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The effect of fluctuations on the properties of a conventional superconductor with a strong 
electron-phonon interaction and no impurities is considered. The correction to the 
conductivity of the metal above the critical temperature is calculated and the role of phonon 
damping in fluctuation effects is estimated. 

1. INTRODUCTION 

The effect of fluctuations on the properties of super- 
conductors near the transition point have been the subject 
of intensive studies since the early 1960's. Since the char- 
acteristic correlation length in a conventional supercon- 
ductor is rather large, thermodynamic fluctuations in it are 
small, and before the problem of fluctuations came under 
study, the critical temperature had been frequently viewed 
as just "marking" the sharp boundary between the regions 
of normal and superconducting behavior. Although this 
view is quite adequate for most practical applications, ex- 
tensive studies of the vicinity of the phase transition have 
been performed and now fairly a complete picture of the 
fluctuation effects exists. 

The most interesting fluctuation-related phenomena 
usually occur above the transition temperature, where fluc- 
tuations precede the onset of superconductivity by making 
a small but experimentally measurable contribution of spe- 
cifically superconducting nature to the observables of the 
system. Although electron pairing is energetically unfavor- 
able above the critical temperature, the system always con- 
tains fluctuation pairs which contribute to the conductivity 
of the metal. The number of such pairs and the magnitude 
of the conductivity increase as the critical temperature is 
approached. The excess conductivity resulting from the 
acceleration of the pairs (or paraconductivity) was first 
calculated microscopically by Aslamazov and   ark in.' 
Their results are in good agreement with the experimental 
data of   lover.^ 

Later e ~ ~ e r i m e n t s ~ - ~  have shown, however, that con- 
ductivity may exhibit an anomalous temperature behavior 
inconsistent with the universal prediction of Ref. 1. This 
anomalous effect was first described by ~ a k i ~  for three- 
dimensional systems. ~ h o m ~ s o n ~  observed that this cor- 
rection diverges in lower dimensions and was the first to 
introduce the concept of pair breaking to obtain a finite 
result. Qualitatively, the effect is as follows. Instead of 
forming a Cooper pair, two electrons may fluctuate into 
coherent small-total-momentum states in which, owing to 
the time-reversal symmetry, they remain even after being 
scattered by a diamagnetic impurity. Such electrons are 
accelerated as if they were a fluctuation pair. The above 
picture depends on the coherence of the electron states and 
the time-reversal symmetry, so pair-breaking mechanisms 
naturally include magnetic fields, paramagnetic impurities, 

and those types of retarded interactions which lead to in- 
elastic collisions. 

In all of the above works microscopic treatments are 
performed within the BCS model and the resistance mech- 
anism is invariably impurity scattering. A question which 
remains unsettled, however, is the influence of the strong 
electron-phonon interaction on fluctuation effects. The 
correction to the specific heat in the framework of Eliash- 
berg theory was calculated by BulaevskiY and ~ o l ~ o v , ~  but 
their method is difficult to apply in order to obtain correc- 
tions to kinetic coefficients, which is a problem of consid- 
erable current interest. This interest is in part stimulated 
by the advent of high-temperature superconductivity 
(HTSC) which cannot be described by BCS theory. The 
strong-coupling theory, in contrast, does not restrict the 
value of the critical temperature and so may be of use for 
the qualitative description of superconductor properties in 
the absence of a consistent microscopic HTSC theory. But 
high critical temperatures correspond to large coupling 
constants, and it is this correlation which stimulates, to a 
certain extent, the calculation of fluctuation corrections 
within the Eliashberg theory. 

The present analysis gives the fluctuation correction to 
the conductivity. As indicated above, a retarded interac- 
tion leading to inelastic collisions suppresses the Maki- 
Thompson correction, and because of this the Aslamazov- 
Larkin diagram is considered (see Fig. 1). The static 
conductivity a is obtained at low frequencies from the ex- 
pression j,=iwaA,, where j is the current density and A a 
small uniform field. 

2. VERTEX FUNCTION EQUATION 

Within the Eliashberg-Migdal t h e ~ r ~ ~ ' ' ~  the vertex 
function for the electron-phonon interaction obeys the fol- 
lowing integral equation: 
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The electron Green's function is given by 

where 

is the self-energy and the en= (2n+ l ) r T  are the frequen- 
cies. After averaging over the Fermi surface, the phonon 
Green's function D(pl) yields a function A defined by 

The spectral function a 2 ( f l ) ~ ( f l )  is extracted directly 
from experiment. ' 

As is known, Cooper pairs are mainly formed by elec- 
trons located in a thin crust near the Fermi surface. Ac- 
cordingly, the momenta p and p' are set equal to the Fermi 
momentum in the argument of the function r(p,pl,k). 

The vertex function has a pole near the transition point 
as w, k-0. The singular nature of r allows to retain only 
one term in the eigenfunction expansion near T,, which we 
assume to be of the form 

where the pole factor L is 

The functions A(i&) are precisely the eigenfunctions of the 
corresponding homogeneous equation for T = T, . 

The homogeneous equation for the functions A is the 
linearized transition-point equation for T,, which is well 
studied below the critical temperature12 and has the form 

The functions A (related to the system's energy gap at 
T < T,)  again play the role of "wave functions," but this 
time (i.e., above T,) these are the wave functions of fluc- 
tuation pairs (assuming a proper renormalization). 

In the following the analytic functions hR and AA will 
be needed. The corresponding equations are obtained by 
analytically continuing Eqs. (6) using the Eliashberg 
method:13 

where y is the phonon damping. The interaction is written 
in a form convenient for a comparison with the corre- 
sponding BCS formulas. For numerical calculations it is 
convenient to first integrate over the angle, with a view to 
obtaining the interaction in the form (3) .  The function AA 
obeys an equation which is complex conjugate to Eq. (7).  

3. EIGENFUNCTION PROPERTIES 

Let us now examine some of the properties of the func- 
tions A. Integrating over 6 and the angle 8 on the right- 
hand side of Eq. (6)  we find 

The interaction enters in the form of (3).  Remembering 
that we are interested in the electrons near the Fermi sur- 
face, in the argument of Z we set the momentum variable 
equal to its Fermi value. After integrating in Eq. (2b) we 
have 

The continuation of the imaginary part of Z to the real axis 
determines the phonon damping y. 

Let us introduce a function such that A ( ~ E ) ~ ( ~ E ) E  
=A ( i ~ ) ,  where 

Then 

Here we have substituted (9) for 8. It can be seen that the 
term accounting for the elastic phonon scattering has can- 
celed, and for the function & we obtain the equation 

Now let us consider the limit A+ co which, although 
generally unrealizable in nature, helps to understand some 
of the physical features of the problem. In this limit (see 
Ref. 12, for example) T, - fi and the quantity w d T ,  is 
small. Therefore, looking back at Eq. (3),  in which the 
effective frequencies R are less than, or of the order of, the 
Debye frequency, we neglect compared with T, in the 
denominator and approximate A by 

where 

302 JETP 77 (2). August 1993 B. N. Narozhny 302 



Substituting the frequencies E ,  explicitly into Eq. ( 1 0 )  
we have 

- 1 &(i&,) 
A ( i ~ , ) [ 2 n + l - ~ a , ] =  -- z 2 , ,  m - n  ( I 3 )  

where the numbers a ,  = 87= I 1 /P are of order unity ( a ,  = 1 ,  
a,=7?/6). 

The eigenvalues of Eq. ( 13) determine the number p 
and thus T , :  

T c = a  dm, ( 1 4 )  

where a is a number. The same result is obtained using a 
similar procedure for T < T,. The quantity a as found in 
the work of Allen and ~ ~ n e s ' ~  is a=0.183= I/&. Thus 
the parameter p turns out to be numerically small. 

We are interested in the properties of the eigenfunc- 
tions. As discussed in Ref. 14, the iterative procedure for 
Eq. ( 1 4 )  converges fairly rapidly because of the factor 
l / ( m  -n12 on the right-hand side. Let us try to find an 
approximate analytical structure of the solution by neglect- 
ing terms with ( n - m ) ) 2 .  This reduces the equation to 
the recursive formula 

- 
a m h m + ~ m - l + ~ m + l = ~ ,  ( 1 5 )  

where am = 2[2n + 1 - p a J / p .  We will consider Eq. ( 15) 
as an infinite system of algebraic equations and solve the 
system by iterations remembering that, in our approxima- 
tion, only the hm with close values of m correlate. The 
matrix of the system has am's along the principal diagonal, 
units along the two nearest diagonals, and zeros every- 
where else. 

As a first approximation - we consider a 3 x 3  system 
with Am+,  and Am- ,  only. This system is of the form 

Within the normalization factor the eigenfunctions are 

In the next approximation, a 5 x 5 system must be con- 
sidered. For the quantity Am-, as an example, using the 
same normalization, we have 

The correction is of order (am- ,a,-,) - ' - p2 < 1 and may 
be neglected because we are neglecting 1/4 compared with 
1 in writing Eq. ( 15).  

Thus, to within the normalization factor, the solution 
is 

The analytically continued function behaves like 

where ~ ' - ? T A ( w ~ ) / T $ ( E )  - - B ( o ) / T  is that part of the 
phonon damping corresponding to the purely inelastic 
phonon scattering. Note that y' ( e )  - 0  as &-PO.  

The function hR thus involves the renormalization 

where y  is the total phonon damping. The nonsingular 
function A(&) depends only on the inelastic part of the 
damping and is related to the wave function of the 
fluctuation-induced pair. 

4. VERTEX FUNCTION CALCULATION 

We now turn to the calculation of the vertex function. 
Let the functions A be normalized to unity. In this case all 
the normalization of the vertex function resides in L and is 
determined by the free term of Eq. ( 1 ) .  From Eq. ( 1 ), 
substituting Eq. ( 4 )  for the vertex function, multiplicating 
both sides by A(i&)A(i&')  and summing over &,&I, gives 
the equation for L 

This equation turns out to be an algebraic one and has 
the solution 

where 

and the normalization factor is given by 

Using ( 6 )  we readily find that at the point k2=0 ,  o=O, 
T =  T , ,  the function A takes the value A ( 0 )  = 1. 

In the following, the analytically continued functions 
LR and LA will be needed. With this in view, let us con- 
tinue the function L ( i w )  to the upper w half-plane. The 
continued form of Eq. (21 ) is L ~ ( w )  =ao[l - A ~ ( w ) ] - ' ,  
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and in order to obtain a singular term of the type ( 5 ) ,  we 
must expand A R ( u )  in terms of the small values of k2, a ,  
and T - T , .  

For the function A R ( o )  we have 

X  [ G ~ ( ~ , x ~ ) G ~ ( ~ - ~ , w - x ~ ) ~ ~ ( x ~ , x ~ , w )  

- G ~ ( ~ , X ~ ) G ~ ( ~ - ~ , W - X ~ )  h  ( X I , X , ) I  ( 2 2 )  

where we have defined 

hl(xl,xz)=tanh - A A ( x l )  tanh - 2i (a) [ (;;) 

x 1 m ( @ ( x 2 - x , ) )  tanh - ( ("a) 

The coefficients in the expansion 

are readily found by differentiating AR and are of the form 

i  .a 1 J+" dxl [ c l ( x l )  i;2(xl,o) 
a l  =- C  - - 

4 r T c  3  2  - X I - i y +  x l + i y  1 
(26a) 

where 

Here 6 ( x 1  ) denotes the integral of hi over x2 .  The normal- 
ization factor is determined by integrating the free term of 
Eq. (2).  Represented in integral form, Eq. (21b)  becomes 

1 + m  + m  
a,= ---- I- dx,  I- dx2 tanh (g ) [ tanh (2) 

(2.rrTJ2 

From ( 5 ) ,  dividing the numerator and denominator by 
a, gives 

1 
L = - -  

1 
N T - T ,  w 9 

+ ~ k ~ - i - - b  
Tc Tc 

where 

Thus we have obtained the propagator L in its usual 
form. The quantities Nand D  play the roles of respectively 
the density of states at the Fermi surface and the diffusion 
coefficient, calculated by allowing for the electron-phonon 
interaction and near-critical fluctuations. 

5. THE CONDUCTIVITY CORRECTION 

Let us now calculate the correction to the normal- 
metal conductivity. With the fluctuation propagator ( 4 ) ,  
in the Matsubara technique we have (for the Aslamazov- 
Larkin diagram) 

where C denotes the integral 

By symmetry arguments, the quantity C  is represented 
in the form C = q C ( w , o , ) .  Since the whole of the critical 
point singularity is contained in L, we may treat C ( w , o n )  
as a constant C ( 0 ) .  For this constant we have a simple 
expression 

m PF 
C ( 0 )  =- 7 

6  ( 2 ~ )  I-, dx tanh (&) 
h R ( x ) h R ( x )  h A ( x ) h A ( x )  

Equation ( 3 0 )  now becomes 

Let us perform an analytical continuation to real w's 
such that the resulting function has no singularities in the 
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upper w half-plane. Then, substituting Eq. (28) for the 
fluctuation propagator and integrating over the energy 
variables we find, to first order in w, 

Finally, the absolute value of the fluctuation correction to 
the conductivity is 

6. VERY STRONG COUPLING LIMIT 

Let us examine the correction (35) in the limiting case 
A + a. Integrating the phonon Green's function over angle 
we obtain the averaged interaction ( 3 ) , 

Note that A ( & )  is a dimensionless quantity which in the 
A + oo, large E limit becomes 

where A is the coupling constant [cf. Eq. (1  I)]. The di- 
mensionless complex (A(w2)) /~ :  is nothing other than 
l/a2 [see Eq. (14)l. In the following analysis all quantities 
of interest will be expressed in terms of the critical tem- 
perature, so that the remaining dimensionless factors will 
be functions of l /a2 alone. 

The analytically continued electron self-energy is given 
by 

dx tanh - P ( E - x ) ~ ~  ..=&JSJ_'," [ (;) 

The integral above is dominated by the small values of 
the energy variables, so in the limit A +  oo we find, in ac- 
cord with Eq. (9), that 

to within a factor which is a dimensionless function of the 
small parameter E/T, and tends to a finite value as E+O. 
The phonon damping is determined by the imaginary part 
of the self-energy and has an estimate y-AT, [see Eq. 
(911. 

In a similar way, the coefficients entering the vertex 
function take the form 

In deriving this, Eq. (39) and the property (18) of the 
function A have been used. 

The form of Eqs. (40) is quite understandable because 
in the large coupling-constant (i.e., large critical- 
temperature) limit, T, is the only parameter with dimen- 
sions of energy to be involved in the phonon processes. An 
important point to note is the dependence of the coeffi- 
cients on A, something which is rather difficult to obtain 
without calculations. 

Substituting the coefficients (40) into (35), we esti- 
mate the conductivity correction to within a numerical fac- 
tor as 

where ,u is the chemical potential and n the electron den- 
sity. 

The correction (41 ) holds for temperatures such that 
it is small compared to the normal-metal conductivity a,. 
In our case the conductivity is controlled by the phonon 
scattering time rph and is given by 

The time T~~ is a function of the temperature, related to the 
damping by rPh- l / y .  In the limit A+ 03 it can be esti- 
mated as 

1 
r -- 
ph AT,' 

Hence for the ratio ol/u, we have 

(TI - Qn - ~ 7 1 2  (:) ,/= 
T - T,' 

It can be seen that, compared with the Aslamazov- 
Larkin results, we have a much wider fluctuation region 
for the case of an infinite coupling constant. This, of 
course, does not happen at realistic values of A. 

7. COMPARISON WITH BCS 

Let us compare the above results with standard BCS 
formulas.' The change from Eliashberg to BCS theory is 
usually achieved'' by making the replacements 1 if l w , l , l ~ , l ~ ~ ~ .  

A(iw,-iw,) = 
elsewhere, (45a) 

[:(TI 

if l w , l < o ~ ,  
A(iw,) = elsewhere, 

where wD is the Debye frequency and the energy gap A(T)  
is no longer dependent on energy. 

In its simplest version BCS theory does not allow for 
pair damping. When we set y equal to zero, Eq. (7)  gives 
the standard equation for T, :I5 
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Equation (28) for the vertex function and Eq. (35) for 
the conductivity correction are identical in form to the 
results of Ref. 1, but the coefficients N D, and C(0) have 
assumed a different microscopic meaning. In our case these 
quantities have been calculated within a strong-coupling 
theory with inclusion of the fluctuations. It should be em- 
phasized that a direct limiting process by which to retrieve 
the AK results is impossible in the final formulas of the 
form (29) because of the dramatic difference in the resis- 
tance mechanisms. We therefore turn to consider the lim- 
iting cases which may occur. 

The clean material limit discussed in Ref. 1 implies, 
physically, that the electron mean free path is much larger 
than the characteristic pair dimension lo. In this limit, 
formally, the dimensionless parameter T,rrr (where 7, is 
the transport time for impurity scattering) tends to infinity 
or, equivalently the damping tends to zero. It  is then clear 
that the change from the strong-coupling formulas to the 
pure-metal BCS limit requires that, apart from applying 
the procedure (45a)-(45b), we also let y approach zero. 
Then all the necessary integrals are easily performed to 
yield the corresponding results of Ref. 1. 

By the same reason as above, the inclusion of damping 
affords nothing more than a formal analogy. To see this, 
note that in BCS theory the introduction of impurities 
gives rise to the imaginary part ( 1/2r,,)sgno in the denom- 
inator of the electron Green's function. Taking the average 
over the impurities of the quantities of the type (GG) then 
results in the renormalization of the vertices by the factor 

This factor arises from using the ladder approximation to 
account for the impurities. In our case, the phonon ladder 
is taken into account in the vertex function calculation, 
and a similar renormalization is contained in the functions 
A [see Eq. ( 19)]. The imaginary part of the Green's func- 
tion naturally arises from that of the self-energy. Thus it 
would appear that, formally, changing from the impurity 
to the phonon case amounts to simply replacing the damp- 
ing parameters. 

The analogy between the two treatments of the damp- 
ing comes most clearly in the large coupling-constant limit. 
As is known,16 at high temperatures the scattering of elec- 
trons by phonons is predominantly elastic and its inelastic 
part is often neglected altogether. Since y-0 as E-0, this 
assumption does not change the analytical structure of Eq. 
( 19) and establishes its direct correspondence to Eq. (47).  

Despite the above analogy, however, the final result 
(41) cannot be reduced to the dirty-metal Aslamazov- 
Larkin correction by a simple replacement of the damping 
parameters. The reason is that the effect of the phonon 
interaction is not limited to damping alone. Another im- 
portant factor is the retardation effect, which makes the 
coefficients, say D and C(O), depend differently on the 
coupling parameters, whereas in the impurity case they 
differed by just a factor. Hence an additional (as compared 
with the "dirty" case1) coupling-constant dependence 
arises in the A -- co limit. 

8. CONCLUSION 

In this paper we have studied fluctuation effects in a 
superconductor with a strong electron-phonon interaction 
within the framework of the Eliashberg theory. We have 
used the microscopic theory to obtain the vertex function 
for the electron-phonon interaction, and this enabled us to 
calculate the fluctuation correction to the conductivity of a 
normal metal near the superconducting transition. In ad- 
dition, the properties of the eigenfunctions of the integral 
equation for the vertex function have been examined. 
These functions contain in themselves the renormalization 
of the vertices (analogous to that arising in the impurity 
case) as well as the fluctuation-pair "wave function" which 
turns out to depend only on the inelastic phonon scatter- 
ing. 

The final formulas of this work involve the coefficients 
of the fluctuation propagator and the constant C(0) of the 
Aslamazov-Larkin diagram [see Eq. (35)], and are fully 
consistent with Ginzburg-Landau theory. The dependence 
on the coupling constant appears through these coefficients 
only. Note that in the work of Bulaevskii and ~ o l ~ o v , '  the 
fluctuation correction to the specific heat contains an extra 
coupling-constant dependence not obtainable in Ginzburg- 
Landau theory. This discrepancy is attributed by the au- 
thors entirely to the retardation of the electron-phonon 
interaction. The results of the present study show that one 
cannot blame the retardation as such as that at least in the 
case of the kinetic coefficients its inclusion does not lead to 
any departure from Ginzburg-Landau theory. 
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