) - A 
(see Ref. 1 1 ). There are two contributions to S'. One is 
due to the interaction W,,(R) and is, by order of magni- 
tude, equal to Sok+ WeI(R)/Uo, where Uo is the height of 
the potential barrier between the TLS minima, while the 
other is due to the deformation generated by defects near 
the TLS and is, in order of magnitude, equal to 
( a ~ d a u )  U , ~ / R ~ .  For characteristic values of R of the or- 
der of dc1I3, 

where wo is the local frequency of defecton oscillations in 
an interstice. Since S'(1, we can neglect the spread of 
values of Jo in a crystal with a low defect density (c< lop2) 
(see Ref. 12). 
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Let us now consider the contribution of TLS to elec- 
tron damping. This is determined by the diagrams in Fig. 
4. If two Green functions in the defecton bubble depicted 
in Fig. 4(b) correspond to states with different energies, 
the respective inelastic contribution to resistivity contains, 
compared to the elastic contribution (when two Green 
functions correspond to the same state), an additional 
small term (kfl12, which can be ignored. 

To within terms of the order of ( k p ~ ) ~  we get 

where N ,  is the occupation number of the lower level in 
the mth TLS. 

\ Similarly, for the resistivity we have 

where F is the volume of the system, and 

FIG. 4. Diagrams for the self-energy part 
of the electron Green function. A double 
dashed line corresponds to Y , , , ( E ~ ) ,  a 
wavy line with a full triangle at one end 
corresponds to V(q), and a dot-dash oval 
signifies that all defecton bubbles encom- 
passed by it belong to the same TLS. 

Here we have not allowed for the contribution to electron 
scattering introduced by heavy immobile impurities. In ad- 
dition to the additive contribution of these impurities to 
re:: and p, there is an interference contribution to the 
scattering, depicted in Fig. 5. This contribution is temper- 
ature independent and influences the constant component 
in p. 

Let us find the coefficient of (T/Eo)g, using the fact 
that the distribution o f f  is Lorentzian. If S%Jo, then 

where the angle brackets stand for averaging over the TLS. 
When Jo#S, we have 

/ ' 

i 4' 
\ 

' I FIG. I. The interference contribution to the self-energy part 
I / / of the electron Green function. The X corresponds to scat- 

\ < 

I / / tering on an immobile defect, and the dot-dash oval signifies 

I that the quantum and fixed defects belong to the same TLS. 

\ I 
----. -4. -- - -. . - 

I . I . 
J . 
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Thus, in the temperature range from TK to max(G,J,,) 
the expression for rePd has the form T&! =A + B( T/Eo)g, 
where A and B are constants of the same order of magni- 
tude. Since at temperatures much lower than the Debye 
temperature the TLS contribution to the electron relax- 
ation rate is predominant, such a dependence leads to 
anomalous temperature dependences for the kinetic coeffi- 
cients of metals containing TLS. For instance, for the TLS 
contribution to the resistivity we have 

where p, is the contribution to resistivity from immobile 
defects and from interference. The temperature depen- 
dence of p is depicted in Fig. 6. For g-0.3, E-3 X lo4 K, 
and T-30 K, the temperature-dependent term in p 
amounts to several percent. 

Experimental studies of the temperature dependence of 
resistivity of Nb(OH),, Nb(NH),, and Nb(CH), com- 
pounds are undoubtedly of interest. 

FIG. 6. The temperature dependence of the TLS contribution to 
the resistivity of a metal. 
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Translated by Eugene Yankovsky 
This article was translated in Russia, and it is reproduced here the way it 
was submitted by the translator, except for the stylistic changes by the 
Translation Editor. 
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