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The idea of a tensor of elastic moduli with constant superconducting order parameter is used 
in accordance with Landau's theory of phase transitions. A method is indicated for 
determining the components of this tensor on the basis of the experimental data. A relation is 
established between the jump in the heat capacity at the superconducting transition and 
the experimentally measured jumps of the thermal-expansion coefficients and the temperature 
derivatives of the elastic moduli. An interpretation is given for the observed changes in 
the slope angles of the temperature dependence of the thermal-expansion coefficients in a 
YBa2Cu307-, single crystal at the superconducting transition and it is predicted that 
the pressure dependence of the heat-capacity jump in this single crystal is anisotropic. It is 
predicted that superconductivity has an anisotropic effect on the elasticity and some 
second derivatives of the superconducting transition temperature with respect to strains in 
the YBa2Cu207-, single crystal are determined. Some components of the tensor of 
coefficients of superconducting elasticity are determined and it is concluded that the pressure 
derivatives of the parameters in Landau's expansion of the free energy in this single 
crystal are anisotropic. 

1. INTRODUCTION 

In any investigation of the properties of a high-T, su- 
perconductor it is often asserted that these properties are 
anomalous. Such assertions are, in turn, associated with 
the fact that due to the high superconducting transition 
temperature T, superconductivity is found to have an 
anomalously strong effect on a number of the most impor- 
tant properties of high-T, superconductors. Thus, in par- 
ticular, in comparatively recent experimental studies of 
thermal expansion1 and of the elastic of per- 
fect YBa2Cu307-, and La2-,SrXCuO4 single crystals it 
was concluded that superconductivity significantly influ- 
ences the properties investigated. This influence on the 
thermal expansion of YBa2Cu,07-, (Ref. 1 ) and elasticity 
of La2-,SrXCuO4 (Ref. 3) is characterized by very 
strongly expressed anisotropy. Analysis of the experimen- 
tal data of Refs. 1-3 shows that, first, the usual (for the 
superconducting transition) jumps of the thermal- 
expansion coefficients and elastic moduli are determined 
well. Besides this, a significant difference was observed in 
the slope angles of the temperature dependence of both the 
thermal-expansion coefficients and the elastic moduli above 
and below T,. 

In order to analyze the experimental data it is neces- 
sary to have a theory that 1) makes it possible to correlate 
different experimental results, 2) enables quantitative pre- 
dictions on the basis of existing data, and 3 )  makes it 
possible to determine, on the basis of the experimental 
data, the values of the parameters of interest in order to 
develop new theoretical models. 

In the present paper we show how the latest experi- 
mental data for anisotropic crystals of high-T, 
superconductors'-3 can be understood on the basis of 
Landau's simple theory of second-order phase transitions, 

taking into account the effect of the superconducting order 
parameter so as to be able to describe quantitatively the 
superconductivity-induced changes in the temperature de- 
pendence of the thermal expansion and elasticity. In addi- 
tion, we show how to obtain from the experimental data 
the numerical values of the components of the tensor of 
superconducting elasticity coefficients, which characterizes 
the dependence of the elastic moduli on the superconduct- 
ing order parameter. Knowledge of this tensor is necessary 
in order to ascertain the importance of the dependence of 
elasticity on the superconducting order parameter, which 
traditional microscopic theories usually neglect (compare 
Refs. 4 and 5),  in order to construct a theory of supercon- 
ductivity of high-T, superconductors. 

The consequences of Landau's theory of second-order 
phase transitions, in application to the description of the 
anomalies of elasticity of a superconductor, are presented 
in Sec. 2. The idea of the tensor of isothermal elastic mod- 
uli with a constant superconducting order parameter is 
employed. It is this tensor that can be employed directly in 
a theory of superconductivity that takes into account the 
dependence of the elastic properties of a superconductor on 
the order parameter. A relation is established between this 
tensor and the tensor of the experimentally measured elas- 
tic moduli. Relations determining the jump in the temper- 
ature derivative of the elastic moduli at the superconduct- 
ing transition are derived together with the usual jumps of 
the elastic moduli. 

A theory of anomalies of the thermal expansion of 
anisotropic high-T, superconductors is developed in Sec. 3. 
Just as was shown for the elastic moduli, here jumps in the 
temperature derivatives of the thermal expansion coeffi- 
cients at a superconducting transition are established to- 
gether with the usual jumps in these coefficients. Formulas 
relating the experimental results to the parameters in 
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Landau's expansion of the free energy are derived for the 
jumps of such temperature derivatives. A relation is estab- 
lished between the jump in the heat capacity and the jumps 
of the thermal-expansion coefficients and of the tempera- 
ture derivatives of the elastic moduli. 

A method made possible by the theory presented in 
Secs. 2 and 3 for finding the components of the coefficients 
of the superconducting elasticity tensor, which determine 
the dependence of the elasticity on the superconducting 
order parameter, is discussed in Sec. 4. An expression is 
presented for this tensor in the particular case of the BCS 
model. 

Finally, in order to illustrate the possibilities of the 
theory, in Sec. 5 the theory is compared with experiments. 
An interpretation is given for the observed changes in the 
slope angles of the temperature dependence of the thermal- 
expansion coefficients in a YBa2Cu307-, single crystal at 
the superconducting transition and it is predicted that the 
pressure dependence of the jump in the heat capacity in 
this single crystal is anisotropic. It is predicted that the 
effect of superconductivity on elasticity is anisotropic and 
some second derivatives of the superconducting transition 
temperature with respect to strains in the YBa2Cu3O7-, 
single crystal are determined. Some components of the ten- 
sor of superconducting elasticity coefficients are deter- 
mined and it is concluded that in this crystal the pressure 
derivatives of the parameters in Landau's expansion of the 
free energy are anisotropic. 

2. ANOMALIES OF THE ELASTIC MODULI 

We start with the free-energy density FA(T,A,e^) of a 
superconductor as a function of the thermodynamic vari- 
ables: the temperature T, the superconducting order pa- 
rameter A, and the pure-strain tensor :. In order to sim- 
plify the formulas for the tensor expressions, we employ 
below the following notations for the components of the 
stress tensor ei (i= 1-6), where el =el,, e2=e22, e3=e33, 
e4=e23, e5=eI3, and e,=e12. Then the equation of the 
superconducting state of a strained superconductor in the 
absence of a magnetic field will be determined by the rela- 
tion 

In accordance with the free energy FA(T,A,2), we employ, 
by analogy to ferromagnetics, the idea of the tensor of 
isothermal moduli of elasticity with a constant supercon- 
ducting order parameter (see, for example, Refs. 6 and 7) 

The usefulness of such a tensor in application to supercon- 
ductors is due, in part, to the problem of constructing a 
theory of superconductivity that takes into account the 
dependence of the phonon spectrum on the superconduct- 
ing order parameter in a high-T, superconductor.4'5 At the 

same time, as will be demonstrated below, it seems natural 
to employ such a tensor in the thermodynamics of super- 
conductors. 

The equation (2.1 ) determines the order parameter 
A( T,:) as a function of the variables T and E. This makes 
it possible to switch from the free-energy density 
FA(T,A,e^) to the free-energy density F,(T,e^) of a super- 
conductor as a function of the variables T and 8 by means 
of the relation 

The free energy (2.3) makes it possible to determine the 
tensor of isothermal elastic moduli of the superconductor 

which can be measured experimentally. Having in mind, 
e.g., the problem of finding for a superconductor the tensor 
eA(T,A) as a function of A, we now establish a relation 
between this tensor and the experimentally measured ten- 
sor ?(T) of elastic moduli. Using the relations (2.1)- 
(2.4) we find 

Differentiating Eq. (2.1 ) with respect to the tensor ê  with 
T = const gives 

The relations (2.5) and (2.6) make it possible to write 
down the desired relation between the tensors in the form 

We now work out in detail the relations discussed here for 
the neighborhood of a superconducting transition, when 
Landau's expansion in the parameter A can be used for the 
free energy F A (  T,A,e^) : 

where Fo( T,:) is the normal-state free-energy density of 
the metal. Assuming the elastic strains to be small, we 
expand Eq. (2.8) in powers of the strain tensor up to qua- 
dratic terms (compare Ref. 8): 

Here terms -A4ei were retained and terms A4epj were 
neglected. In addition, 
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where we call the tensor 

the tensor of coefficients of superconducting elasticity by 
analogy to the tensor of coefficients of magnetoelasticity 
employed for ferromagnetics (see, for example, Refs. 6 
and 7) .  The tensors ~ ? ( T ) = ( a F d a e , ) ~  and c , ( T )  
=(#~dae,ae,) ,  determine the isothermal internal 
stresses and the elastic moduli of the metal in the normal 
state. 

Using the expansion (2.9), we write an equation for 
the superconducting state (2.1) to within terms linear in 
the strain tensor 

and an expression for the second derivative of the free 
energy in absence of strain (e^=O) 

Differentiating Eq. (2.12) with respect to the tensor 2 with 
T=const we obtain the derivative 

As a result, the relation (2.7), taking into account Eqs. 
(2.13) and (2.14), near the superconducting transition 
temperature assumes for temperatures T < T, the follow- 
ing form (accurate up to quadratic terms in the parameter 
A) : 

In order to specify further the expressions (2.1 1)  and 
(2.15), we must introduce, as is usually done in Landau's 
theory, the temperature dependence of the parameter a 
near the superconducting transition temperature 

a ( T )  = a ( T -  T,). (2.16) 

Then for the tensor C;, (2.11) of the coefficients of super- 
conducting~lasticity, which determine the dependence of 
the tensor cA(T,A) of the elastic moduli on the supercon- 
ducting order parameter A, we obtain 

d l n a  dT, d l n a  dT, d 2 ~ ,  -+-I (2.17) de,+de, dei de,dej ' 

and the expressionA(2.15), which establishes a relation be- 
tween the tensor cA and the tensor 5 of experimentally 
measured elastic moduli of the superconductor, assumes 
the form ( T < T,) 

d ln(a/b) dT, 
- ] A ~ ( T ) ,  

+ de, de, 

where the temperature dependence of the superconducting 
order parameter, in the absence of strain, is determined 
from Eqs. (2.12) and (2.16) by the standard expression 

a 
A ~ ( T )  =- (T,- T ) .  

b 

Since 5 and eA are tensors of rank 4 and the number of 
independent and nonzero components of tensors of rank 2, 
corresponding in our notation to the expressions dTJde, 
and d ln(a/b)/dei, can be reduced in our case to three 
( i=  1, 2, 3), in accordance with the formula (2.18) the 
tensors 5 and eA differ for the components with i, j =i, 2, 
3. For the other components, we have from Eq. (2.18) the 
simple relation 

where 

We also give an expression describing the explicit temper- 
aturc dependence [corresponding to Eq. (2.16)] of the ten- 
sor C ( T )  of the elastic moduli. Using Eqs. (2.17)-(2.19) 
we find ( T  < T,) 

a2 dT, dT, d ln(a2/b) dT, 
c ,(T)=~,(T)--  --+ - [ [ d e ,  de, 2b dei de, 

The expression (2.22) represents the general thermody- 
namic relations derived in Ref. 9 for an arbitrary second- 
order phase transition and worked out in detail for Land- 
au's theory of phase transitions using the expansion (2.9) 
and (2.16) for the free energy. The expression (2.22) de- 
scribes, besides the usually discussed jump of the elastic 
moduli of a superconductor at the phase-transition point 
(see, for example, Ref. 3 )  

the change in the slope angle of the temperature depen- 
dence of the elastic moduli, which is proportional to 
h 2 ( ~ ) ,  at a transition from the normal state into the su- 
perconducting state. As a result, the temperature deriva- 
tive of the elastic moduli (2.22) taken below and above T, 
will undergo a jump by the amount 
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a2 d ln(a2/b) dT, 
6 - =- (2) 2b [ de, dej 

d ln (a2/b) dT, d 2 ~ ,  -+-I. 
+ dej de, de,de, 

We note here that, on the basis of our approximations 
(2.9) and (2.16), the relation (2.24) can be represented in 
a form identical to the result obtained with the model ap- 
proach of Ref. 10 if we set a 2 / 2 b = ~ ,  where N is the 
electron density of states per unit volume at the Fermi 
level. This assumption differs from the BCS model (see Eq. 
(4.16) below) by the numerical factor 42/7[(3) ~ 4 . 7 ,  if 
the temperature is expressed in energy units. Comparing 
the relations obtained above to experiment shows that it is 
convenient to determine the ratio a2/2b from the jump in 
the heat capacity at the phase-transition point 

where 6Cu(T,) is the jump in the heat capacity at constant 
volume per unit volume. Here no distinction need be made 
between the jumps of the heat capacity at constant volume 
6Cu(T,) and at constant pressure SC,(T,), since this dif- 
ference is small.'O 

3. THERMAL-EXPANSION ANOMALIES 

In the case of free thermal expansion the components 
of the internal-stress tensor in a superconductor should 
vanish. Thus if one works with the free energy FA ( T,A,e^), 
then one should talk about the tensor P ( T , A , ~ ^ )  of iso- 
thermal internal stresses with constant superconducting 
order parameter. Under these conditions the thermal ex- 
pansion of the superconductor will be described by the 
equation 

which determines the strain tensor @(T,A) as a function 
of the variables T and A. Here and below, by analogy to 
the strain tensor e ,̂ the notation a, (i= 1-6), where 
u l = u l l ,  u2=uz2, u3=u33, ff'$=ff23, (Ts=u13 and u6=u12, 
is employed for the components of the stress tensor 6. 

We now introduce the tensor of linear thermal- 
expansion coefficients of the superconductor with constant 
order parameter by the following relation: 

Then, differentiating Eq. (3.1 ) with respect to the temper- 
ature with A=const and using the definitions (2.2) and 
(3.2), we obtain 

Switching to the free energy F,(T,e^) (2.3), we have in- 
stead of Eq. (3.1 ) the following equation, describing the 
thermal expansion of the superconductor 

which determines the strain tensor 2 ( T )  as a function of 
temperature and makes it possible to introduce the tensor 
of the linear thermal-expansion coefficients of a supercon- 
ductor, usually employed in experiments: 

We now establish a relation between the tensors @( T )  
and BA(T,A). For this we differentiate Eq. (3.4) with re- 
spect to the temperature and use the definitions (2.2) and 
(3.5). Then we obtain 

Next, using the relations (2.6), (2.7), and (3.3) we obtain 
the desired relation 

We now consider the consequences of the relations (3.3) 
and (3.7) near a superconducting transition, when the 
free-energy expansion (2.9) can be used. Then we have 

and the relation, following from Eqs. (2.10) and (3.3), 

up to terms quadratic in the order parameter A. In Eq. 
(3.9) the corrections of order c,>@A2 are small because 
the parameter ( d ~ ~ d e , ) @ 4  1 is small. We find from Eq. 
(3.9) the following expression for the tensor of thermal- 
expansion coefficients of the superconductor with constant 
order parameter 

where 

is the tensor of thermal-expansion coefficients of the 
normal-state metal, and 

1 d2a a 
p:= -- [?.]-I - = -- 

d l n a  
J 2 ( a ~ d e )  2 [ q i 1 7 .  (3.12) 

Next, using the expressions (2.13), (2.14), (2.16), and 
(2.19), we find from Eq. (3.7) a relation between the ten- 
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sor @ and bA of the thermal-expansion coefficients near the 
superconducting transition temperature ( T < T,) 

In order to obtain an explicit expression for the experimen- 
tally measured tensor p"( T )  of thermal-expansion coeffi- 
cients of the superconductor, we employ the formulas 
(2.16), (3.3), (3.8), and (3.1 1). Then we obtain from Eq. 
(3.13) ( T  < T,) 

where the temperature dependence A ~ ( T )  is determined 
by Eq. (2.19). 

The expression (3.14) represents the general thermo- 
dynamic relations, derived in Ref. 9 for an arbitrary 
second-order phase transition, applied to Landau's theory 
of phase transitions using the expansion (2.9) and (2.16) 
for the free energy. 

The main difference between expression (3.14) and the 
corresponding result of Ref. 10 is that it was written to 
within terms quadratic in the order parameter A, and for 
this reason it describes not only the usual jumps of the 
thermal-expansion coefficients at the phase-transition point 
(see, for example, Ref. 1) 

but it also describes the change in the slope angle of the 
temperature dependence of the components of the tensor 
@ ( T )  at the transition into the superconducting state. As 
a result, it is possible to describe the jump in the temper- 
ature derivative of the thermal-expansion coefficients, 
which is taken above and below T,, by the amount 

Comparing the expressions (2.24) and (3.16), we can 
establish with the help of Eq. (2.25) an identity relating 
the jumps of the temperature derivatives of the elastic 
moduli and the thermal-expansion coefficients to the jump 
in the heat capacity 

Since the quantities appearing on the left-hand side of the 
formulas (3.16) and (3.17) can be measured experimen- 
tally, just like the jump in the heat capacity SC,(T,) and 
the tensor of elastic moduli C?, the relations (3.16) and 
(3.17) make it possible to determine the parameters of 
superconductors, such as the derivatives d ln(a2/b)/dei 
and (d2 ~ d d e , d e  ) . 

4. POSSIBLE EXPERIMENTAL DETERMINATION OF THE 
TENSOR OF COEFFICIENTS OF SUPERCONDUCTING 
ELASTICITY 

The situation is simplest for the components of the 
tensor Cl> of superconducting elasticity, which correspond 
to the components cj of the tensor of elastic moduli, 
which do not change discontinuously at the superconduct- 
ing transition (i.e., i=4, 5, 6 or j=4 ,  5, 6),  and for which, 
according to Eq. (2.21), it is sufficient to know the coeffi- 
cient a and the derivatives d2Tdde,dej. Since for such 
coefficients the formula (3.17) assumes the form 

it is obvious that if the jump of the temperature derivative 
of the elastic moduli and the jump of the heat capacity, 
which are determined experimentally, are known, then the 
derivatives d2~dde ,de j  can be found directly. 

The coefficient a can be determined by using the ex- 
perimentally determined temperature dependence of the 
squared order parameter near T,, when in the absence of 
strain we have from Eq. (2.19) 

Correspondingly, and using the expression (2.25), we find 

Thus we obtain, for the components of the tensor C;j with 
i=4, 5 , 6 o r  j=4 ,  5,6,fromEqs. (2.21), (4.1),and (4.3) 
the following expression: 

Somewhat more experimental information is required 
in order to determine the tensor components C;j with i , j  
= 1, 2, 3, which correspond to the components of the elas- 
tic moduli which undergo a jump at a phase transition. 
Here it is sufficient to know in addition the quantities 
dTJdei and d In a/dei. 

The pressure derivatives of the superconducting tran- 
sition temperature are usually determined experimentally. 
If we now switch to derivatives with respect to the pressure 
tensor p̂  = - b0 by means of the relation 

then, for example, Eqs. (3.15) and (3.16) will assume the 
form 
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Here the expression (2.25) was also taken into account. If 
the pressure (anisotropic) derivatives of T, are determined 
experimentally, then the required values of the derivatives 
dTJdei can be determined with the help of Eq. (4.5) and 
the known tensor of elastic moduli of the normal-state 
metal. Similarly, the formula (4.7) or the equivalent for- 
mula (3.16) makes it possible to find 

from the experimentally measured jump of the temperature 
derivative of the thermal-expansion coefficients. However, 
this is still not enough in order to find the derivatives 
d In a/dei experimentally. The desired derivatives can be 
found by determining experimentally the strain (or pres- 
sure) dependence of the slope angle of the temperature 
dependence of the squared superconducting gap near T,, 
since 

Then we find from Eqs. (4.8) and (4.9) 

d l n a  

dei 
(4.10) 

Now, using the relations (2.17), (3.17), (4.3), and (4.10), 
we can write the tensor Cl> of coefficients of superconduct- 
ing elasticity for any i and j in the following form: 

where 

In order to have some idea of the possible magnitude of Qij 
we point out that in the particular case of the BCS model 

where k is Boltzmann's constant and c(3)  -- 1.20. In ac- 
cordance with Eqs. (4.13) and (4.14) we have, according 
to the BCS model, 

Finally, we point out that according to the BCS model 

where N is the electron density of states per unit volume at 
the Fermi level. 
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5. DISCUSSION AND RESULTS 

We now discuss the consequences of the theory, ex- 
pounded above, in application to experiments with 
YBaCuO single crystals, which have orthorhombic struc- 
ture near the superconducting transition temperature. We 
begin our discussion with thermal expansion, having in 
mind the remarkable experimental results of Ref. 1 on 
thermal-expansion anomalies of YBaCuO-single crystals. 
The thermal expansion of an orthorhombic lattice is deter- 
mined by three expansion coefficients g ( T )  ( i=  1, 2, 3) 
along the axes a, b, and c, respectively. In Ref. 1 a strong 
anisotropy was observed in the anomalous behavior of the 
thermal expansion of a YBaCuO single crystal near the 
superconducting transition. In particular, it was found that 
the jumps in the thermal-expansion coefficients %( T )  at 
T = T,= 9 1 K along the a and b axes have different signs 
Spa( T,) -- -tipb( T,), and no jump was observed in the 
thermal expansion coefficient along the c axis: SPS,( T,) 2:O. 
The experimental results of Ref, 1 were analyzed with the 
help of Eq. (4.6), on the basis of which it was concluded 
that the pressure derivatives of the superconducting tran- 
sition temperature dTJdpi are strongly anisotropic along 
the a, b, and c axes. The following estimates were given: 
dTJdpa= -1.9 K G P ~ - ' ,  d T J d ~ ~ ~ 2 . 2  K G P ~ - ' ,  and 
dTJdp,=O. In addition, another thermal-expansion 
anomaly-for which an interpretation has still not been 
found-was observed in Ref. 1: The jumps in the temper- 
ature derivatives of the thermal-expansion coefficients 
along the a, b, and c axes at T= T, are strongly aniso- 
tropic. On the basis of Eqs. (3.16) and (3.17) of our paper, 
this anomaly of the thermal expansion is natural and con- 
nected with the analogous anomaly of the temperature de- 
rivatives of the elastic moduli (2.24). The experimental 
data of Ref. 1 can be used, together with Eq. (4.7), to find 
the derivatives d ln(a2/b)/dpi, which determine the jumps 
in the temperature derivatives of the thermal-expansion 
coefficients. According to Ref. 1 we have 
6C,(Tc)/T,=0.47 m ~ / c m ~ . ~ ~  and for the jumps of 
the derivatives S (dg /dT)  2: -S(dpSddT) -S(dpJdT) 
2: -2.2 lop8 K - ~ ,  measured along the a, b, and c axes, 
respectively. Then, according to Eq. (4.7), the jumps, mea- 
sured in Ref. l ,  in the temperature derivatives of the 
thermal-expansion coefficients give the following values for 
the pressure derivatives parallel to the three axes 

which are thus found to be anisotropic, and they are of the 
same absolute order of magnitude as the pressure deriva- 
tives d ln TJp,= -2.1 - GPa-' and d ln TJpb 
=2.4. GP~- ' .  We note here that the BCS model the 
ratio a2/b is proportional to the electron density of states 
N at the Fermi level. In spite of the limited applicability of 
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the BCS model, it can be conjectured that the pressure 
derivatives of the electron density of states N along differ- 
ent axes are also anisotropic. 

The anisotropy of the derivatives dT,Jdpi and 
d ln(a2/b)/dpi suggests a corresponding anisotropy of the 
heat-capacity jump at the phase transition as a function of 
the pressure applied along different axes a, b, and c in a 
YBaCuO single crystal. For this, using Eq. (2.25) we cal- 
culate the derivative 

where we have neglected the insignificant difference in the 
jumps of the heat capacities SC, and SC,. On the basis of 
Eq. (5.2) and the values presented above for dTJdpi from 
Ref. 1 and using also our data (5.1 ) , we find the following 
anisotropic values of the pressure derivatives of the loga- 
rithm of the jump of the heat capacity: 

The predicted values of the pressure derivatives (5.3) are 
found to be of the same order of magnitude as the pressure 
derivatives d ln TJdp, and d ln(a2/b)/dpi. The depen- 
dence of the heat capacity jump SC, on the stresses in the 
superconductor was observed in Ref. 11 experimentally in 
the compound with the structure of A-15 V3Si and it was 
interpreted in Ref. 12, where it was conjectured that the 
effect under discussion is produced mainly by the stress (or 
strain) dependence of the superconducting transition tem- 
perature. For YBaCuO single crystals we point out that, 
first, this effect is anisotropic and, second, both terms on 
the right-hand side of Eq. (5.2) are of the same order of 
magnitude. The latter fact distinguishes qualitatively the 
result of our analysis for YBaCuO from the corresponding 
analysis of Ref. 12 for V3Si. 

On the basis of the experimental data on the anisotropy 
of thermal expansion of YBaCuO single crystals,' we now 
discuss the consequences for the elastic properties of the 
orthorhombic crystal YBaCuO, which are determined by 
nine moduli of elasticity. In connection with the formulas 
(2.23) and (2.24), it is convenient to use Eq. (4.5) to 
transform from the pressure derivatives dTJdp, and 
d ln(a2/b)/dpi to the corresponding derivatives with re- 
spect to the components of the strain tensor along the a, b, 
and c axes. This transformation was made in Ref. 1 for 
derivatives of the superconducting transition temperature, 
where the following values are given for the strain deriva- 
tives of T,: dTJdea=217 K, dTJdeb= -316 K, and 
dTJde,? - 30 K. The derivative dTJde, was found to be 
an order of magnitude smaller than the two other deriva- 
tives. Here one should note the possible inaccuracy of such 
a conversion, since the experimentally known set of moduli 

of elasticity of YBaCuO single crystals13 =230 GPa, c2 = 100 GPa, q3 = 100 GPa, and c3 = 150 GPa is insuf- 
ficient for conversion using Eq. (4.5), and in Ref. 1 the 
approximations c2z el and e3 z c3 were employed. As 
a result of such an approximation, for example, for the 
derivative dTJde,z - c3 ( d ~ J d p , + d ~ J d p ~ )  the terms 
dTJdpa= - 1.9 K G P ~ - '  and dTJdpb=2.2 K Gpa-' 
cancel significantly, and this could be why dTJde, is so 
small. Keeping in mind this remark and the pressure de- 
rivatives (5.1 ), we also present the corresponding values of 
the derivatives with respect to the strains along the a, b, 
and c axes: d ln(a2/b)/dea- - 10.8, d ln(a2/b)/deb= 1.4, 
d ln(a2/b)/dec- -7.0. For comparison we also give the 
dimensionless derivatives following from Ref. 1: 
d In TJdea-2.4, d In TJdeb-- -3.5, d In TJde,= -0.3. 

It can be asserted on the basis of Eq. (2.23) that only 
the elastic moduli c, with i , j  = 1, 2, 3 can undergo jumps 
at a phase transition. Since the parameter b is positive, the 
diagonal components of the elastic moduli q l ,  C22, and 
C63, will become softer at the superconducting transition. 
The sign of the jump of the off-diagonal (i#j= 1, 2, 3) 
components of c, depends on the sign of the derivative 
(dTJde,) (dTJde,), and for this reason these components 
of the tensor of elastic moduli can become stiffer at T =  T, .  
The results of Ref. 1, indicated above, on the anisotropy of 
the derivatives dTJdei enable us to predict that the jumps 
of the elastic moduli of YBaCuO single crystals at T =  T ,  
will exhibit corresponding anisotropy. Keeping in mind the 
data of Ref. 1 presented above for SCJT, and for the 
derivatives dT,Jdei, we find the corresponding magnitudes 
of the predicted jumps for the diagonal components 

SCql(Tc)=-22 MPa, SG2(Tc)----47 MPa, 
(5.4) 

SG3( T,) - -0.4 MPa 

and the off-diagonal components 

SG2(  T,) - 32 MPa, SCd;,(T,) 3.0 MPa, 
(5.5) 

SC",,(T,) - -4.4 MPa 

of the elastic moduli of YBaCuO single crystals. We note, 
first, that the jumps of the off-diagonal components 
S G 2  ( T,) and S q 3  ( T,) are positive. This corresponds to 
stiffening of the corresponding elastic moduli at the super- 
conducting transition temperature. Second, we note the 
small magnitude of the jumps of the elastic moduli Sc3  
(i= 1, 2, 3). This is a consequence of the above fact that 
the derivative dTJde, is small, which could be due to the 
inaccuracy of the analysis of the experimental data. 

We now compare the estimates obtained above to ex- 
isting experimental for the relative jumps of the 
speeds of longitudinal sound waves S V1/ V, and S V3/ V3 at 
T =  T, in a YBaCuO single crystal, which are determined 
by the corresponding relative jumps of the elastic moduli 
S q , / 2 C l  and SG3/2c3.  This gives the estimate 
6 q , / 2 c 1 -  -4.8 where we used c 1 = 2 3 0  GPa, 
according to Ref. 13. This estimate is close to the relative 
softening of the speed of a sound wave 
SVl/V1 -- - 5 . measured in Ref. 2. For the elastic 
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modulus we have the estimate 6C"3,/2C3= - 1.3 
where C3- 150 Gpa,13 which is significantly less than for 
the modulus GI. On the one hand, this corresponds to the 
result of Ref. 14, where no anomaly was observed in the 
speed V3, determined by the modulus G3,  of a longitudinal 
sound wave at the superconducting transition. On the 
other hand, however, a year after Ref. 15 was published the 
same group observed the jump 6 V3/ V3 -- - 5 . lop5, just as 
for 6V1/Vl and significantly larger than the estimate 
6CJ3/2C3= - 1.3. Using now the experimental re- 
sult of Ref. 15 SV3/V3 - -5 . and the values 
SC,/Tc=0.47 m ~ / c m ~  - K2 (Ref. 1 ) and c3 = 150 G P ~ ,  l3 

we obtain on the basis of Eq. (2.23) the estimate 
(dTJde,I - 180 K of the absolute value of the derivative, 
which is significantly greater than the value obtained for 
this derivative in Ref. 1. As we have noted above, this 
discrepancy could be due to the error introduced by the 
approximation c3 -- c 3 ,  employed in Ref. 1. Just as for 
the off-diagonal (i# j = 1, 2, 3 ) components of the tensor c,, we are not aware of any experimental measurements of 
temperature dependence for the elastic modulus G2.  

Besides jumps of the elastic moduli G1 and C"3, of a 
YBaCuO single crystal at T =  T,, in Refs. 2 and 15 jumps 
were observed in the temperature derivatives of the elastic 
moduli 6(dGl/dT) -- - ( 6 -  K p 1 ) c l  (Ref. 2), 
S(dG3/dT) - (2.6. lop5 K- ' )C3  (Ref. 15) and 
6(dC44/dT) -- - (1.2. lop4 K-')@, (Ref. 15). Given the 
experimental data of Ref. 1 on the jumps of the tempera- 
ture derivatives of the thermal-expansion coefficients in 
this crystal, the values of SCJT,, c, ( j  = 1, 2, 3), and c3 =: c3 and C 3 ,  indicated above, and using also @, = 25 
Gpa,15 we can calculate, on the basis of Eq. (3.17), the 
corresponding second derivatives of the superconducting 
transition temperature with respect to the strains. In this 
manner we obtained the following values: 

which are two orders of magnitude greater than the first 
derivatives of In T ,  with respect to the strains. This fact 
was pointed out in Ref. 10, where an estimate is given for 
the dimensionless derivative T;'d2~dde2- - lo3 with re- 
spect to the pure shear strain for YBaCuO ceramic. The 
question naturally arises of how specific a property of 
high-T, superconductors such the large magnitude of the 
derivatives (5.6) is. In order to answer this question we 
employed the experimental data of Ref. 16, where a jump 
was observed in the temperature derivative of the shear 
modulus C6, in a cubic single crystal of the low- 
temperature superconductor vanadium with Tc=5.4 K. 
From Ref. 16 we found S(dC&/dT)=(4.6- lop5 
K-I)@,, @,=46 GPa. Then, since the formula (3.17) 
assumes the simpler form (4.1 ) for the shear modulus, and 
using the data SCJT,= 1.62 m ~ / c m ~  . K2," we obtain 
d 2 ~ d d e $  -- 1.3 . 1 o3 K. The corresponding dimensionless 
derivatives T; ' d 2 ~ d d e ;  -- 24 1 for vanadium and 
T;'d2~dde;= -70 for YBaCuO single crystals are of the 
same order of (absolute) magnitude. The difference in the 

signs of these derivatives corresponds to softening of the 
shear modulus C, in vanadium and stiffening of the mod- 
ulus Cr, in YBaCuO at the superconducting transition. We 
call attention here also to Ref. 18, where anomalously large 
values of the second derivatives of T, with respect to both 
shear and compressive strains were established for super- 
conductors with A-15 structure V3Si and V3Ge. Thus the 
anomalously large relative values of the second derivatives 
of T, with respect tb the strains are not typical only of b. 

We now calculate the components of the tensor Cij 
(4.1 1) of coefficients of superconducting-elasticity for a 
YBaCuO single crystal. According to the experimental 
data of Ref. 19, the BCS theory describes well the squared 
superconducting order parameter h2( T )  at temperatures 
T 6 T, in a YBaCuO single crystal. Then, according to Eq. 
(4.13), we obtain near T, the value of the derivative 
( a ~ ~ / a ~ ) ~ = ~ - -  -6.32 mev2/K at Tc=91 K. Since for the 
shear modulus @, the experimental value of the jump in 
the temperature derivative is known S(dC44/dT) 
- 3 .  lop3 GP~/K," according to Eq. (44) it is easy to 

calculate the corresponding value of the component of the 
superconducting-elasticity tensor 

This component is the only component of the tensor Cij 
which can be determined for YBaCuO single crystals di- 
rectly from experiment. In estimating the other compo- 
nents Cij we hypothesize that the second term in braces on 
the right-hand side of Eq. (4.11 ) can be neglected. In order 
to elucidate the meaning of this hypothesis for YBaCuO, 
we indicate first that according to Ref. 1 SC,=4.3 . 
GPa/K. This expression should be compared with the ex- 
perimental values S (dG l/dT) - - 1.4 . lo-' (GPa/K) 
(Ref. 2) and S(dG3/dT) -- -3.9. (GPa/K) (Ref. 
15). It is obvious that this hypothesis can be violated for 
C;, only if the inequality Q1 <3 . lo2 is violated and for 
Ci3 if the inequality Q33g 1 . lo2 is violated. Since according 
to Eq. (4.15) @Fs- 11 and &FS=0.2, the assumption 
made above can break down only if the values of the de- 
rivatives ( a 2 h 2 / a e j ~ )  for i= 1, 3 in YBaCuO exceed their 
BCS values (4.14) by approximately two orders of magni- 
tude. For this reason, our assumption reduces to the asser- 
tion that such a large excess does not occur. Then it is 
found that the following estimates can be given: 

We now estimate the pressure derivatives along the a, 
b, and c axes of the parameters a and b in Landau's ex- 
pansion of the free energy in a YBaCuO single crystal. For 
this, we use the relations (4.5) and the expression (4.8) to 
switch in Eq. (4.10) to derivatives with respect to the pres- 
sure tensor. Then we obtain 

As noted above, according to the experimental data of Ref. 
19 for the derivative ( a ~ ~ / a ~ ) ; , ~ ,  the relation (4.13) 
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holds in a YBaCuO single crystal. We now estimate, ac- 
cording to the BCS model, the derivative (a2h2/dp&3~) 
= - [8d/7c(3)]dTJdpi, which we do not know from ex- 
periment. Then the second term on the right-hand side of 
Eq. (4.9) reduces to the derivative -d In TJdpi. Since for 
the c axis the experimental value of the derivative satisfies 
d ln TJdp, - 0 according to Ref. 1, it can be assumed that 
the second term on the right-hand side of Eq. (5.9) is small 
compared to the first term. Thus the following relation can 
be obtained for the c axis from Eqs. (5.1 ) and (5.9): 

d l n a  d l n b  
-~-=4.7. lo-* GP~- ' .  

dpc dpc 

For the two other axes a and b the experimental values1 of 
the derivative d In TJdp, indicated above are only two 
times smaller than the corresponding experimental values 
of the derivative d ln(a2/b)/dpi given by (5.1). As a re- 
sult, the second term on the right-hand side of Eq. (5.9) 
for the a and b axes cannot be neglected. Nonetheless, 
because of the strong anisotropy of the derivatives (5.1) 
and d In TJdpi, on the basis of this analysis we can con- 
clude that the pressure derivatives along different axes of 
the parameters in the Landau expansion of the free energy 
in a YBaCuO single crystal are anisotropic. 

Finally, we note that the anisotropic effect of super- 
conductivity on the elastic properties was also observed in 
single crystals of a different high-T, superconductor, 
L ~ ~ - ~ S ~ ~ C U O , . ~  It was observed that the elastic modulus 
C63, charges discontinuously at T = T, , while the modulus 
G1 does not manifest such an anomaly.3 On this basis and 
in accordance with Eq. (2.23), it can be conjectured that 

I dTJde, ( 4 I dTJde, ( . The change in the slope angle of 
the temperature dependence at a superconducting transi- 
tion is demonstrated in Ref. 3 for both the elastic moduli 
Cf, and G3 and for the shear elastic modulus C&. On the 
other hand, the other shear modulus CG, does not exhibit 
any anomaly near T, (Ref. 3). This suggests that the sec- 
ond derivative of the superconducting transition tempera- 
ture with respect to shear strains (2.21) is anisotropic in 
LaSrCuO. Unfortunately, we do not know of any experi- 
mental results on thermal expansion of LaSrCuO single 
crystal near T, similar to the data of Ref. 1 for YBaCuO, 
and this makes it difficult to perform a study for LaSrCuO 

single crystals similar to the one performed above for 
YBaCuO single crystals. 

Thus our analysis shows how it is possible to determine 
an entire series of important parameters of superconduct- 
ors and, in particular, how to establish the relation between 
the elastic properties and the superconducting order pa- 
rameter by studying simultaneously anomalies of the ther- 
mal expansion and elastic moduli of single crystals of 
high-T, superconductors near the superconducting transi- 
tion. 
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