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We consider the relaxation of the intermediate decay structure of metallic glasses and solid 
solutions in the following stages after the spinodal decay has been completed. We 
show that in that stage one can characterize the quasistationary structures as a whole by 
some new (generally speaking, nonconserved) order parameters, such as the chemical 
potential, the internal energy, or the pressure. By means of this approach, which uses 
the Landau-Khalatnikov equation, we study the special case of one-dimensional symmetric 
relaxation when the mean density co of the alloy is exactly equal to half the sum of 
the binodal densities. We obtain the time dependence of the characteristic period of the 
structure both in the initial binodal decay stage and in the coalescence stage. For the one- 
dimensional model we also establish the temperature dependence of the characteristic 
scales of the structure and of its relaxation time. We give an estimate of the width of the 
interphase boundary in the binodal relaxation stage. 

1. INTRODUCTION 

We consider, as before,ls2 a two-component glass (or a 
solid solution) with a limited solubility of one of the com- 
ponents in the solid state. A typical state diagram of such 
a system in the T - c  variables ( T  is the temperature and c 
the atomic concentration of one of the components) is 
shown in Fig. 1. Homogeneous states are stable in region I, 
region 2 corresponds to metastability, and the states in 
region 3 are unstable against any deviation of the concen- 
tration from uniformity. For the unstable states one ob- 
serves a spontaneous growth of small concentration per- 
turbations in the whole of the volume of the sample; this is 
usually called spinodal decay. To observe spinodal decay in 
practice it is necessary to transfer the system as fast as 
possible from the region I into the region 3, for instance, 
through quenching from the liquid state. If, however, the 
cooling is slow a complete or partial decay to equilibrium 
phases can proceed through the classical mechanism of 
nucleus formation even in the transfer process, i.e., in re- 
gion 2. On the other hand, in the case of fast cooling it 
turns out that in the systems considered only those degrees 
of freedom corresponding to long-range order of the inter- 
atomic distances manage to relax. The hydrodynamic 
modes, on the other hand, are found to be frozen in, as it 
were. This is because the viscosity "tracks" the tempera- 
ture and it is just the viscosity which determines the rate of 
the relaxation of the hydrodynamic modes (in our case the 
large-scale fluctuations in the constitution). Estimates of 
the corresponding relaxation times are given, for instance, 
in Ref. 2. 

We thus assume that the superfast cooling has already 
taken place, i.e., that the system turned out to be in a 
strongly nonequilibrium (labile) state. Our problem is to 
consider the subsequent evolution of the system under iso- 
thermal conditions. Such evolution does not require, at 
least not in the early stages, that energy barriers have to be 
surmounted through fluctuations. It is completely natural 

in this connection to consider the spinodal decay process 
on the basis of a differential equation (known as the gen- 
eralized Cahn diffusion equation3). The basis of the dis- 
tinctive feature of this equation is the negative diffusion 
coefficient which is responsible for upward diffusion. The 
use of such an approach in papers by ~ a h n , ~ , '  ~ i l i ~ o v i c h , ~ ~ ~  
Khachaturyan and ~uris, '  ~ a n ~ e r , ~  ~ i t l i n , ' ~ ' ~  and 
ourselve~"~ made it possible to explain a number of the 
basic features of the spinodal decay. In particular, it was 
established that spinodal decay in solid solutions, poly- 
mers, or metallic glasses may lead to the appearance of 
intermediate quasistationary structures with mesoscopic 
scale inhomogeneities. Such structures are formed by peri- 
odically repeated fragments and in the general case are 
metastable. The metastability of these structures is con- 
nected with the slowing down of the kinetics, as was 
pointed out in Ref. 11. The free energy of the system in the 
kinetic stabilization stages then remains practically un- 
changed. 

The intermediate decay structures which appear in the 
kinetic stabilization stage of the spinodal decay are quasi- 
stationary but they are still far from complete thermody- 
namic equilibrium. To study the relaxation of an interme- 
diate decay structure to a state of complete thermodynamic 
equilibrium (on the level of a detailed description) it 
would be necessary to write down a nonlocal equation 
(e.g., an integro-differential equation) for the probability 
distribution c(r) in function space. For a "crude" descrip- 
tion, however, it is sufficient to bear in mind that in a 
phenomenological approach intermediate quasistationary 
structures can be characterized by a few nonequilibrium 
parameters such as, for instance, the chemical potential, 
the pressure, or the internal energy. These nonequilibrium 
order parameters characterize the system as a whole, 
rather than separate parts of it, and their relaxation to 
thermodynamic equilibrium can be studied by treating sim- 
ple kinetic equations. 
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FIG. 1. 

2. CHOICE OF VARIANT OF A THEORY OF THE 
RELAXATION OF AN INTERMEDIATE DECAY STRUCTURE 

To describe the relatively slow evolution of large-scale 
concentration variations c(r,t) of one of the components in 
a glass or a solid solution one starts from the relation con- 
necting the particle flow density j and the gradient of the 
generalized chemical potential ,u (r,t) = SF/Sc(r,t) : 

Here 3 is the free energy of the glass and M is the product 
of the volume concentration and the mobility of the atoms 
of the component considered. It is very important that the 
concentration satisfies the conservation law 

The description of the relaxation based upon Eqs. ( 1 ) and 
(2) has a meaning up to the moment when the chemical 
potential ,u (expressed as the functional derivative of the 
free energy with respect to the concentration) becomes 
spatially uniform in the whole of the system. According to 
( 1) mass transfer in the system then stops and the station- 
ary concentration distribution which was studied in detail 
in Ref. 8 is established. However, in actual fact, the relax- 
ation processes in the system are not completed by this 
since the absolute minimum of the free energy is reached 
for a completely determined ,u =,urnin, whereas the value of 
,u established as a result of the spinodal decay is in no ways 
necessarily the same as ,urnin. There is, apparently, a whole 
set of values of ,u which correspond to local minima of the 
free energy functional 3{c ( r )}  in the concentration con- 
figuration space. One can say that the intermediate decay 
structures correspond to states of partial equilibrium. 

The transition from one partial equilibrium to another, 
the absolute minimum of the free energy, is reached, is no 
longer described by Eq. ( 1 ) since it neglects two principal 
points. Firstly, as was especially clearly shown in Ref. 14, 
the true relaxation equation must be nonlocal. Meanwhile, 
the local nature of ( 1 ) imposes nonphysical limitations on 

the cooperative behavior of the system and on the choice of 
the energetically favorable stationary structure. The 
present authors, for instance, have earlier in Ref. 2 ob- 
tained the way the spatial scale of an intermediate decay 
structure depends on the correlation radius of the initial 
fluctuations. The situation here is equivalent to the motion 
of a ball in a "mountain relief" filled with a viscous fluid 
when the falling of the ball into one or other local mini- 
mum of the relief depends to a large extent on the initial 
conditions. 

Secondly, the true equation must contain random 
forces reflecting the influence of fluctuations caused by the 
finite temperature. Over long times, thanks to these forces, 
one can surmount the energy barriers which separate the 
kinetically stable intermediate structures described in Ref. 
8 from the thermodynamically favorable ones. 

In connection with the considerations presented above 
it is completely appropriate to give a palliative description 
of the relaxation of an intermediate decay structure on the 
basis of the phenomenological Landau-Khalatnikov 
equation: l5 

where y is a kinetic coefficient and 77 a suitably chosen 
order parameter which [in contrast to c(r,t)] characterizes 
the total system as a whole and which depends only on the 
time. The parameter 7 thus determines the evolution of the 
spatial concentration distribution. 

We turn now to a specific choice of 7 and to finding 
explicitly the function F ( 7 ) .  Following Ref. 2 we shall 
consider only those intermediate decay structures which 
are described by a one-dimensional concentration distribu- 
tion, c(x,y,z) =c(x) .  There is some basis for assumingI6 
that a one-dimensional concentration stratification is ener- 
getically more favorable than a multidimensional stratifi- 
cation. 

The free energy of the system is according to a popular 
model8 described by the following functional: 

Here S is the area of the cross-section of the sample; f (c) 
is the specific free energy; f l  is a positive constant which is 
of the same order of magnitude as p u z a 2 ,  where U is the 
mixing energy, Z is the coordination number of the given 
alloy, a is the range of the interatomic interaction, and p is 
the total number of atoms per unit volume. 

The stationary states of the system are determined by 
the extrema of the functional (4)  under the additional con- 
dition that the total number of atoms of each of the com- 
ponents of the alloy is conserved: 

with N being the total number of atoms of one of the 
components. 
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Finding the conditional extremum of the functional 
(4) under the additional condition (5) reduces to finding 
the unconditional extremum of the functional 

where the Lagrangian multiplier ,G in (6) is P = p p  with p 
the chemical potential of the system. The standard varia- 
tional procedure applied to the functional (6) leads to the 
following differential equation for the concentration 
c(x):16 

FIG. 2. 
One should emphasize that the chemical potential ,G in 

Eqs. ( 6 )  and (7) is constant in the whole of the system, 
whereas according to Cahn's equation the decay process 
proceeds only because of the spatial inhomogeneity of the 
chemical potential. There is no paradox here since Eq. (7) 
describes equilibria when the equalization of the chemical 
potential has already been completed and it is fixed at some 
level. That level itself, though, remains undetermineed. 

Mathematically this indeterminacy follows from the 
fact that Eq. (7) which has the same form as the equation 
of motion of a classical and, in general, nonlinear oscilla- 
tor, has the integral of motion 

E= (c) -fit-! 2 (&)'. dx 

It is impossible to determine both constants E and ,G from 
the single condition (5) and one of them (or some combi- 
nation of them) remains undetermined. 

Here one must choose this undetermined constant as 
the order parameter since the relaxation of the system, 
after some partial equilibrium has been reached by it, will 
proceed through changing from one partial equilibrium to 
another one which corresponds to a lower free energy until 
its absolute minimum has been reached. 

The further discussion is based on a choice of a par- 
ticular free energy density function in the form proposed 
by ~andau."  At a temperature below the critical one (the 
temperature corresponding to the vertex of the spinodal 
cupola (Fig. 1)  plays the role of the critical temperature 
T,)  we have 

Here c, and cg are the binodal concentrations for which 
f (c) reaches a minimum, i.e., the concentrations in the 
two equilibrium phases which make up the system in a 
state of complete thermodynamic equilibrium, 
c,=i(ca+cg) is the concentration in the point where f (c) 
is a maximum; the constants 29 and a have the dimension- 
ality of an energy density and the constant 
8's (a/8) ( C ~ - - C ~ ) ~  is chosen in such a way that f (c) 
vanishes in the points where it is a minimum (see Fig. 2).  
In the model (9) the binodal and spinodal concentrations 

(cSl and cS2) are positioned symmetrically with respect to 
the concentration c, and they are coupled to one another 
through the relation 

The quantity E is similar to a pressure; the physical inter- 
pretation of this analogy is that in a supercooled gas, first 
of all the pressure of the gas and its chemical potential 
equalize in the whole of the volume, and after that they get 
established at the level corresponding to the Maxwell rule 
of equal areas. 

In solid solutions and metallic glasses the quantities ji 
and E are interconnected through a relation following from 
(5) ,  i.e., the actual form of the relation between f i  and E is 
determined, apart from anything else, also by the average 
concentration co of the alloy. 

In the case of arbitrary values of co the plan of the 
solution is the following: first of all we establish from Eq. 
(8)  the form of the extremal c(x,fi,E), then we use (5)  to 
find the relation between f i  and E, ,G=ji(E,co), then we 
find from (4) the function F ( E )  or F ( P ) ,  whichever is 
the more convenient, and, finally, identifying q, respec- 
tively, with E or ,G we solve the Landau-Khalatnikov equa- 
tion ( 3 ) .  

However, in the general case the realization of this 
plan encounters serious difficulties (of a rather technical 
nature), so that the general case need to be considered 
separately. The main features of the physical pattern of the 
relaxation of intermediate decay structures can, however, 
be exhibited by considering the special co=c, case which 
we may call the symmetric relaxation case. It is completely 
obvious that for co=c, the deviation of c(x)  from co oc- 
curs with equal probability in both directions; the c(x,t) 
curve is symmetric relative to the horizontal c=co at any 
time and condition (5)  is satisfied automatically while Eq. 
(8) is compatible with this symmetry only for F r o .  In this 
situation it is natural to choose as the order parameter the 
quantity E and to trace its relaxation in what follows. 
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3. SYMMETRIC RELAXATION 

If we have ii =0,  it follows from ( 4 )  and ( 8 )  that 

The analogy with the one-dimensional oscillator problem 
indicates8 that for 0  < E < 8 the concentration changes pe- 
riodically, "oscillating" between the values c l ( E )  and 
c 2 ( E )  (the turning points of the system), which are deter- 
mined by the condition 

f ( c )  = E .  ( 1 1 )  

From the four solutions of this equation we choose those 
two with f ( c )  > E  in the interval between them (see Fig. 
2 ) .  The period of the structure is determined by an integral 
of the form 

Using the periodicity of the integrand in ( 10) with period 
A in the coordinate x and replacing the integration over x 
by integration over c  we are led to the formula: 

where V is the volume of the sample. 
One can evaluate the integrals ( 12) and ( 13) in two 

limiting cases: 1 ) when E  is close to 8; 2) when E  is close 
to zero. The corresponding criteria look as follows: in the 
first case we have I E-  8 I ( 8 ,  and in the second case we 
have E( z?, 

For the first case we restrict ourselves to writing down 
the results: 

Y ( E )  ( z ? - ~ ) 2  
f ( E )  5-- v - 8 -  

4 a 4 a  ' 

We now consider the second limiting situation when 
E-0;  this corresponds to a state of the alloy which is very 
close to complete thermodynamic equilibrium. Since in 
that case the concentrations c l ( E )  and c 2 ( E )  satisfy the 
inequalities 

when evaluating the integrals ( 12) and ( 13) we can ap- 
proximate the function f ( c )  near c l ( E )  and c 2 ( E )  by the 
expressions f , (c)  ~ f ( c - c , ) ~  and f g ( c )  ~ f ( c - c ~ ) ~ ,  re- 
spectively, where we have f =2acga. To find the integra- 
tion limits in ( 12) and ( 13) we use the approximate ex- 
pressions for f  ( c )  indicated above. Furthermore, in view 
of the symmetry of the integrals ( 1 2 )  and ( 1 3 )  each of 
them can be obtained by taking twice the integral taken 
with the limits from cl ( E )  to c,  . 

The integral determining the period A of the structure 
for E - 0  diverges logarithmically for c z c l  z c ,  . To eval- 
uate this integral we can thus replace the function f ( c )  
with logarithmic accuracy by its limiting expression 
~ ( c - c , ) ~ ,  not only near c, ,  but also in general in the 
whole integration range from c l  ( E )  to c,  . The integral can 
then be evaluated and the result gives the dependence of 
the period A of the structure on the parameter E  

Logarithmic accuracy means that we cannot guarantee 
that the constant standing under the logarithmic sign in 
( 16) is correct. 

Similar considerations are valid also for evaluating the 
integral ( 13) which determines the free energy density: 

We assume that the relaxation process consists in de- 
creasing the order parameter E  from some initial value Eo 
to zero. If this is the case the free energy 3 ( E )  tends to 
zero in this process and the period of the structure in- 
creases, according to ( 15) and ( 16),  to become infinite (in 
reality, of course, the period of the structure is bounded by 
the size of the sample). 

The speed with which the order parameter E ap- 
proaches its equilibrium value E=O can be determined 
from the Landau-Khalatnikov equation ( 3 ) .  The initial 
value of the order parameter Eo is determined by the char- 
acteristics of that intermediate decay structure the forma- 
tion of which was completed in the spinodal stage of the 
decay. In particular, we shall assume that the initial value 
of the period of the structure is the same as the correlation 
radius Rc of the intermediate decay structure, which was 
determined in Ref. 2. Substituting the quantity R ,  for A in 
( 1 5 )  or ( 1 6 )  we can determine the initial value of the 
order parameter Eo= E ( R , )  . 

The solution of Eq. ( 3 )  (6~77) in the IE-z? I /z?( l  
range has the form 

where we have ~ = 2 y - ' a c & ,  i.e., in the initial stage the 
parameter E  decreases exponentially fast. In order to de- 
scribe the kinetics of the stratification of the alloy in the 
final stage (as E - 0 )  we must solve Eq. ( 3 )  using for f ( E )  
the value given by Eq. ( 17) .  We then get 

One sees easily from ( 19) that the stratification time turns 
out to be finite: 

The completion of the relaxation of the nonequilibrium 
system in a finite time ( 2 0 )  is a reflection of the one- 
dimensional character of the problem and it apparently 
does not occur in real systems. 

276 JETP 77 (2). August 1993 L. I. Stefanovich and E. P. Fel'dman 276 



Knowing the function E( t )  makes it possible to deter- 
mine the time dependence of the quantity which physically 
is of most interest-the period A of the concentration in- 
homogeneities. From Eqs. ( 15) and ( 18) it follows that A 
grows exponentially with time in the strong nonequilib- 
rium stage ( I  $-El($). 

At long times we find (as E-0) from ( 16) and (20) 

where A c z  ( ~ / a )  1/2caa a a/cid is the Cahn scale.3 Equa- 
tion (21) qualitatively reflects the fact that one observes in 
the coalescence stage a growth of the large-scale inhomo- 
geneities due to the vanishing of the small size inhomoge- 
neities. As far as a logarithmic, rather than a power-law 
(according to the law18 A a t1I3) growth is concerned, this 
indicates here again the specific behavior of the one- 
dimensional problem. 

The binodal decay time is to a large extent determined 
by that scale R, of the intermediate decay structure from 
which this binodal decay starts. If we have 

1/2 -1 R,-Aca (P/a) cga, the initial value of the parameter E 
is close to 65' and the decay time is 

i.e., this time decreases strongly as one approaches the 
critical point. 

If, however, we have Rc%Ac, we can easily ascertain 
from ( 16) and (20) (substituting in ( 16) the quantity R, 
instead of A) that the decay time is exponentially small: 

The fact that the time t, of the binodal stage is small can be 
explained by the fact that large-scale "frozen-in" concen- 
tration fluctuations were formed either already in the 
quenching stage, or they were formed in the spinodal decay 
stage. 

CONCLUSION 

Let us consider in more detail the analysis of the re- 
sults obtained. We showed in Ref. 2 that as the result of the 
spinodal decay of a glass or a solid solution a kinetically 
frozen-in (but, in general, nonequilibrium) intermediate 
decay structure is formed which is characterized by some 
scale R, which is either the same as the Cahn length Ac or 
larger than it (R, > LC). We established above that such a 
structure can also be described by means of some nonequi- 
librium order parameter. This parameter relaxes, begin- 
ning from some starting value which is determined as the 
result of the preceding spinodal decay. The relaxation of 
this order parameter describes the further decay of the 
system which can, in general, develop according to two 
scenarios. 

The first of those is realized in the case when the initial 
value of the parameter E falls into the range of values 
I 8 -EJ ($, i.e., when the system after the completion of 

the spinodal stage still remains strongly nonequilibrium. 
The concentration profile of the structure from which the 
subsequent relaxation starts off (in the symmetric case 
when we have cO=c*) is sinusoidal in this situation. In the 
strong nonequilibrium region the period A of the sinusoidal 
concentration waves has the Cahn length Ac as scale, 
where 

with a the range of the interatomic interaction, and as 
relaxation takes place it changes very little [see (15)] in the 
region indicated above. The kinetics of the stratification is 
then basically characterized by the growth in the ampli- 
tude of the concentration waves, since the amplitude values 
of the concentrations c l (E)  and c2(E) are still very far 
from their equilibrium values c, and ca, respectively. 

We note that the period of the concentration waves 
depends, in general, also on the temperature. It follows 
from (15) that this dependence is mainly determined by 
the factor 

whence it follows that the spatial scale A of the concentra- 
tion fluctuations is considerably larger than the range a of 
the interaction (A)a) only in the immediate vicinity of the 
critical point (T-t  T,). It is clear from (25) that this be- 
havior has a scaling character with a critical index 
"- 1/2". 

To go on, for Egg the pattern of the relaxation 
changes completely. Firstly, the period A of the structure 
corresponding to such a value of E is already larger than 
the Cahn scale ( A ) A ~ ) . ~  Secondly, the concentration fluc- 
tuations themselves cease to be sinusoidal. The concentra- 
tion profile c (x)  of the structure is now characterized by 
two spatial scales: one of them gives the average size of the 
"plateau" with concentrations close to the equilibrium 
ones (this is, in fact, the size of a "seed" of the new phase). 
The second scale corresponds to the width S of the transi- 
tion region between the almost equilibrium phases. The 
quantity S can be estimated as follows: 

where we have AC =c2 (E) - c1 (E)  while the magnitude of 
the concentration gradient can be found from (8) .  For 

=O we have 

To estimate the value of 6 as E-0 we must put 
Aczca-c,=caa and f (c) = f (co) in (27), whence 

i.e., the width of the transition region has the Cahn size. 
Moreover, it remains practically unchanged during the 
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whole binodal relaxation time. Since the period of the 
structure in this stage decreases fast, according to ( 16) and 
(21), we may conclude that this growth is completely 
caused by the increase in the size of the "plateau" in the 
concentration profile c ( x ) ,  i.e., by the increase in the size 
of the one-dimensional "seeds" of a new phase. 

This growth of the new phase region at the start of the 
binodal stage of the decay occurs at the expense of deple- 
tion of the surrounding matrix of the corresponding com- 
ponent. On the other hand, in the concluding stage of the 
binodal decay the nuclei grow so much that they begin to 
interact with one another, i.e., the coalescence stage begins 
when the large nuclei "devour" the small ones; this is de- 
scribed by Eqs. ( 16) and (2 1 ). 

We shall not discuss in detail the second scenario of 
concentration stratification. We merely note that it, in fact, 
reduces to the concluding stage of the binodal decay (co- 
alescence) which we analyzed above. This scenario is real- 
ized in the case when the system has already relaxed, as the 
result of the spinodal decay,' so much that the parameter E 
falls in the E($  range of values, i.e., when the period of 
the structure (A = R,) from which the binodal decay starts 
is at once larger than the Cahn size (A>&). 
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