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A theoretical study is made of the behavior of thermodynamic properties over a wide vicinity 
of the critical point of a liquid-gas transition. Based on the renormalization group 
method and the first order &-expansion, simple crossover expressions explicitly containing the 
Ginzburg parameter are derived for the susceptibility, correlation length, specific heat, 
and order parameter, both above and below the transition temperature. The question of the 
universality of the complex R,, composed of the critical amplitudes and critical 
exponents determining the asymptotic specific heat behavior is discussed. A phenomenological 
model based on the results is found to be in good agreement with experiment. 

1. INTRODUCTION 

The theory of second-order phase transitions was 
largely completed by the 1970's. There are two major re- 
gions to be distinguished in the vicinity of a second-order 
phase transition. Far enough from the critical point one 
may neglect order-parameter fluctuations and apply the 
Landau theory1 to describe the behavior of the observables 
of the system. In terms of the temperature, this region is 
determined from the so-called Ginzburg criterion2 conven- 
tionally written as 

where Gi is the dimensionless Ginzburg parameter and 
T= T- T J T ,  is the dimensionless deviation of the temper- 
ature T from its critical value T,. 

Close to the phase transition, the singular parts of the 
susceptibility X ,  correlation length r , ,  specific heat C, and 
order parameter q, vary as powers of the dimensionless 
temperature 7 

Here xbg, rbg, and C,, are the regular parts of the 
respective thermodynamic properties, and the superscripts 
"+" and "-" refer to the regions above (T)O) and below 
(7  < 0) the transition. The corresponding exponents are 
known as critical exponents, and the coefficients of the 
power function 7 as critical amplitudes. The mean-field 
theory values of the critical exponents are 

y = l  (Curie-Weiss law), v = i ,  a=O, D=;.  
(1.3) 

Asymptotically close to the second-order phase transi- 
tion, the experimental critical exponents disagree with 
their mean-field values. The behavior of the system in this 
region is controlled by anomalous order-parameter fluctu- 
ations, and according to fluctuation (or scaling) 
the critical exponents depend on the spatial dimensionality 
d and on the number n of order parameter components. 

Statistical systems having identical d, n pairs belong to the 
same universality class. Liquids in the vicinity of the crit- 
ical point of the liquid-gas transition and solutions near 
the separation point belong to the universality class of the 
three-dimensional Ising model6 (d=  3, n = 1 ) . The theoret- 
ical critical exponents for this class 

Although the experimental values of the exponents 
agree well with theory, it should be noted that the asymp- 
totic behavior of the form (1.2) with critical exponents 
(1.4) is actually observed in an extremely narrow region 
( ~ < 1 0 - ~ ,  see Ref. 9).  If the Ginzburg parameter is suffi- 
ciently small (Gi(l), then at temperatures away from the 
critical point we enter the intermediate (or crossover) re- 
gion which in the limit Gig 1 T 1 (1 goes over to the mean- 
field region with critical values given by ( 1.3). 

Because thermodynamic-property expressions valid in 
the crossover region enable a much wider range of exper- 
imental data to be described, their derivation is a problem 
of great practical importance and has been the subject of 
many studies. Some of the authors develop phenomenolog- 
ical approaches based on a priori knowledge of the critical 
exponents,10 but it is the combination of the renormaliza- 
tion group method and the &-expansion (&=4-d) (see 
Refs. 2-5) which seems to be the most consistent approach 
theoretically. Among the first works of this type were Refs. 
11 and 12 using the RG method and the &-expansion in the 
transition region. Further development along this line is 
presented in Refs. 13 and 14, of which the litter gives 
third-order-& expressions for crossover thermodynamic 
properties. Bagnuls and ~ervi l l ie r , '~ , '~  following the nu- 
merical solution of RG equations for real (d=3) space, 
were able to construct analytical approximations for the 
thermodynamic properties of the system over a wide vicin- 
ity of the critical point. In their later paper17 the same 
authors suggest a new universal complex R,, consisting of 
the amplitudes and critical exponents for the specific heat 
in the asymptotic region. 
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However, the problem of the crossover behavior can- 
not yet be considered closed. First, the fact that the above 
results do not contain the Ginzburg parameter explicitly 
complicates data analysis and prevents writing the cross- 
over functions in a simple analytical form. Second, there 
remains the problem of the amplitude complex R,, whose 
universality is questioned in Ref. 18. 

The present work performs a one-loop crossover be- 
havior analysis and yields susceptibility, correlation- 
length, specific-heat, and order-parameter expressions ex- 
plicitly containing the Ginzburg parameter. We discuss the 
degree of universality of our results and separate the non- 
universal parameters of each of the thermodynamic prop- 
erties. We also discuss the role of the cutoff parameter and 
the universality of the complex R,, . In the final section we 
present a phenomenological generalization of the results 
obtained and give an interpretation of the experimental 
specific-heat data for C02 and Ar in the critical region. 

2. DISORDERED PHASE 

We consider here the behavior of a liquid-gas system 
on the critical isochore. If the temperature T is below T,, 
then the thermodynamic potential as a function of the den- 
sity p has two minima, one for the liquid and the other for 
the gaseous phase. For T > T,, there is only one minimum 
located at p =  p,. The Landau Hamiltonian for this situa- 
tion is'P2 

where V is the volume of the system, g,= (p- p,)/p, the 
order parameter, and a, c, and u are the coefficients in the 
Landau expansion. The coefficients c and u must be posi- 
tive [otherwise we must retain higher order terms in the 
expansion (2.1 )], and a vanishes at the critical point 

where a. is a constant. 
For a > 0 the mean value of the field g, is zero 

If a <O, a nonzero condensate of the field g, appears, i.e., 
(g,)#O (we use angular brackets to denote averaging over 
the Gibbs distribution). 

It is now convenient to change to the momentum rep- 
resentation in the Landau Hamiltonian (2.1 ). Let us write 
the field g, in terms of its Fourier expansion 

(Here and hereafter the space dimensionality d is arbi- 
trary.) Substituting this in (2.1 ) we find 

The initial expression (2.1 ) determines the energy cor- 
responding to the given distribution of the field g, and is 
only meaningful if the spatial scale for g, is large compared 
to the molecular dimension r ,  . Accordingly, we must im- 
pose the condition ( q ( (  r;' on the region of integration 
over the wave vector q in (2.3). We therefore introduce a 
cutoff parameter AO( r;' and integrate in the region 
IqI <Ao. 

In the mean-field theory the order parameter g, is ev- 
erywhere replaced by its mean value. Equation (2.3) then 
retains only one Fourier component with q=O of g,, and all 
thermodynamic properties are directly expressible in terms 
of the bare values of a, c, and u (a=ao,  C=CO, u=uO). 

The domain of validity of mean-field theory is readily 
estimated by calculating the first fluctuation correction to a 
and comparing the correction with the bare (i.e., mean 
field) value a,,. Landau theory is valid if the correction is 
relatively small compared with a=ao, meaning 

This is the Ginzburg criterion2 (designated Gi) for the 
validity of Landau theory. Comparing the fluctuation cor- 
rection with the mean-field value for other thermodynamic 
properties (specific heat, for example) will also yield the . 

Ginzburg criterion-but with a different numerical factor 
in the right-hand side of (2.4). 

On approaching the second-order phase transition, the 
coefficient a in (2.1) decreases, with a consequence that 
the energy for producing the long-wavelength fluctuation 
of the field g, tends to zero. Very close to the continuous 
phase transition, a large number of coupled long- 
wavelength order-parameter fluctuations form, and the be- 
havior of the system in this vicinity is described in terms of 
the RG method and the &-expansion. 

The present study uses the RG method in the Wilson 
formulation as discussed in Ref. 3. The method proceeds 
by first dividing the total domain of integration over I ql 
(0  < 1 q 1 < Ao) into regions of "fast" (A < I q 1 < AO) and 
"slow" (0  < 1 q  1 < A) fields qq and then integrating over 
the former. Repeated application of this procedure yields 
fluctuation corrections to various quantities (the magni- 
tude of the correction remaining relatively small at each 
step), and the Landau Hamiltonian H, Eq. (2.3), is re- 
placed by a sequence of smoothed Hamiltonians H A ,  with 
coefficients a, and u, dependent on the current cutoff pa- 
rameter A. 

We consider the disordered phase first. In the one-loop 
approximation the corrections to a, u, and c are given by 
the two diagrams shown in Fig. 1. It is readily seen that 
diagram la does not contain any dependence on the exter- 
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FIG. 1. Diagrams for the one-loop corrections to the coefficients a (a)  
and u (b) in the Hamiltonian (2.3). 

nal wave vector and hence the coefficient c remains non- 
renormalized in this approximation. The correction to a as 
given by the diagram of Fig. la  has an ultraviolet singu- 
larity which has nothing to do with the proximity to the 
critical point and must therefore be eliminated; this can be 
done by differentiating with respect to T. In this case we 
have the following differential equations to determine the 
changes in a,=daA/dT and u,, due to renormalization in 
a space with dimensionality d = 4 - E :  

Here A= 3 k ~ ~ ~ / ( 2 . r r ) ~ ,  where Sd is the surface area of the 
unit sphere in d dimensions. In the present study we do not 
apply the inverse scaling t ran~format ion~ '~ '~  

which would reduce (2.5) to autonomous form.2 The so- 
lution of the system (2.5) with initial conditions u,,,~, 
= a. and u,, = A, = uo is 

where 

Differential equations (2.5) and their solutions (2.7) 
are usually employed for determining the values of the 
critical exponents in the asymptotic critical region. In the 
region l ) ~ >  Gi the thermodynamic theory of fluctuations 
is valid. The description of the intermediate region raises 
the problem of matching the renormalized quantities a,, 
and u,, to the known Landau-theory expressions. The 
matching condition chosen in Refs. 11-14 is equivalent to 
replacing the integral L(A,Ao;aq) in (2.7) by L(A 
= = ~ ; ' , A ~ ; O ) .  In the present work, fluctuation- 
and mean-field-theory results are matched by replacing the 
integral L(A,Ao;aq) by L(A,Ao;a,,). As a consequence of 
this, the final results contain the amplitudes of the first 
fluctuation corrections to the mean-field values. 

Substitution of the matching condition into (2.7) gives 
the following expressions for the renormalized coefficients 
of the Hamiltonian (aR-aA=o and U ~ Z U , , = ~ ) :  

Here 

where ro= (cdao)  'I2 is the bare correlation radius ampli- 
tude. The parameter Gi in (2.8) is defined by 

.rr 

Gi= ( f ( ' -;) sin ( r&/2 ) (2.9) 

The standard notation Gi is here applicable because at E= 1 
this parameter is identical to the Ginzburg parameter de- 
fined in (2.4). 

Equations (2.8) lead to a criterion for the validity of 
mean field theory to be obtained. The coefficient a~ as- 
sumes its mean-field value a, when 

In contrast to the Ginzburg criterion (2.4), Eq. (2.10) 
contains a dependence on go- A t E .  It is readily seen that 
in three dimensions (2.10) is identical to (2.4) in the limit 
as Ao+ CO. It should also be noted that for E positive, the 
autonomous equation for the quantity bA defined by (2.6) 
has a nontrivial fixed point b* (see Refs. 2-5). The ratio 
bA=,,/b* agrees within a factor with the quantity Gz12. 

Using Eqs. (2.8), the thermodynamic properties of the 
disordered system can be derived. We first discuss the sus- 
ceptibility. From general principles, the susceptibility of 
system in the disordered phase is2 

From (2.8) we can obtain 

 where^ J '  =X;1/2ao. Eqs. (1.2) and (2.12) show that the 
crossover susceptibility x contains four nonuniversal pa- 
rameters, namely, x&, x$ = 2ao, Gi, and go. 

Above the phase transition ( T  > T,), the one-loop ap- 
proximation gives for the correlation radius 

Going to higher orders requires the renormalization of c. 
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We now proceed to derive the crossover specific-heat 
expression. The singular part of the free energy is given by 
the standard relation 

The specific heat is obtained from (2.14) by taking the 
second derivative with respect to T and keeping the terms 
most singular in the limit 7-0. This gives 

The (nonuniversal) constant B , , = ~ ~ ~ U ~ T ,  in the singu- 
lar part renormalizes the regular part in the fluctuation 
region. In analogy with the susceptibility case, here again 
there are four nonuniversal parameters (C&, Bo, Gi, and 
go) in the crossover specific-heat expression (2.15 ) . We 
postpone the discussion of the above results to Sec. 4 and 
turn now to consider the ordered phase. 

3. ORDERED PHASE 

Analysis of the ordered system parallels quite closely 
that performed in the preceding section for the disordered 
case, so we shall focus on the major distinguishing features 
of the ordered phase behavior. Below the phase transition 
( T  < T,) the quantity ( p )  (the mean value of the order 
parameter p )  becomes nonzero. It is convenient to set in 
the Hamiltonian H p= (p )  + I), where (I)) =O. The equa- 
tion of state in zero external field then becomes 

Evaluating the derivative and averaging we find 

The quantities ~ ~ = a ~ + 6 ~ ~ ( ~ ) ~  and uR in (3.2) are the 
renormalized coefficients of the Hamiltonian H in the or- 
dered phase. 

The differential equations for the renormalization of 
x, and u, are identical to Eqs. (2.5) for a, and u, [the 
corresponding Feynman diagrams are of the same form 
(see Fig. 1 ) as in the disordered phase, and in the ordered- 
phase correlation function (pp )  the quantity a is replaced 
by x]. The system of differential equations for x, and u,, 
has a solution of the same form as (2.7), but with a, 
replaced by x, . The dependence of the renormalized quan- 
tities x,,,~= xR and u,,o= uR on their respective bare val- 
ues x,=, = xo = -2aor and u ~ = ~ ~  = uo are given by 
(2.8) with a replaced by x. 

We consider next the behavior of the thermodynamic 
properties in the low-temperature phase ( T < T,). In the 
one-loop approximation the correlation length is given by 

7 

The order parameter (p )  can be calculated from the equa- 
tion of state (3.2) : 

The correlation length r; and the order parameter (p )  can 
be written explicitly by substituting the renormalized xR 
and uR into Eqs. (3.3) and (3.4). 

The ordered-phase susceptibility is most conveniently 
calculated by directly using the definition 

Taking into account the equation of state (3.2) we obtain 

Here E=xR/ao and the rest of notation is the same as 
before. 

In a way similar to that employed in the preceding 
section, the specific heat can be obtained by taking the 
second T-derivative of the ordered-phase free energy. Ac- 
curate to O ( E ) ,  we get 

(3.7) 
The correlation length (3 .3) ,  order parameter (3.4), sus- 
ceptibility (3.6), and specific heat (3.7) describe the be- 
havior of the thermodynamic system in the crossover re- 
gion below the phase transition. We now turn to discuss 
the results. 

4. DISCUSSION 

For limiting cases of interest, the thermodynamic 
properties we have derived in Secs. 2 and 3 duplicate the 
corresponding results known from fluctuation and mean- 
field theories. Consider first the domain of validity of the 
latter, Gi(r(1. In this region Eq. (2.8) for the renormal- 
ized coefficient aR may be written as 

where we have retained the first fluctuation correction and 
neglected the constant go- ( l/Gi) -&I2. Using (4.1 ) for 
E =  1 it is straightforward to retrieve the familiar expres- 
sions for first-order-corrected thermodynamic properties in 
the region Gi(r( 1. In particular, the heat capacity follows 
from (2.15) and (4.1) as 
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which agrees with the first-order perturbation result due to 
Levanyuk. l9 

Next, consider the asymptotic vicinity of the phase 
transition. Equation (2.8) yields the following condition 
on the range of temperatures for which the fluctuation 
correction to aR is large compared to its mean field value: 

In this region expression (2.8) for aR can be represented by 
the wegnersr2' asymptotic expansion 

Note that apart from the leading term, Eq. (4.4) also re- 
tains the first correction term of the Wegner expansion, the 
one proportional to (r/Gi) ",. 

The treatment of the ordered phase in the fluctuation 
and mean field regimes is similar but with aR replaced by 
x ~ = u , + ~ u ~ ( ~ ) , .  Using (4.4) for aR in the disordered 
phase and an analogous expression for xR in the ordered, it 
is a simple matter to reproduce the standard fluctuation- 
theory results for the susceptibility, correlation length, heat 
capacity, and order parameter, both above and below the 
transition. In particular, the asymptotic critical behavior of 
the heat capacity can be written as 

where a=;+0(c2),  A =:+ o ( E ~ )  (theoretical value 
A =0.5 1, Refs. 7 and 14). Here a, is the Wegner correction 
amplitude. It is easy to retrieve the entire set of the uni- 
versal amplitude ratios of leading asymptotic to correction 

It should be noted, however, that in our approx- 
imation the ratios of the Wegner-corrections are only cor- 
rect to zeroth order in E ,  and we should go over to the 
two-loop approximation to obtain corrections - O(E) (see 
Refs. 14 and 21). The same is true for the ratio of the 
asymptotic amplitudes of the heat capacity, A+ above to 
A-, below the critical point. 

Reference 17 states that the following combination of 
heat-capacity amplitudes is universal in the fluctuation re- 
gion: 

Substituting the amplitudes, this complex becomes 

which is exactly the result of Ref. 18. Since go is not uni- 
versal, neither is the amplitude combination (4.6). The 
conclusion to the contrary reached in Ref. 17 is a conse- 
quence of the assumption A,= a. In this case go=O, and 

the universal nature of the combination (4.6) in the one- 
loop approximation is obvious. From (2.8), using the nat- 
ural estimate A. - r i l ,  we have for E = 1 

If Gi<l, Eqs. (4.7) and (4.8) imply that the magnitude of 
the amplitude combination Rcr is very nearly universal. 

5. PHENOMENOLOGY 

The above first-order-& expressions for susceptibility, 
correlation length, specific heat, and order parameter in- 
volve approximate values of the critical exponents and 
hence cannot be applied to data analysis directly: such an 
analysis requires formulas with correct critical exponents. 
The crossover formulas of Ref. 14 are derived to third 
order in E ,  but they again involve approximate critical pa- 
rameters and are therefore unsuitable for data analysis; 
besides, they are extremely unwieldy. In order to be able to 
analyze the experimental data, one has somehow to resort 
to their phenomenological generalization. This approach 
has been adopted in Refs. 22 and 23 but, although the 
formulas therein do allow data analysis, they are again 
unwieldy and admit of no clear interpretation of the fitting 
parameters involved. 

In the present work we suggest a phenomenological 
generalization based on first-order &-approximation. The 
susceptibility and specific heat will be modeled, in this ap- 
proximation, but with &-dependent parameters replaced by 
unknown constants. Equations (2.12) and (2.15) then be- 
come 

where 

X, is the mean-field-theory susceptibility amplitude, and go 
is a nonuniversal constant dependent on the cutoff param- 
eter A,. In deriving Eqs. (5.1 ) we have taken into account 
the renormalization of the coefficient c in front of the gra- 
dient term in the Landau Hamiltonian (2.1 ) . The param- 
eters A,, A,, A3, and A4 can be obtained by comparing Eqs. 
(5.1) with the known asymptotic behavior of the thermo- 
dynamic properties. This gives 

where 7=0.03 (see Refs. 7 and 8) is the critical exponent 
of the anomalous dimensionality of the correlation func- 
tion. The constant w in (5.1) determines the amplitude 
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FIG. 2. Isochore heat capacity C versus 
log(7): A--c02  (Ref. 24), curve I-Eq. 
(5.1), curve 2-asymptotic behavior 
( C a  T - " ) ,  curve 3-asymptotic behavior 
including the leading Wegner expansion 
term [Ccc 7-"( 1 +a,?)]. 

ratios for the first Wegner corrections and may be chosen 
such that these ratios agree with the theoretical 
predictions.'7922 In the present study we set 0=0.33. 

The simplicity of Eqs. (5.1 ) stems from our adhering 
to the functional structure of the first-order-& approxima- 
tion expressions (2.12) and (2.15). At higher orders, ther- 
modynamic responses change their structure and can no 
longer be reduced to their first-order-& approximation 
forms. 

Phenomenological expressions (5.1 ) make it possible 
to describe the heat-capacity and susceptibility data well 
within the experimental accuracy currently achievable. In 
the present study we analyzed heat-capacity data for CO, 
(Ref. 24) and Ar (Ref. 25). The results are summarized in 
Figs. 2 and 3, which show that the phenomenological gen- 
eralization of the first-order-& formulas is adequate not 

Cv 

only in the asymptotic critical region but for T- Gi as well. 
Also, phenomenological expressions ( 5.1 ) make it possible 
to extract the experimental values of the Ginzburg param- 
eter and the (upper-cutoff related) parameter go and thus 
to quantitatively estimate the departure of the experimen- 
tal data from the "universal behavior" suggested in Refs. 
15 and 16. The term "universality" implies that physical 
properties share a common form dependent on critical ex- 
ponents and a Ginzburg-type parameter. As argued in 
Refs. 15 and 16, expressions of this kind should be appli- 
cable both near the phase transition and in the crossover 
region (r-  Gi). Equations (5.1 ) become universal at 
go = 0. 

The authors wish to thank M. A. Anisimov for his 
interest and helpful comments. 

FIG. 3. Isochore heat capacity C versus 
log(7): 0-Ar (Ref. 25), curve I-Eq. 
(5.1), curve 2-asymptotic behavior 
( C ~ T - ~ ) ,  curve 3-asymptotic behavior 
including the leading Wegner expansion 
term [ ~ a  ~ - ~ ( l  +ac?)]. 
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