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Using a thin-layered geometry we observed in an experiment about the transition of a 
stratified mixture with a lower critical point (2,4,6-trimethylpyridine+water) to the labile 
region the effect of a temporally quasiperiodic change in the scales of the structure 
occurring during the spinodal decay. A theoretical model connects these dynamics with a 
flow mechanism for the spatial phase separation in liquid solutions. 

INTRODUCTION 

A physical mixture can be in three qualitatively differ- 
ent states (see the survey in Ref. 1); the regions in which 
they are realized in the phase diagram (Fig. 1 ) are delim- 
ited by the binodal b (in its points the chemical potentials 
of two equilibrium phases are equal) and the spinodal s 
(on it the interdiffusion coefficient of the components of 
the mixture vanishes). In the region I which lies outside 
the binodal the state with a uniform spatial distribution of 
the density u is stable; in the metastable region I1 diffusion 
guarantees the motion to one of the uniform states which is 
selected by spontaneous symmetry breaking. In the labile 
region I11 the diffusion coefficient is negative so that any 
spatial fluctuation is amplified and the ground state turns 
out to be spatially inhomogeneous and characterized by a 
well defined ordering. The realization of such a state when 
one passes through the spinodal is called spinodal decay. 

The observed state of a mixture depends in a well de- 
fined way on the external conditions, in particular on the 
dynamics of these conditions. For instance, to observe the 
spinodal decay when there is a transition from the state I 
of an actual mixture to the point 2 (see Fig. 1) the corre- 
sponding change in temperature (or pressure) must be suf- 
ficiently fast for diffusion not to be able to extend the nuclei 
of conjugate phases (the states 3 and 4 and all intermediate 
states such as 3' and 4') to a size which is critical for 
stratification due to convection. The requirements for the 
speed of the transition to the labile state are very rigid: it 
suffices to note that solely the determination of the position 
of the spinodal in the phase diagram forces us to apply 
either extrapolation methods2 acting only in the direct vi- 
cinity of the critical point T, where the binodal and the 
spinodal touch each other, or nontrivial means for a fast 
change of the thermodynamic parameters (e.g., 
light-induced3 or due to strong mixing4). These require- 
ments become more stringent when the "immersion depth" 
into the labile region becomes greater-in a cell of about 1 
cm size a mixture stratifies after 15 minutes for 
AT(I-2) - K, but after a few seconds for 
AT(1-2) - 1 K. The speed with which the ordered decay 
structure spreads out due to convective counterflow of the 
light and the heavy phases decreases when the viscosity of 

the mixture increases or when the difference in density of 
the conjugate phases decreases; these, however, are essen- 
tially uncontrolled parameters barring exceptional cases. 
An experiment carried out in a state of weightlessness 
would be ideal. 

An alternative that is used in our experiment consists 
in the choice of a thin-layer vertical geometry for the cell 
with the mixture to be studied (the distance between the 
windows is d= 50 pm).  The surface tension forces consid- 
erably inhibit the convection here. The lifetime of the spin- 
odal decay structures is then increased to tens of minutes 
for AT(1-2) - 1 to 10 K. It is necessary here to give an 
explanation. Of course, the suppression of the convection 
does not strictly affect the process of the formation of new 
phases. However, if there is no convection these phases are 
not separated in real space and conjugate phases in the 
form of nuclei or droplets coexist in a thin cell in the mixed 
state. If we choose some sufficiently small region in the cell 
the density of the components of the mixture of the two 
phases, averaged over that region, will be equal to the ini- 
tial density of the mixture (i.e., before the transition to the 
labile region). This is the principal reason for the special 
place of thin cells for a study of spinodal decay in prefer- 
ence to extended ones: in thin cells one can realize a labile 
state on average in a small region which exists for a rather 
long time. 

In the first observation of the spinodal decay5 in a 
liquid (centimeter cell, methanol+cyclohexane mixture) 
they, firstly, recorded, the occurrence of the ordered struc- 
ture itself in the mixture which made the transition into the 
labile region by means of a thermostat: during the scatter- 
ing of a beam from a He-Ne laser passing through the 
mixture there appeared in the far zone apart from the cen- 
tral spot a ring caused by the scattering by the short-range 
order structure; the radius of this ring is inversely propor- 
tional to the size of the inhomogeneity arising as the result 
of the decay. Secondly, it was shown that the ring in the 
scattering field contracted with time, i.e., in agreement 
with the linearized theory of density fluctuations (see Ref. 
6 )  the scale of the structure increased. The conditions of 
the experiment of Ref. 5 and similar ones, however, limited 
the possibilities for studying the kinetics of the spinodal 
decay because the duration of these experiments cannot 
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FIG. 1. Phase diagram of the aqueous mixture of 2,4,6- 
trimethylpyridine. 

exceed the convective layering time. The conclusion that 
the dynamics of the decay was monotonic in time holds 
therefore only within the limits of a rather short time in- 
terval. On the other hand, the theory of Ref. 6 is restricted 
by the assumption that the deviations of the local density 
from the equilibrium one are small; its prediction of the 
monotonicity of the decay process which is diffusive in its 
nature is essentially already predetermined by this assump- 
tion. The kinetics under conditions of a strong nonlinear- 
ity, taking into account the density dependence of the re- 
laxation times, may be nontrivial as in other self-organizing 
systems (see, e.g., Ref. 7) .  

We have already noted that the experiment described 
below was carried out under conditions when the convec- 
tive mixing which naturally disrupts the decay process was 
greatly inhibited. To interpret the studies in this mixture of 
the kinetics of the spinodal decay which is, generally 
speaking, nonmonotonic we have developed a nonlinear 
theory, generalizing Ref. 6 and describing qualitatively the 
various kinetic regimes: relaxation to an equilibrium level, 
soliton transmission. and cnoidal waves. 

1. EXPERIMENT TO OBSERVE THE SPINODAL DECAY IN 
AN ASSOCIATED WATER MIXTURE 

The experiment was carried out with a water mixture 
of 2,4,6-trimethylpyridine (TMP) (Fig. 1 ) . This com- 
pound belongs to a biologically important class of azines, 
to which the nucleotides DNA and RNA, and a number of 
vitamins and medicines belong. The physical properties of 
the TMP mixtures are to a large extent determined by the 
kinetics of the hydrogen bonds between the nitrogen atoms 
in the pyridine rings in the TMP molecules and the hydro- 
gen atoms in the water molecules. In particular, these 
bonds guarantee the stratification at low temperatures (the 

mixture has a lower critical point equal to T,=5.7 "C). 
The mixture with an initial density corresponding to the 
critical one (97 molecular % of H20)  was placed in a cell. 

The cell consisted of two circular quartz windows with 
a distance between them given by the thickness of the 
packing and equal to 50 pm. The kinetics of the mixing in 
it was determined practically solely by diffusion, i.e., for a 
deep approach into the labile region in our experiments we 
did not need special fast means to change the temperature; 
the temperature was changed by means of a normal ther- 
mostat. The quartz windows with drops of the liquid to be 
studied between them were clamped in a circular metallic 
ring fitted with a water jacket. The depth of the ring was 
equal to the two quartz windows joined in height while its 
diameter was larger by 0.5 mm than the diameter of the 
quartz windows, i.e., there was a free volume between the 
quartz windows and the ring itself. In the compression 
process the liquid filled the space between the windows 
uniformly and was squeezed into the volume between the 
ring and the quartz windows, filling it and thereby guar- 
anteeing thermal contact between the ring (water jacket) 
and the faces of the windows. The temperature front prop- 
agated during heating from the faces of the windows along 
their radius (see Fig. 2). 

The time for establishing thermal equilibrium in the 
mixture, determined experimentally from the speed at 
which the external surface of the windows of the cell is 
heated up was about 10 minutes. The heating up of the 
liquid itself proceeds faster because there is no contact with 
the air. The initial stage of the decay is then partially su- 
perimposed on the final heating process so that a quanti- 
tative comparison of the experimental result with theory 
can here not be exact. This is the price to be paid for the 
possibility that the mixture can make a transition to the 
region of states far from the spinodal; we note that no 
qualitative differences were observed between theory and 
experiment for the dynamics of the decay in the stationary 
regime. 

Up to the start of the experiment the temperature of 
the mixture in the cell was sustained at a level below T ,  by 
means of a thermostat connected with the water jacket of 
the cell. After the recording instrument was tuned up (see 
below) for a few seconds the water in the thermostat was 
warmed up to 25 to 30 "C, which corresponds to deep pen- 
etration into the labile region. The moment the thermostat 
was switched on to heating served as the moment from 
which the time is reckoned in the experiment. 

The experimental set-up is sketched in Fig. 2. Radia- 
tion (1) from a single-mode He-Ne laser with a Gaussian 
profile (formed by means of a so-called "soft" diaphragm) 
and a plane-parallel beam (the diameter of the spot formed 
by a telescope was about 1.5 cm) passed through the cell 
( 2 )  with the mixture to be studied. Immediately behind 
the cell a collecting lens (3)  was placed with a focal dis- 
tance of 4 m and an aperture diameter of 22.5 cm. This 
lens, firstly, collected the rays scattered not only by large- 
scale structures (i.e., at small angles), but thanks to the 
large aperture also by rather small-scale structures. Sec- 
ondly, it guaranteed the far zone for observing the pattern 
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FIG. 2. Sketch of the experimental set-up. (I):  He-Ne laser; 
( 2 ) :  cell with mixture to be studied; (3): wide-aperture long- 
focus lens; (4): mask; (5) and (7): television cameras; ( 6 ) :  
microscope; (8): thermostat; (9): analog-to-digital converter; 
(10): computer; (11): television monitor. 

of the scattered radiation. In the focus of this lens a circu- 
lar mask (4) was placed completely overlapping the zeroth 
maximum of the scattered beam, and behind the mask a 
television camera (5) was placed with an aperture diame- 
ter of 2 cm. The mask eliminated the incidence onto the 
television camera of the strong, but uninformative light 
signal from the direct beam. At the same time a separate 
section of the cell was projected onto another television 
camera (7) by means of a microscope (6). This made it 
possible to observe in parallel the dynamics of the struc- 
tures appearing in the cell and the angular spectrum of the 
scattering of the laser beam by those structures. Photo- 
graphs (Fig. 3) obtained by means of the microscope il- 
lustrate the development of the structures arising during 
the spinodal decay. Initially (for a time t- 1 min after the 
thermostat (8) has been switched on) the front of the 
spinodal decay wave appears moving across the cell, and 
behind the front one can see small cellular structures with 
a size of 1 to 10 pm (Fig. 3a); after that the structures 
become larger in the whole field of observation to reach a 
size of up to 100 pm (t=2.5 min, Fig. 3b) and, finally, 
these 100 pm cells combine into an aggregate of about 1 cm - -  - 

( t=  5 min, Fig. 3c). 
The signals from the television camera (5) which cor- 

respond to the scattering spectrum were processed by a 
computer (10) after passing through an analog-to-digital 
converter (9). In the processing the analog signal corre- 
sponding to the normal television frame was digitized with 
a time interval of 1 or 5 s during the whole of the experi- 
ment (about 20 min from the moment the thermostat is 
switched on to heating). We show in a photograph (Fig. 
4) an example of the digitized representation of the scat- 
tering spectrum. The sharp circle on the left in which there 
clearly are no reflections corresponds to the mask (4) 
which overlaps with the zeroth maximum of the radiation; 
the light which can be seen to the right of the mask cor- 
responds to scattering by structures appearing during the FIG. 3. Microphotographs of the spinodal decay at different times after 
spinodal decay. We note that the pattern of the scattering the start of the heating: t= 1 min (a);  2.5 min (b); 5 min (c). 
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FIG. 4. Photograph of the digitized image of 
scattering spectrum. 

the 

changes at each moment of time. A larger size corresponds 
to a reflection positioned in this photograph closer to the 
image of the mask. The size of a scattering structure can, if 
necessary, be determined exactly. To do this one must re- 
place the cell with the mixture by, for instance, a diffrac- 
tion lattice with a known spacing and digitize its angular 
scattering spectrum, thus comparing a known size of scat- 
terer and the location of the reflection from this scatterer 
on the entrance pupil of the television camera. Taking the 
mask into account the processing system recorded reflec- 
tions corresponding to structures from 20 to 300 pm. The 
computer read out the brightness of the frame along a 
chosen television line (see photograph); the television line 
along which the image was processed was strictly fixed 
during the whole duration of the experiment. 

A typical series of angular spectrum densitograms ob- 
tained in this way gives the following picture of the devel- 
opment of the spinodal decay with time (Fig. 5). Up to the 
time t -  1 min from the start of the heating the density 
distribution remains uniform and there are no reflections. 
Initially the decay corresponds to the appearance of reflec- 
tions in the whole of the field of the television camera (Fig. 
5a, t =  1.5 min). When time goes on the small structures 
disappear and one can only see reflections corresponding to 
sizes of from 300 to 60 pm (Fig. 5b, t = 2.8 rnin). Further, 
the scattered light disappears practically from the field of 
the television camera since the structures become so large 
that the mask already overlaps the reflection from them 
(Fig. 5c, t=2.9 rnin). Densitograms corresponding to later 
times clearly demonstrate that the process is periodic a 
pattern characteristic of average- and large-size structures 
with sizes of 50 to 300 p m  ( t=  3.5 and 12.8 min) again 
appears; later on (t=6.2 and 16.1 min) we have the al- 
ready familiar pattern with three clearly expressed reflec- 
tions (compare Figs. 5b, 5e, and 5g). 

The processing of densitograms of the angular spectra 
like Fig. 5 from a series of observations of a 20 min dura- 

tion (as we stated already the densitograms were plotted 
with intervals of 5 or 1 s, i.e., the body of data for process- 
ing included 240 or 1200 densitograms) gives us the dy- 
namics of the light scattering by structures of given sizes. 
We measured in each densitogram the intensity of the ra- 
diation scattered by 60 pm and 30 pm structures and we 
have constructed in Fig. 6 the time-dependence of these 
intensities; to eliminate temporal fluctuations in the bright- 
ness of the television signal each ordinate is here averaged 
over several successive densitograms. This function also 
has a periodic character. For the reflection of 60 pm struc- 
tures (Fig. 6a) growth and decline of the intensity alter- 
nate with one another, both in the not yet established ther- 
mal regime (the times t-2 and 6 min correspond to the 
appearance of the triple of characteristic reflections of Fig. 
5) and in a regime which is steady as far as temperature is 
concerned: for T)10 min growth, decline, and exit to a 
quasiconstant intensity level also occur (the time to return 
to a three-reflection regime is t- 16 min). The dynamics of 
the intensity of the scattering from 30 pm structures has a 
qualitatively similar character (Fig. 6b). At the same time 
there are quantitative differences between them: during the 
measuring time only two "spikes" rather than three, as for 
the 60 pm structures, are observed here in the scattering 
intensity. The quasiperiod of the spinodal decay therefore 
depends on the size of the decaying structure. A decisive 
role may here be played also by the fact that the layer 
thickness of the mixture in the cell is 50 pm. An important 
conclusion consists, firstly, in that the dynamics of the 
spectra is practically independent of the process by which 
the thermal regime is established. Secondly, the spinodal 
decay clearly demonstrates the "restorability" which is 
well known in the physics of nonlinear systems (see, e.g., 
Ref. 7) .  This is just a nonlinear effect, i.e., decisive in the 
decay are diffusive rather than wave processes. Its descrip- 
tion requires a generalization of the theory of Ref. 6, taking 
into account the density dependence of the parameters. 
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100 50 33 25 pm 
FIG. 5. Dynamics of the angular spectrum of 
the scattered light during spinodal decay; the 
times from the start of the heating are t= 1.5 
rnin (a);  2.8 min (b); 2.9 min (c);  3.5 min 

f (d);  6.2 min (e);  12.8 min (f);  16.1 min (g).  

100 50 33 25 pm 

2. CALCULATION OF THE PARAMETERS OF mediately give the equation of motion for the order param- 
NONSTATIONARY SPINODAL DECAY IN THE EFFECTIVE eter: V - ' S F / S U = ~ ,  - p 2  is the difference of the chemical 
FREE ENERGY APPROXIMATION potentials of the two components. Furthermore, the mass 

For a description of the phase state of a binary mixture the first is J 1 =  -Lgrad(p1 - ~ 2 ) 9  

one uses as a starting point in this approximation the func- where L is the mobility coefficient and, finally, from the 
tional (see Ref. 8): continuity equation &/at = - divJ the diffusion equation 

follows: 

d v [  f  ( u )  + ~ ( ~ r a d  u ) ~ ] ,  ( 1 )  u,= ~ v ~ ( a j - 1 a u - 2 ~ ~ ~ ~ ) .  (2)  

where the order parameter u  is the density of one of the Linearization of Eq. ( 2 ) ,  f = - ( a / 2 ) u 2 ,  a -  ( T - T c ) / T c  
components of the mixture (the density of the second com- makes it possible to determine only the boundaries of the 
ponent is equal to 1 - u ) .  The variation of ( 1 ) does not, in ( u , T )  region of the spinodal decay.6" To study the kinetics 
contrast to macroscopic equilibrium phase transitions, im- of the decay one must take into account the nonlinearity of 
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I ,  arb, units 

FIG. 6 .  Time dependence of the strength of the reflection of a structure 
of a fixed size: (a) :  60 pm; (b):  30 pm; the time interval which certainly 
contains the moment when the thermal equilibrium is established is indi- 
cated by hatching. 

f;  if one wants to take into account just the basic features 
of the phase transition (including a first-order one) a poly- 
nomial approximation suffices (see Ref. 8 ) : 

where we have d > 0 and the only temperature-dependent 
coefficient a changes sign in the critical point. 

It is possible to obtain analytical stationary solutions 
(&/at =O) of (2) and ( 3 )  in a one-dimensional model 
(grad u =au/ax, where x is the spatial coordinate). They 
completely determine the shape of the potential 

and, hence, the parameters of the functional ( 1 ) and the 
nonvanishing integration constants A and B in (2) which 
depend on the boundary conditions. An integral of the 
form (4) is also conserved for self-similar solutions (mov- 
ing with a constant velocity) of (2) and (3); it therefore is 
meaningful to classify the solutions to be studied in wave 
terms. 

Integration of Eq. (4) reveals three kinds of stationary 
solutions u, . There are, firstly, solitary solutions 

describing the front of the phase transition. Here the ui are 
the roots of the equation M ( u )  =0, numbered in increasing 
order, and we have A = (d/4K) 'I2(u3 - u2)/2. Moreover, 
depending on the coefficients of the functional ( 1 ) and the 

boundary conditions a solitary solution may be realized 
which has the form of a nucleus of one of the equilibrium 
phases: 

where we have mb= ( u ~ - u ~ ) / ( u ~ , ~  -u2,]) and 
A;= (d/8K) (u3-u2) ( U ~ , ~ - U ~ , ~ ) .  Here the comma be- 
tween the indices means that either the first or the second 
indices are possible simultaneously. The third, general type 
of stationary solutions is periodic: 

Here we have m=(u3-u2)/(u3-ul) and ( d / 8 ~ ) ( u ,  
- u2) (u3 - u1), while sn(k,;lx) is an elliptic Jacobi sine of 
modulus k2= ( ~ 3 - u ~ )  ( u ~ - u ~ ) / [ ( u ~ - u ~ ) ( u ~ - u ~ ) ] .  The 
spatial density oscillations (6) occur between the values 
u = u2 and u = u3; their period X is equal to: 

For an analysis of the nonlinear diffusion problem (2) 
we use the "slow period" method: we assume that the non- 
stationary solution has a periodic spatial dependence (6) 
with a period X(t)  which varies with time. In the calcula- 
tion it is natural to transform to a time dependence 
Z( t )  = 1 - k2(t); the vanishing of just this variable corre- 
sponds to a transition to an infinite period: 

Here and E~ are symbolic smallness parameters record- 
ing the conditions for the applicability of the "slow period" 
approximation: 

We carry out the evaluation of Z( t ) ,  substituting (8) 
into (2)  and using (9) to average over the spatial period X. 
We deduce the explicit analytical expressions for Z ( t )  in 
the region near the spinodal (which is of special interest 
for US) where 121 4 1 and therefore Z satisfies there the 
weakly nonlinear asymptotic equation: 

az az p2 a2z p3 az a3z a4z 
a t  -P1 - + 2 $ - 5 ~ a x 7 + P 4 d x 4 .  -- ( ax )  (10) 

The effective values of the coefficients in (10) are 
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where we can estimate D = lim d2 sn(x,z) /dz2 by 
x -  m,2-0  

calculating the values of the coefficients in the polynomial 
M ( U ) = ( ~ / ~ K ) ( U - - U ~ ) ~ -  ( ~ / ~ K ) ( ~ - u ~ ) ~ + A ( u - u ~ )  
+ B, averaged over the spatial period, near the initial den- 
sity uo. This estimate gives AzO, ~ z a ~ / 8 d ~ ,  so that 
ul-uo=: - 1.3(a/d)'12, m ~ 0 . 5 5 ,  and u2-ul 
~ 0 . 7 5 (  1/d)'12. 

The solution of Eq. ( lo) ,  in accordance with the ap- 
proximation (9),  is a sum Z=Zo+c  where the back- 
ground quantity Zo is described by the equation 
d ~ ~ d t z p ~ d ~ ~ d d x ~ .  For the perturbation of the Gaussian 
profile we get 

where p and A " ~  are the amplitude and width of the per- 
turbation of the stationary periodicity. Successively using 
the approximation (9) we linearize (10) in 6; this leads to 
an Airy equation with the solution: 

The unimportant constant c is here determined by the ini- 
tial condition; as the decisive factor we have here the co- 
efficient q which depends on the parameters of the back- 
ground perturbation. It has the meaning of an average 
spatial derivative dzddx;  in the approximation (9)  used 
here we have q=0.13(p/A). 

It is just ( 1 1 ) which gives us the required result: the 
spatial period of the density distribution changes quasipe- 
riodically with time, asymptotically tending to a stationary 
value. Here the time dependence of the quasiperiod 7 is 
slow: 

where yl=2.30, y2=2.70, y3=4.05, ... are the zeroes of the 
Airy function. The dependence of the quasiperiod both on 
the material constants which depend on the model of the 
phase transition (pl,3=pl,3 (a,b,d,K, L )  ) and on the bound- 
ary and initial conditions (through A and p )  has here been 
calculated approximately; one can now explicitly indicate 
the smallness parameter for (9) : x (P,~T)  'I3 

= (p>;4~7/2) 'I9. Since we have A- I, where I is the max- 
imum size of the cell (> 1 cm) this condition is, according 
to our estimates, certainly satisfied near the spinodal. It is 

important to note that a measurement of the period of the 
observed nonlinear density oscillations (of course, simul- 
taneously with a numerical refinement of the theory and of 
the performance of the experiment under varying condi- 
tions) makes it possible to obtain yet another (together 
with X )  combination of the unknown constants of the 
phase-transition model. 

CONCLUSION 

One thus observes a stratified mixture in the labile re- 
gion together with "upward" diffusion and a quasiperiodic 
temporal "restorability." This property of nonlinear sys- 
tems is atypical for diffusion processes which simulate 
equilibrium phase transitions, so that a detailed study of a 
wide class of similar physical problems seems promising 
for refining the general mechanism of nonequilibrium be- 
havior. Here, clearly, one needs a more general analysis 
than the one given above of the model ( 1 ), which takes 
into account the multi-dimensional geometry. There exist 
well developed methods (see Ref. 9)  for treating the effect 
of the boundary conditions for equations such as (2) .  Un- 
der the conditions of our experiment (Sec. 1) taking this 
into account must be reduced to an analysis of thermal 
balance, i.e., of an explicit (and nonstationary) tempera- 
ture dependence of the parameters of the model (in the 
first place, the critical parameter a ) .  In this connection it is 
useful to carry out similar experiments under nonuniform 
heating conditions, and the consequences of this may be 
the appearance of Benard-like structures (see, e.g., Ref. 7). 

We note, finally, that the observed "restorability" 
property in spinodal decay must also be displayed by other 
systems undergoing a phase transition; a necessary condi- 
tion for this is, apparently, that the phase separation mech- 
anism be nonlocal. 
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