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Proceeding from conservation laws, we derive phenomenologically the equations that describe 
the unsteady magnetohydrodynamics of rotating two-condensate solutions. We also 
derive the equations of motion of quantum vortices of the neutral and charged superfluid 
components of the solution. 

1. As is well known, superfluid two-condensate sys- 
tems can form in certain conditions. Such a system consti- 
tutes a mixture of neutral and charged superfluid liquids in 
the presence of a third normal charged component, which 
ensures the local neutrality of the system.' 

An example is the solution of protons and neutrons in 
matrices of heavy metals below the point of phase transi- 
tion of the neutron-proton liquid to the superconducting 
state.*v3 

Another system with two superfluid condensates is the 
n-p-e phase of neutron stars, where Cooper pairs of neu- 
trons and protons form as a result of nuclear interaction. 
The proton number density in this phase of the star 
amounts to 1-10% of the neutron number density 
(n, =: 1.7 X lo3' ~ m - ~ ) ,  and the proton charge is balanced 
by the electron charge (np=ne) (Ref. 4).  There is proba- 
bly no neutron-proton pairing5 because of the great differ- 
ence between the chemical potentials of these particles. 

Three-fluid magnetohydrodynamics equations describ- 
ing superconducting two-condensate systems in the ab- 
sence of dissipation have been suggested by Vardanyan and 
~ e d r a k ~ a n . '  The same paper demonstrated that there exists 
an effect in which the proton condensate is entrained by the 
neutron condensate, in analogy with the effect in which 
He4 atoms entrain the He3 component in superfluid solu- 
tions of these liquids.6 As a result, when the system is 
uniformly rotated, in addition to the quantum vortices of 
the neutron component a magnetic vorticity lattice of the 
proton component arises (in the absence of an external 
magnetic field) generated by proton drag currents.'" 

The purpose of this paper is to generalize the equations 
of Ref. 1 to the case of unsteady rotation of superfluid 
solutions. This will, among other things, provide the equa- 
tions of motion of quantum vortices of both superfluid 
components and also the forces with which these vortices 
interact with a solid surface, which is especially interesting 
in studying the unsteady rotational dynamics of the n-p-e 
phase of a neutron star.' 

The first to derive the phenomenological equations of 
the dissipative hydrodynamics of a rotating superfluid (he- 
lium 11) were Bekarevich and ~hala tn ikov,~  who used a 
method based on the differential form of the conservation 
laws (see Ref. 10). Various aspects of the dissipative hy- 

drodynamics of a rotating superfluid liquid were also stud- 
ied in Refs. 11-14; for instance, effects caused by deforma- 
tion of the vorticity lattice. Below we follow the 
Bekarevich-Khalatnikov method in deriving the equations 
of time-dependent magnetohydrodynamics. 

Note that the nondissipative magnetohydrodynamics 
of superfluid solutions was also studied by Holm and 
~ u ~ e r s h m i d t ' ~  and by Mendell and ~indb1om. l~  For in- 
stance, Mendell and ~ i n d b l o m , ' ~  using the framework of 
the Hamiltonian approach of Ref. 14, obtained the form of 
the nondissipative forces acting on the vortices in the gen- 
eral case of N superfluid condensates. They demonstrated 
that the equations of nondissipative three-fluid magnetohy- 
drodynamics of Ref. 1 are a particular case of their equa- 
tions. 

Before we derive the equations, we note that under the 
conditions of the n-p-s phase of neutron stars, the elemen- 
tary excitations of the superfiuid condensates are coupled 
with each other and with the normal (nonsuperfluid) 
plasma, with the exchange between these excitations and 
the normal plasma occurring quite rapidly. This is due to 
the strong nuclear interaction of the neutron and proton 
excitations and the Coulomb interaction of the two types of 
excitation with relativistic electrons (see, e.g., Ref. 7). 
Thus, we can assume in the given case that the normal 
components of the solution are completely entrained. 

We also note that at typical temperatures of the system 
the electron number density usually greatly exceeds the 
number density of the elementary excitations and the ef- 
fects of mutual friction of vortices arise from by the inter- 
action of the vortices with the electrons. 

2. The system of magnetohydrodynamic equations of a 
rotating solution, allowing for dissipation, contains the 
equations of mass and momentum conservation and the 
entropy equation which we write as 
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here the subscripts a&'= 1,2 number the superfluid con- 
densates, the subscript e stands for the electron liquid, pa 
designates the number density of particles of the a species, 
pe the electron number density (the total density of the 
solution p is equal to 2, ( pa + p,) , j = Z J ,  + j ,  is the solu- 
tion momentum per unit volume, S and Tare the entropy 
density and the temperature of the normal component of 
the system (electrons and elementary excitations of the 
condensates), and v is the velocity of the center of mass of 
the system of electrons and normal excitations. Summation 
over indices is assumed only if a summation sign appears in 
front of the respective expression. 

The mass flux of particles of the a species in the lab- 
oratory system of coordinates is given by the following 
e ~ ~ r e s s i o n : " ~  

where the p:) are the relative momenta of the superfluid 
condensates, and va are the velocities of these components. 
The density matrix p (S )  of the superfluid condensates, is 

a! 
symmetric, and its off-dlagonal elements describe the drag 
on each component of the solution by the two superfluids. 
Note that the superfluid velocities are determined, as in 
Ref. 1 ,  in terms of the phases of the order parameters and 
the vector potential as follows: va=( f i /2ma)V$,  
- (ea/m,c)A. 

The quantities rjk, q, and R>O in Eqs. ( 1 ) - ( 4 )  are 
nonequilibrium correction terms caused by dissipative pro- 
cesses and are usually determined by the requirement that 
energy be conserved, or 

and by the condition that the dissipation function R be a 
positive definite quadratic form.1° Here Qo stands for the 
steady-state energy flux per unit volume. 

The solution energy E per unit volume in the labora- 
tory system of coordinates is related to the internal energy 
E of that unit volume in the system of coordinates where 
v=O holds by the following expression: 

where E,, = ( 8 ~ )  -' ( E ~ +  B ~ )  is the energy of the electro- 
magnetic field, and E is determined by the thermodynamic 
identity 

with pa and p,  the chemical potentials of particles of spe- 
cies a and of electrons, respectively. 

The last term on the right-hand side of Eq. ( 8 )  is the 
change in the energy of the superfluid solution because the 
curl of the superfluid condensates is nonzero, 

54  ea 
curl va=- vanaS(ra-rka) -- B = a a ,  

ma mat 
(9)  

where ea and ma respectively are the electric charge and 
mass of individual particles forming a Cooper pair, na is 
the vortex number density in the plane perpendicular to 
the unit vector v a = a a / a a ,  and A, is determined by the 
energy per unit length of a vortex. Note that ea=O for 
neutrons, e, = e for protons, and ea = - e for electrons. 

The equilibrium momentum-flux tensor has the form 

where P= - E + & p a p a  +pep,+ TS  is the pressure, and 
the last term in parentheses is the Maxwell stress tensor. 

We now write the equation of motion of the superfluid 
components in the form 

where fa is the yet-to-be-determined additional term 
caused by both vortex motion and the action of the elec- 
tromagnetic fieId. This equation can be written in a form 
more convenient for the discussion below: 

where we have introduced the notation 

Equations ( 1 )-( 12) together with the Maxwell equa- 
tions constitute a closed system that determines the dissi- 
pative terms in equations. 

To find the unknown quantities entering into the sys- 
tem of equations, we proceed in the usual manner. That is, 
we differentiate Eq. ( 6 )  with respect to time and express 
the time derivatives in terms of Eqs. ( 1 ) - ( 4 )  and ( 12). In 
the process we transform the derivatives B and ha using 
the Maxwell equation curl E= -c - ' (dB/&)  and Eq. ( 12) 
in the form 
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After simple transformations we get 

where 

According to Eqs. (4) and (6), 

As is well known, in the case of small deviations of the 
system from equilibrium, the dissipation function must be 
a positive definite quadratic form of the velocity gradients, 
thermodynamic quantities, and derivatives of field poten- 
tials. The first and second terms in (16) correspond to 
ohmic dissipation and dissipation related to the heat flux 
due to the temperature gradient, with j =a(E+c- ' V X  B) 
and q = - KV T, where a and K are the electric and thermal 
conductivity coefficient, respectively. 

Also, 

where 7glm is the viscosity tensor, and the expression in 
parentheses is correction to the momentum flux tensor re- 
lated to the vortices, with the first term corresponding to 
pressure renormalization and the second to vortex filament 
stretching. Finally, the most general form of the expression 
for the force acting on the superfluid condensate of the a 
species is 

For the force acting on the normal component we have 

The coefficients a,, Pa,  and ya are determined from the 
microscopic theory of scattering of particles of the normal 
component on the vortex strings of the condensates. 

3. Let us find the equations of motion of the vortex 
strings in a two-condensate solution. We ignore longitudi- 
nal drag and put y=O.')  Substituting the expression for fa 
into the equation of supertluid velocities (12), finding the 
curl of both sides of the resulting equation, and employing 
the Maxwell equation curl E= -c- ' ( a ~ / d t ) ,  we get 

where 

Paa Pap  1 
V L ~ = V - ~ , P ,  - Va+- Vp+- curl A a v a - v  ( a p a  p a  

Paa  Pap  1 
- P a p a v a x  - va+- vp+- curl A a v a - v  ( p a  p a  p a  

is, obviously, the velocity with which a vortex filament of 
condensate a moves. The equation of vortex motion, (21 ), 
can be reduced to 

Paa Pap  1 
Pa - va+- VO+-  CUT^ A a v a - v L a  ( p a  p a  p a  

where the coefficients a, and pa are related to rl and 7' by 

The first two terms on the right-hand side of Eq. (22) 
correspond to the interaction of the free and entrained 
superfluid fluxes with a vortex via the Magnus effect. The 
third term reflects the variations in the flux surrounding a 
vortex due to vortex filament oscillations. Equation (22) 
also implies an absence of forces caused by the interaction 
between the ambient condensate of the a species and a 
vortex of the condensate of the other species. 

Interestingly, the interaction force is proportional to 
the mechanical circulation w: of a vortex both for the 
charged condensate and for the neutral one. This agrees 
with the assertion that in charged superfluid systems (say, 
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in type-I1 superconductors) the force of interaction of a 
vortex with the ambient flux (the transport current), 
known as the Lorentz force, is the exact analog of the 
Magnus force in neutral superfluid liquids. 

Let us consider the boundary conditions that the su- 
perfluid components must satisfy on a free surface and on 
the surface of a solid. Proceeding from Eqs. ( 14) and ( 17) 
and reasoning in a manner similar to that of Bekarevich 
and ~halatnikov,~ we conclude that the vortices of both 
condensates are perpendicular to the free surface. 

The boundary conditions on a solid surface moving 
with a velocity u have the form 

where N is a unit vector normal to the surface, and the 
coefficients f and f' are determined from microscopic the- 
ory. The limit of f--0 and ql+O corresponds to pinning 
the vortices to the surface, and the limit of f- UJ and 
f' - UJ to their free slippage. The boundary conditions 
(25) can be reduced to a form similar to Eq. (22): 

where the coefficients Ca and C are related to f and f' by 
the following formulas: 

In the particular case of a steadily rotating spherical 
vessel, the neutron and proton vortices, which have a 
straight structure in the vessel's main volume, change their 
form in the narrow layer adjacent to the solid surface and 
emerge at the surface at right angles to the surface,' that is, 
we have the identities NX Y,=O and vLa=u. 

One of the authors (A. D. S.) is grateful to the Amer- 
ican Astronomical Society for financial help. 

"1n the n - p e  phase of a neutron star this approximation is justified 
because of the smallness of the deviations of the proton and neutron 
vortices from their average direction owing to the very large force of 
attraction. 
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Translated by Eugene Yankovsky 

This article was translated in Russia, and it is reproduced here the way it 
was submitted by the translator, except for the stylistic changes by the 
Translator Editor. 
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