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The paper considers the behavior of disordered three-dimensional systems with quenched 
structural disorder, in which the loss of stability of the uniform state occurs by the Landau 
"soft mode" mechanism. By means of a variational principle based on a second Legendre 
transformation the conditions for the existence of glass phases with broken replica symmetry 
are analyzed and the free energy of the systems under consideration is calculated with 
allowance for the appearance of glass phases. Phase diagrams for this class of systems are 
constructed numerically and analyzed. 

1. INTRODUCTION 

Many physical systems exhibit phase transitions asso- 
ciated with instability of their spatially uniform state 
against arbitrarily small fluctuations of the order parame- 
ter with a certain finite wave number go. (Besides ordinary 
~rystallization,"~ this class of phase transitions also in- 
cludes a number of structural phase transitions in liquid 
 crystal^^-^ and polymers.6-14) If such a system is charac- 
terized by some quenched structural disorder, the observ- 
able quantities are determined by averaging the free energy 
and the appropriate derivatives of it over a specified distri- 
bution of this disorder. (For a mixture of molecules with 
different geometric and energetic characteristics such dis- 
order is described by the set of concentrations of molecules 
of all the types represented in the system.) 

An important place amongst investigations of systems 
with quenched structural disorder is occupied by the anal- 
ysis of phase transitions in polymer in which 
the onset of quenched topological disorder in the arrange- 
ment of links of different kinds along a polymer chain is 
dictated by the statistical nature of the polymerization 
process.18 A remarkable distinctive feature of polymer sys- 
tems is the fact that the coefficients of the Landau expan- 
sion of the free energy in powers of the order parameter are 
uniquely related to the topological structure of the macro- 
molecules and can be calculated explicitly. (The latter pos- 
sibility is based on the fundamental circumstance that, over 
the larger scales that are typical of polymers in comparison 
with those for low-molecular-weight systems, their corre- 
lation properties are determined principally by the very 
fact of the connectivity of the links in the macromolecules, 
and this has made it possible to develov analvtical and 

perturbation is related to the dispersion of the properties of 
the molecules composing the system, and can be calculated 
explicitly for any given distribution. '6*20 

In Refs. 15-17 such a procedure was used to investi- 
gate structural phase transitions of the weak-crystallization 
type in statistical polymer systems. However, as was first 
noted in Ref. 21, because of a special degeneracy of the 
Hamiltonian describing the statistical polymer systems 
considered in Refs. 15 and 17 the free energy of the ordered 
state in them does not depend on the symmetry type of the 
corresponding crystal (or quasicrystalline) lattice. In other 
words, the ground state of such systems is infinitely degen- 
erate. In this sense, they behave below the transition point 
as a spin glass.22,23 In fact, the authors have shown in Ref. 
24 that this analogy is exact and that, for a broad class of 
systems that have quenched structural disorder and are 
described by a Hamiltonian of a rather general form, there 
is a phase transition associated with the appearance of non- 
zero inter-replica correlations-the formation of a glass 
phase. In this paper we construct the phase diagrams of 
such systems and discuss the physical meaning of the glass 
phases. 

In Sec. 2 we obtain an expression for the free energy of 
the systems under consideration, using a variational prin- 
ciple based on a second Legendre transformation for the 
generalized weak-crystallization Hamiltonian describing 
the loss of stability of the uniform state of statistical poly- 
mer systems by a soft-mode mechanism. Typical phase di- 
agrams, constructed both by analytical and by numerical 
investigation of this expression, are given in Sec. 3. The 
range of applicability and physical meaning of the results 
obtained are discussed in Sec. 4. 

numerical methods to calculate these  coefficient^.^'".'^) 
This feature of polymer systems makes it possible to stan- 2. THE VARIATIONAL PRINCIPLE AND CALCULATION OF 

dardize the procedure for averaging the free energy and THEFREEENERGYOFTHEGLASSPHASE 
- - - - 

observable quantities of statistical polymer systems. In par- We shall consider a system of (macro)molecules with 
ticular, this is achieved through the replica formalism by a certain quenched structural disorder G (for a mixture of 
introducing a perturbation associated with the interaction molecules with different geometric and energetic charac- 
of fluctuations of the order parameter in different replicas teristics this disorder is described by the set of concentra- 
(for more detail, see below). Here, the magnitude of this tions of molecules of all the types represented in the sys- 

307 JETP 77 (2)' August 1993 1063-7761 1931080307-08$10.00 @ 1993 American Institute of Physics 307 



tem). Let the probability that the system is in a state with 
a given configuration of structural disorder be P(G). In 
this case, to calculate the thermodynamic characteristics of 
the system it is necessary to average the free energy of the 
system over all possible distributions of the structural dis- 
order G: 

where F(G)  is the free energy of the state with specified 
structural-disorder configuration G. For the average over 
configurations it is convenient to use the replica formalism, 
introducing n identical systems (replicas) and rewriting 
the expression ( 1 ) in the form 

F= - Tlim{l/n[exp( -Fn/T) - 11) 
n-0 

(2)  

Here, the averaged (over all possible configurations of the 
structural disorder) n-replica free energy F ,  of the system 
can be represented in general form as the functional inte- 
gral 

where the Hamiltonian H({$,(x,)),T) can be written in 
the form of a Landau expansion in the fluctuations of the 
order parameter: 

7 7 $a(qa) 8 a,, ( 2 ~ )  ( 2 ~ )  - I J dqb 

The summation in (4) is performed over the n replicas; the 
phenomenological parameter x is positive, is related to the 
dispersion of the properties of the molecules, and vanishes 
for monodisperse systems, i.e., systems consisting of one 
kind of molecule. 16,20 

In the role of the one-replica Hamiltonian Ho we shall 
consider here the weak-crystallization ~amiltonianl-5 

( 5 )  
where the bare propagator has the characteristic form for 
weak crystallization: 

g-'(q) = (q-q0)~+7, ( 6 )  

and the constants go, y, and A. and the reduced temperature 
T are related to the structural characteristics of the poly- 
mer (see Refs. 7, 11, and 19 and the references cited 
therein). 

Following Ref. 19, to calculate F we shall use a vari- 
ational principle based on a second Legendre 
tran~formation.~~ This principle makes it possible to repre- 
sent the free energy in the following form: 

Fn/T=min Hn(C($a(q,))),CGa,(q,,qs))), (7)  

+u(C($a(qa))),CGa,(~a,%))), (8) 

where the minimum is sought on the class of all trial func- 
tions for ($a(qa)) and Ga,(%,q3), and u(C(Jl,(qa))), 
{GnS(qa ,~ ) ) )  is the sum of the contributions of all 
2-irreducible skeleton diagrams. In the one-loop approxi- 
mation we represent the functional u in the form 
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A solid line denotes the renormalized propagator 
G a p ( q a , ~ p ) = ( $ a ( q a ) $ B ( ~ g ) ) - ( $ a ( ~ a ) ) ( * ~ ( ~ ~ ) ) ,  and 
the symbols 

and ) - -< 
represent the average value ($,(qa)) of the order param- 
eter and vertices of the one-replica and inter-replica inter- 
action, respectively. 

We note that our variational principle is compatible 
with the approximation (9) for a and coincides exactly 
with the Feynman variational principle used in the work of 
Mezard and which became known to us only after 
the publication of Ref. 24. We stress, however, that for a 
Hamiltonian of the form (4) the one-loop approximation 
leads to the conclusion that the Sherrington-Kirkpatrick 
replica-symmetric solution2' corresponds to a stable extre- 
mum of the free energy. At the same time, allowance for 
the next diagrams in o (given in Fig. 1) shows that the 
replica-nonsymmetric solution of ~ a r i s i ~ ' , ~ ~  corresponds to 
this extremum (see below). 

We shall seek an approximate value of F,  as the min- 
imum of H, on the class of trial functions of the following 
form: 

where Sap is the Kronecker symbol. The summation in 
(10) is performed over all vectors of the reciprocal lattice 
conjugate to the corresponding Bravais lattice that have 
length go, and k is the number of basis vectors of the 
reciprocal lattice. As regards the trial function Gap(qa ,%), 
it can be represented in the form of the sum of the one- 
replica trial function ,%), which has the usual form 
for the theory of weak crystallization: 

FIG. 1 .  Diagrams of second-order skeleton 
perturbation theory. The notation is the 
same as in Eq. (9) .  Diagrams (a) and (b) 
are diagrams that lead to instability of the 
Sherrington-Kirkpatrick solution; dia- 
grams (c) ,  (d) ,  and (e) are diagrams de- 
termining the range of applicability of the 
phase diagrams constructed. 

and the two-replica trial function Qap(qa,qg), which de- 
scribes the onset of inter-replica correlations (the glass or- 
der parameter). 

The choice of the form of the trial function Qap(qa ,qg) 
is determined by the following considerations. The very 
possibility of the appearance of a glass order parameter is 
related to the infinite degeneracy of the ordered state of the 
systems under consideration for y =O and A = 0 (Ref. 2 1 ). 
Here, in the framework of weak-crystallization theory, the 
main contribution to the free energy of the system is made 
by nonuniformities with wave numbers of magnitude go. It 
is natural, therefore, to seek Qap(qa,qp) in the form of a 
function that, first, would be nonzero only for 

1 qa - 40 1,1 qp- q0 1 < G, and, second, is convenient for the 
calculation of the corresponding integrals in (9).  These 
conditions are satisfied by a function of the form 

where s=q22a ,  Qap is a certain numerical matrix, and the 
symbol [6(x)1'/~ denotes the generalized function 

lim exp [ ( - x ~ / ~ E ~ ) / ( T ~ / ~ E ~ / ~  
E-0 

11. 

The corresponding calculations of the free energy of 
the system to terms of order @ lead to an expression 

in which the free energy of the system for zero value of the 
glass order parameter Q is given by the expression that is 
obtained as a result of substituting the trial functions ( 10) 
and (12) into (7) and then taking the limit n-0 (see Refs. 
19 and 21): 
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The factors ak and Bk in ( 15) depend on the number k and 
the symmetry of the l a t t i ~ e ; ~  for the principal lattice types 
observed in weak crystallization they take the following 
values: 

a )  For a lamellar lattice, 

b) for a triangular lattice, 

C) for a body-centered lattice, 

The quantity Fgl(Q@) describes the free-energy contribu- 
tion associated with the onset of a nonzero glass order 
parameter QaS, and is given by the expression 

where 

We note that the terms in the second line of (16), which 
are the ones that lead to loss of stability of the replica- 
symmetric solution, are obtained from the diagrams of the 
next (after the one-loop) approximation for a, which are 
given in Fig. 1. Furthermore, the linear term in the expan- 
sion of the quantity Tr In G in Qd is identically equal to 
zero by virtue of the definition ( 11 ). As regards the con- 
tributions of the remaining diagrams of order not higher 
than Q& that did not appear in ( 16), they vanish by virtue 
of the definition (13) and the identity 

It seems useful to note here the following two facts. First, 
the coefficients of the expansion of the free energy Fgl( 16) 
in powers of the order parameter Qafi are (starting from 
the third power) numerical factors, in analogy with the 
situation in the theory of spin glasses.22.23728929 Therefore, 
this expansion (which, generally speaking, is asymptotic in 
view of the factorial increase of its numerical coefficients) 
is applicable only for small values of the order parameter 
(QaS(l ), or, what is the same thing, for 1 A 1<1. Second, 
the contributions of diagrams of the type represented in 

Figs. la  and lb  also contain terms of lower orders in pow- 
ers of QaS, which lead, in particular, to the following re- 
definition (renormalization) of the quantity A: 

[and also to an analogous renormalization of the numerical 
coefficients of other powers of Qafi in the expansion ( 16)]. 
All the coefficients a, of the series (17a) are then positive, 
in contrast to the situation typical for the usual theory of 
critical phenomena,30 in which the perturbation-theory se- 
ries have terms of alternating sign. Therefore, this renor- 
malization can lead only to a numerical shift of the bound- 
ary of the region in which the solution corresponding to a 
zero matrix Qap is stable against perturbations of the form 
( 13 ) . However, rigorous allowance for this renormaliza- 
tion [e.g., by direct Bore1 summation of the series ( 17a)] 
lies outside the scope of this paper. Henceforth, therefore, 
we shall use here the approximate expressions ( 17) for A 
and (16) for Fg,. 

As follows from ( 16), the solution corresponding to a 
zero matrix Q becomes unstable against perturbations of as 
the form ( 13) in the region A < 0. In this region we intro- 
duce the Parisi order parameter q(x)--a function defined 
on the interval [0,1] and related to Qap by 

In terms of the new order parameter q(x)  the free energy 
( 16) can be written, as in Refs. 22, 28, and 29, in the form 

The functional (20) differs by the presence,of the last term 
from the standard expression for the free energy of spin 
glasses, but one can easily convince oneself that its stable 
extremum, corresponding to a replica-nonsymmetric order 
parameter QaB, is achieved for a function of the standard 
form22,28,29 

where ql = I A I [1+ 15 1 A 1 /4+ 0 (  1 A 1 ,)I. Substituting 
(21) into (20) and (14), we obtain the final expression for 
the total free energy of the system: 
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where 8(x)  is the step function [B(x) = O  for x <0, and 
O(x) = 1 for x > 01, and the parameter A as a function of r 
is defined in (17). The minimum in (22) is sought with 
respect to the parameters A and r, the equilibrium values of 
which are found as solutions of the equations of the extre- 
mals: 

a ~ / a r  = J F / ~ A  = 0. (23) 

We shall analyze these equations while constructing typical 
phase diagrams in the next section. 

3. THE PHASE DIAGRAMS 

We begin by classifying the phases. As follows from 
the preceding section, each phase is characterized by the 
symmetry type of the order parameter (10) and by the 
presence or absence of inter-replica correlations (the pa- 
rameter Qap, a#p). To refer to phases with zero value of 
the parameter Qap we shall use henceforth the established 
terminology of the theory of weak crystallization, without 
stipulating each time that in such a phase Qap= 0 for a#@ 
We shall call all phases with a nonzero value of the param- 
eter Qap glass phases, indicating where necessary the char- 
acteristic symmetry type of the order parameter (10) for 
this phase. 

We first consider the simpler case of systems for which 
the parameter y determining the magnitude of the cubic 
vertex in the expression (22) for the free energy is equal to 
zero. We recall that, in the absence of quenched structural 
disorder (x=O), as the temperature is lowered in such 
systems a first-order phase transition occurs from the spa- 
tially uniform (disordered) phase to a supercrystalline 
phase with a lamellar type of symmetry.3s4 (In the follow- 
ing we shall denote these phases by DIS and LAM, respec- 
tively. ) 

For the phase (which we shall call GDIs) with zero 
value of the order parameter (4,(ra) ) and a nonzero value 
of the glass order parameter Qap(a#D), from Eqs. (23) 
there remains only the equation for r; to leading order in A 
this equation has the form 

For the phase (which we shall call GLAM) with nonzero 
values of both order parameters {zCr,(ra) ) and Qao(a#D), 
Eqs. (23), to leading order in A, can be brought to the 
form 

We note that in Eqs. (24) and (25) we have neglected 
terms of order 0 ( h 2 )  but kept terms of order 
o ( A ( A / s ~ ' / ~ ) ) ,  which can be large for systems with a 
small degree of structural disorder (x( 1 ). Therefore, as 

follows from Eq. (25b), the amplitude of the order param- 
eter for the phase GLAM can vanish for small values of ( A ( 
satisfying the equation 

The line (26) is obviously a line of second-order phase 
transitions between the phases GDIs and GLAM. 

The expression (22) for the free energy and Eqs. (24) 
and (25) for the extremals permit us to construct the phase 
diagram of the systems under consideration. The surface 
rl(x,A) of the third-order phase transition from the uni- 
form (disordered) phase to GDIs is determined by the 
equation 

which is obtained by substituting 

or equivalently, 

into Eq. (24). The same substitution into Eq. (25a) gives 
the surface r2(x,A) of the third-order phase transition 
from the ordered (lamellar) phase to GLAM : 

In the latter case, however, we must bear in mind that part 
of this surface corresponds to nonphysical (unstable) val- 
ues of the amplitude A of the order parameter character- 
izing the phase GLAM. Further analysis shows that for that 
part of the surface r2(x,A) which corresponds to a stable 
(or at least metastable) solution of Eq. (25a) the condition 

is fulfilled. 
In the plane ( r / ~ ' / ~ , x / A )  Fig. 2 gives the phase dia- 

gram for the system described by the Hamiltonian (4), for 
the values A = 0.01 and go= 1 ) . It can be seen that for 
lower values of r a direct first-order phase transition from 
the disordered phase (DIS) to the lamellar phase (LAM) 
occurs only at very small values of %/A. In this region, the 
pattern of the phase transitions is analogous to that for 
phase transitions in ordinary weak crystallization.374 At the 
point A the temperature of the phase transition from the 
uniform phase to the supercrystalline phase is wmparable 
to the temperature at which a nonzero glass order param- 
eter Qap appears in the uniform phase. Further increase of 
x/A causes a region in which the glass phase GDIs exists to 
appear in the system. Finally, for x/A>(x/A)*, the fol- 
lowing sequence of phase transitions is established in the 
system: DIS-GDIs-GLAKLAM, where the transition 
GDIS-GLAM is a first-order phase transition. 

Another section of the phase-transition surfaces in the 
variables (r,A), for x=0.01 and %= 1, is shown in Fig. 3, 
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I LAM 

FIG. 2. The A = 0 . 0 1  section of the phase-transition surfaces in the vari- 
ables Z = x / A ,  ?=T/L"~.  The solid lines denote lines of third-order phase 
transitions, and the dashed line is a line of first-order phase transitions. 
The points A and B are points of intersection of lines of first-order and 
third-order phase transitions. 

in which the left branch of the line of first-order phase 
transitions GDIS-GLAM is constructed on the basis of the 
following qualitative considerations. As noted in Ref. 24, 
for x#O and A +  0 the temperature of the first-order phase 
transition DIS-LAM tends to - a,. The same follows from 
Eq. (25a) for the line of the third-order phase transition 
LAM-CLAM. In addition, for A =O the system cannot be in 
any definite ordered state, since its free energy does not 
depend on its crystal-symmetry type (the ground state is 
infinitely degenerate). 

As regards the line (26) of second-order phase transi- 
tions, numerical analysis shows that it always lies inside 
the phase GDIs (where the phase GLAM is already metasta- 

FIG. 3. The x = 0 . 0 1  section of the phase-transition surfaces in the vari- 
ables A,  T.  The notation is the same as in Fig. 2. 

ble), and, therefore, it is not shown in the figures. Never- 
theless, this phase transition can also be observed when the 
system is heated sufficiently rapidly. 

We now consider how the phase diagrams represented 
in Figs. 2 and 3 change with the appearance of a nonzero 
cubic vertex y. As is well known,2y497 in the absence of 
quenched structural disorder ( x  =0) the inclusion of a cu- 
bic vertex implies that, depending on the magnitude of the 
cubic vertex y, lowering of the temperature in the disor- 
dered phase induces a transition first into a phase with a 
body-centered cubic (BCC) lattice, then into a two- 
dimensional structure with triangular symmetry (A), and 
only then into a one-dimensional lamellar structure. Here, 
allowance for fluctuation effects shows that, depending on 
the magnitude of the fourth-order vertex A, either the 
whole sequence of phase transitions DIS-BCC-A-LAM or 
the reduced sequences DIS-A-LAM and DIS-LAM can 
occur. 

It  is obvious that the appearance of quenched struc- 
tural disorder (x#O) can give rise to glass phases inside 
each of the regions corresponding to the indicated symme- 
tries. It is natural to consider the corresponding change of 
the phase diagram first in the mean-field approximation, 
i.e., to terms of order  AS/?'^). 

In this case the equations (25) of the extremals take 
the form 

Solving Eqs. (31 ) gives the equilibrium values of r and A, 
in the region where both the supercrystalline phases and 
the glass phases with the corresponding symmetry type of 
the order parameter (10) exist. However, as follows from 
numerical analysis of Eqs. (31), the right-hand side of 
(31a) near the line of the phase transition to the super- 
crystalline phases is small in comparison with any of the 
terms in the left-hand side, and so can be set equal to zero. 
Therefore, to construct the phase diagrams it is sufficient 
(with a high degree of accuracy) to construct first the 
usual weak-crystallization phase diagram, and then to plot 
on it the line (28) of the third-order phase transition be- 
tween the supercrystalline phases and the glass phases. The 
results of numerical calculations for the case go= 1 and two 
values of the parameter X = x/A are presented in Fig. 4. 

As can be seen from comparison of the phase diagrams 
presented in Figs. 4a and 4b decreasing the parameter X 
leads, as we should expect, to narrowing of the region of 
existence of the glass phases. In fact, according to (28), 
glass phases exist only for values 3 < x, or, in other words, 
in regions of strongly developed spatial fluctuations of the 
order parameter, which are possible only in the immediate 
vicinity of the point T=O, y=O, corresponding, in the 
mean-field approximation, to a second-order phase- 
transition point. This circumstance makes it possible to 
understand immediately the character of the fluctuation 
corrections to the phase diagrams of Fig. 4 constructed in 
the mean-field approximation. Since, for x=O, fluctuation 
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FIG. 4. The Z=x/d=O.Ol section (a) and Z=0.01 section (b) of the 
phase-transition surface in the variables ly= y/d, ?= r/d for 1 =0.01 and 
go= 1.  The notation is the same as in Fig. 2. The topology of the arrange- 
ment of the glass phases in Fig. 4b is the same as is indicated explicitly in 
Fig. 4a. 

corrections cause a second-order phase transition to be re- 
placed by a fluctuation-induced first-order phase transition, 
as a result of which the region in which the disordered 
phase exists expands at the expense of a narrowing (or 
even the disappearance) of the region of the supercrystal- 
line for x#O these corrections will cause expan- 
sion of the region in which the phase GDIs exists at the 
expense of a narrowing (and, for sufficiently large values of 
A, the disappearance) of the supercrystalline glass phases. 
Thus, for sufficiently small values of the parameter y the 
disordered glass phase should exist for all values of the 
fluctuation corrections, as is demonstrated by Fig. 3: For 
values A > ABz0.4 the line of first-order phase transitions 
GDIS-GLAM goes over into the line of first-order phase tran- 
sitions GDIS-LAM. 

It is remarkable that the region of existence of the glass 
phases remains significant even for extremely small values 

of the parameter 37 characterizing the relative magnitude of 
the inter-replica interaction in comparison with the one- 
replica interaction. We shall discuss this circumstance in 
more detail in the next section. 

4. CONCLUSION 

In the preceding sections we have shown that the pres- 
ence of molecules with a distribution of structures in a 
system gives rise to a region of glass phases for the phase 
diagram. Up to now, however, we have not written out the 
conditions for applicability of our analysis of the phase 
transitions in disordered systems. We now discuss this 
question in more detail. 

In the explicit calculation of the functional series (9) 
appearing in the expression (7)  for the free energy, dia- 
grams of order O(An) and O( f )  ( n  > l ) were omitted (see 
Figs. lc and Id). These diagrams make the following con- 
tribution to the free energy of the system: 

3 312 w,zn2q23,  W,z"JrJ . (32) 

It is obvious that the contribution of these diagrams can be 
neglected in comparison with the contribution of the dia- 
grams taken into account explicitly in (9) when the fol- 
lowing conditions are fulfilled in the region of the phase 
transitions: 

As was shown in Refs. 3 and 4, in a region of first-order 
transitions to crystalline phases we have r z  ( / z & ) ~ / ~ ,  
which is also true in our case for small values of the vertex 
of the inter-replica interaction (%(A). Then the relations 
(33) can be rewritten in the form 

Thus, the phase diagrams given in Figs. 4a and 4b, which 
were calculated, as noted above, for go= l ,  are valid only in 
the region ?/d4I34 1. In the opposite limit our construc- 
tions are valid only qualitatively, because for these values 
of the parameters renormalization of the critical momen- 
tum go (mode softening) becomes important31 as a conse- 
quence of the contribution of certain diagrams, the first of 
which is shown in Fig. Id. 

To estimate the lower boundary of the range of the 
quantity x for which the contribution of the diagrams of 
Figs. lc and Id can be neglected in the region of the glass 
phase transition it is sufficient to substitute for the param- 
eter r in (33) its value x112 on the line of this phase tran- 
sition. This leads to the following inequalities: 

We note that for x>A the first of the conditions (35) for 
go= 1 is fulfilled automatically, although in this case it is 
necessary to take into account diagrams like Fig. le. The 
expansion in this case is performed in the parameter 

and in the region of the glass phase transition (rzx'") 
these diagrams can be neglected when the following con- 
dition is fulfilled: 
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which, for %= 1, is equivalent to the condition x( 1. 
We shall summarize the results. In our paper, for the 

first time, we have constructed phase diagrams of realistic 
three-dimensional disordered systems capable of forming 
phases with broken replica symmetry. As is known from 
the theory of spin glasses,23932,33 the existence of a solution 
with broken replica symmetry for the matrix QaB is related 
to the splitting of the phase space of the systems under 
consideration into an infinite number of disconnected re- 
gions (equivalent states), Gibbsian averaging over each of 
which leads to one and the same (in the thermodynamic 
limit) value of the free energy, while the matrix QaB de- 
scribes the metric properties of the space of these states. It 
may be expected that in our case too the existence of a 
solution with broken replica symmetry is also related to the 
appearance of a hierarchical space of valleys in the Hilbert 
space of the order-parameter functions in the region 
r < x " ~ ,  leading, as shown in Ref. 26, to the appearance of 
statistical fluctuations (nonvanishing even in the thermo- 
dynamic limit) of the experimentally measured quantities. 
However, the feature of the case considered in our work 
that distinguishes it from the description of the glass phase 
in the theory of spin glasses is that in our case the principal 
contribution to the inter-replica susceptibility is made by 
fluctuations with finite wavelength L = 1/2%-go. 

Experimental verification of these phase diagrams is 
extremely urgent from a general theoretical point of view, 
since the possibility arises of checking the results of spin- 
glass theory on real three-dimensional systems in which all 
the parameters can be specified with a sufficiently high 
degree of accuracy at the stage of synthesis of the polymer. 
It appears that the most promising way to carry out this 
check is to measure the above-mentioned statistical fluctu- 
ations of the correlation functions of the order parameter 
by the methods of small-angle x-ray and neutron scatter- 
ing. 
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