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The MHD approximation is used to analyze whether a reconnecting current sheet near a null 
point of the magnetic field is evolutionary. There exist perturbations such that boundary 
conditions at the current sheet are equivalent to those at a discontinuity surface. The 
requirement that the sheet be evolutionary with respect to these perturbations limits the 
velocity at which the medium flows across the sheet. 

INTRODUCTION 

An ideally conducting medium cannot undergo a con- 
tinuous MHD motion at a magnetic-field null point, at 
which the electric field is nonzero. Near such a point, the 
frozen-in condition is violated, and a reconnecting current 
sheet may form. This sheet is a discontinuity separating 
magnetic fields opposite in direction.' A splitting of a sheet 
into other discontinuities has also been observed in numer- 
ical  simulation^.^,^ Those simulations show that two slow 
magnetosonic shock waves attach to each end of the sheet. 
The reason for this splitting may be that the current sheet 
is not of an evolutionary nature as a discontinuity. 

The 1 D equations of ideal MHD allow discontinuous 
solutions: shock waves, tangential shocks, contact shocks, 
and rotational  shock^.^ If a steady-state discontinuity is to 
exist in a real medium, it must be stable with respect to 
decay into other discontinuities and with respect to a tran- 
sition to a time-varying flow. Let us assume that the MHD 
properties are initially subjected to an infinitely small per- 
turbation. Linear waves propagating away from the discon- 
tinuity surface then arise. If the amplitudes of these waves 
and the displacement of the discontinuity as a whole can be 
determined unambiguously from the linearized boundary 
conditions, the problem of the time evolution of an initial 
perturbation has a unique solution, and the discontinuity is 
by definition evolutionary.536 If, on the other hand, the 
problem does not have a unique solution, then it is not 
legitimate to make the assumption that the initial pertur- 
bation is small. In this case an infinitely small perturbation 
leads to a change in the initial flow which is instantaneous 
(in the approximation of an ideal medium) and not small, 
e.g., to a decay of a nonevolutionary discontinuity into 
evolutionary discontinuities. 

The evolutionarity requirement leads to restrictions on 
the unperturbed MHD properties on the different sides of 
the discontinuity surface. These restrictions are found by 
comparing the number of unknown parameters (the am- 
plitudes of the outgoing waves and the displacement of the 
discontinuity as a whole) which describe an infinitely small 
perturbation, with the number of independent equations- 
the number of boundary conditions from which the param- 
eter values are determined. If these two numbers are equal, 
the discontinuity qualifies as evolutionary. 

In the case of a finite conductivity, a current sheet does 

not reduce to a 1 D flow and is characterized by two length 
scales, since the velocity variations within the sheet are 
two-dimensional. The thickness of the sheet, by which we 
mean the distance between the reconnecting magnetic 
fluxes, determines the rate of dissipation of the magnetic 
field in the sheet. The width of the sheet determines the 
magnetic energy present in the region in which the fluxes 
interact. We derive below conditions under which a cur- 
rent sheet in a medium of fairly high conductivity interacts 
with small perturbations as a 1 D discontinuity. We resolve 
the question of whether the sheet is evolutionary with re- 
spect to such perturbations. 

1. PROPERTIES OF A RECONNECTING CURRENT SHEET 

Assume that the motion of the medium satisfies the 
MHD approximation. We consider a current sheet which 
arises near a null point of a magnetic field B,= (hy,hx,O), 
at which the electric field E= (O,O,E) is nonzero. The field 
lines of the magnetic field B, which is frozen in the me- 
dium, are carried along they axis into the sheet, in which 
this frozen-in condition is disrupted; the field lines are re- 
connected in the sheet, and they are carried out along the 
x axis. The variation of B along the coordinates outside the 
sheet can be written in complex form under the assumption 
that the half-thickness of the sheet, a (the dimension along 
they axis), is zero:' 

Here c =x + iy, b is the half-width of the sheet (its dimen- 
sion along the x axis), and Iis the total current in the sheet. 
The current I varies over the interval 0gI<chb2/4. At the 
points 

the magnetic field changes sign [see ( 1.1 )I. At I x 1 < I x* I, 
the direction of the current is the same as that of the elec- 
tric field (this is the forward current), while at 
I x* 1 < I x I < b it is in the opposite direction (this is the 
reverse current). If x* - b and b- I x* ( - b, the reverse 
current in the sheet is comparable to the forward current. 
Let us assume that this is the actual distribution. In this 
case all the MHD properties outside the sheet can be as- 
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sumed to be quasiuniform everywhere except near certain 
points x=x* and x =  * b, which we will discuss no further. 

If the medium has an infinite conductivity a ,  the quan- 
tity b increases without bound as time elapses.' If o is 
instead finite, then a finite width 26 is established over a 
finite time,' and we have a/b#O although a gb .  In this 
case we have B,#O at the surface of the sheet, in contrast 
with (1.1). If a is sufficiently high, however, we have 
B,% By except near point ( 1.2) x*. Below we set By equal 
to zero. 

If a g b ,  all quantities except the velocity v are quasi- 
uniform along the x axis within the sheet. The variation of 
the velocity is two-dimensional, since the continuity equa- 
tion shows that the following equality holds by virtue of 
the symmetry properties of the flow at the point x=O, 
y =o: 

If the conductivity is finite, the current sheet thus does not 
reduce to a 1 D flow. If the conductivity is infinite, the sheet 
transforms into a tangential shock in the limit t -  ca. 

Let us assume that the sheet is in a steady state. The 
electric field E is then independent of the time. The ratio 
a/b can therefore be evaluated from the steady-state Ohm's 
law:' 

where vm=c2/4aa is the magnetic viscosity. The electric 
field is furthermore independent of the coordinates. Ac- 
cordingly, medium flows into the sheet in the region of the 
forward current, while in the region of the reverse current 
there is an outflow along the y axis. 

To simplify the discussion below we assume that all 
kinetic coefficients other than Y, are zero, and vm is SO 

small that the following conditions holds: 

On the left side of this inequality is the scale value v, of the 
drift velocity of the medium along the sheet, while on the 
right side is the AlfvCn velocity VA . 

We also assume 

The superscripts "in" and "ex" label properties respec- 
tively inside and outside the sheet. This density distribution 
has been observed in a numerical ~imulation.~ 

At the surface of the current sheet, the magnetic field 
increases without bound as time elapses, while the drift 
velocity approaches zero if the conductivity is infinite. The 
gas pressure p outside the sheet, on the other hand, is close 
to its boundary value at f = a, and it does not become 
infinite regardless of the value of a .  It can thus be assumed 
that if the conductivity is sufficiently high, and if we are 
not within a certain vicinity point (1.2), the sound velocity 
V, satisfies the relation 

The velocity component vx increases in absolute value in- 
side the sheet, from zero at x=O to 

v:-hb/ (1.7) 

at x=x* (Ref. 8),  and then falls off, vanishing at I x 1 = b. 
Outside, the component ux is always much smaller than the 
typical AlfvCn velocity. 

We will now make use of these properties of the flow to 
analyze infinitely small perturbations of the current sheet. 

2. SMALL PERTURBATIONS OUTSIDE THE CURRENT 
SHEET 

We assume that the set of MHD properties Q is sub- 
jected to an infinitely small perturbation SQ. We assume 
that Sv,-0 and SB,rO, and that the perturbation outside 
the sheet satisfies the WKB approximation. The perturba- 
tion wave vector k can then be determined from the fol- 
lowing dispersion relation in the zeroth approximation in 
the small parameter l/kb: 

where wo=w-- (kv).  
We impose limits on the frequency w: 

where 

To simplify the calculations we make the further as- 
sumption 

vy- V;/V:. (2.4) 

As we will see below, this is the velocity which appears in 
the nonevolutionarity condition. 

We first consider the case in which the perturbations 
propagate along the normal to the sheet (kx=O). In the 
zeroth approximation in the small parameters given by in- 
equality (2.2), solutions of Eqs. (2.1) are 

The root in (2.7) is a double root. 
The WKB approximation is a valid for such perturba- 

tions if l/k;b< 1, since I k; I is the smallest wave number. 
This condition is equivalent to the following condition on 
the frequency w: 

w$h/&. (2.9) 
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Under condition (2.9), the derivatives with respect to the 
coordinates of the unperturbed quantities in the linearized 
MHD equations are negligible, and dispersion relation 
(2.1 ) holds. 

To find the condition for evolutionarity we need to 
classify the perturbations as either arriving at the sheet or 
departing from it. In general, this classification should be 
based on the sign of the sum of the projections of the 
velocity of the medium and of the group velocity onto the 
normal to the surface. For normal propagation, however, it 
is sufficient to determine the sign of the phase velocity, 
since in the absence of a frequency dispersion this velocity 
is the same as the projection of the group velocity onto k in 
the coordinate system in which the medium is at rest.9 

A perturbation with a vector vector k; from (2.6) cor- 
responds to an entropy wave, while one with k; from 
(2.7) corresponds to slow magnetosonic waves which are 
propagating across the magnetic field. In the coordinate 
system in which the medium is at rest, the phase velocity of 
these perturbations is zero, while in the laboratory coordi- 
nate system it is equal to v. When medium is flowing into 
the sheet, the perturbations of k; and k; are thus arriving 
at the sheet, while if the medium is flowing out of the sheet 
these perturbations are instead leaving the sheet (the in- 
teraction of 1 D discontinuities with perturbations which 
are at rest with respect to the medium was studied in Ref. 
10). By virtue of the left side of inequality (2.2) we have 
k;, k; % l/a. The current sheet is thus not a discontinuity 
for perturbations (2.6) and (2.7). 

Perturbations with the wave vector k; from (2.8) cor- 
respond to fast magnetosonic waves. One of them is always 
an incoming wave, while the other is an outgoing wave, 
regardless of the sign of u,. This can be seen from the 
circumstance that their phase velocities w/k; satisfy the 
condition V$,)V, [see (1.6) and (2.8)] and are directed 
along the normal to the current sheet, opposite each other. 
In contrast with k; and k; we have k; 4 l/a, and the 
waves in (2.8) interact with the sheet as if it were a dis- 
continuity. 

Finally, the perturbation of k,d from (2.5) is a dissipa- 
tive wave and is damped over a distance much smaller than 
a. As a result, the amplitude of this wave cannot appear in 
the boundary conditions at the discontinuity surface." 

We turn now to oblique propagation. To determine 
whether the current sheet is evolutionary as a discontinu- 
ity, we need to find solutions of Eq. (2.1) with identical w 
and k,. According to Ref. 9, the number of waves coming 
in toward the x axis and propagating away from it with 
given values of kx and o is independent of k, for this flow; 
i.e., it is independent of the propagation angle. It  is there- 
fore sufficient to determine the number of these waves in 
the case k,=O. It follows that a single outgoing wave prop- 
agating away from each side of the surface of the sheet is 
possible when medium is flowing into the sheet (the region 
of forward current). In the case of an outflow (in the 
region of the reverse current), in contrast, there are four 
such waves. 

For a current sheet under condition (2.2), however, 
the number of perturbations with k,< l/a varies with k,. 

In other words, there is a variation in the number of per- 
turbations whose amplitudes are discontinuous across the 
sheet. If k,=O, then there are two such perturbations, 
which are determined by the wave vector k; from (2.8). 
As we will show below, there may be three such perturba- 
tions in the case of oblique incidence. This fact is important 
to the discussion below. 

The wave vector of a slow magnetosonic wave is given 
by 

where V$ is the phase velocity of the wave, and 8 is the 
angle between k- and the x axis. The scalar product (kv) 
here can be written in the form 1 k I (uy~in8+ u,cos 8). Un- 
der the condition Vs& VA we can use the following expan- 
sion for I V$ ( : 

(2.11) 
where V: = v,?, + V: . 

We choose 8, such that I V- ( - Vs, i.e., such that ph I coseo I is not small. We find solutions of Eq. (2.1 ) at fixed 
values of w and 

For this purpose we single out the unknown variable k, in 
Eq. (2.1): 

Here we have A =mi  v:. - k: V: v:, and we have used con- 
dition (2.2). This equation has the following solutions in 
the zeroth approximation in the small parameters specified 
by inequality (2.2), viz., (2.5) and 

The " *" inside the square root in (2.17) has the same 
meaning as that of I V; 1 in (2.10); those in front of the 
square root determine two distinct solutions of Eq. (2.13). 
It follows from inequality (2.2) that we have k,% l/a for 
perturbations (2.14) and (2.15), while for (2.16) and 
(2.17) we have instead ky4  1/a. 

The waves ki- and k: are slow magnetosonic waves. 
For the wave k i p ,  for kx as in (2.12), the angle between k 
and the x axis is 8,. The waves kS, may be either slow 
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magnetosonic waves or surface waves, depending on the 
value of U,V;/V:. We recall that if the perturbations are 
characterized by identical values of 8, rather than k,,  as in 
the case at hand, then there are always two slow waves, 
while the two others are fast magnetosonic waves. 

If the expression in the square root in (2.17) is nega- 
tive, $ has an imaginary part, and the corresponding per- 
turbations experience an exponential damping or growth 
with distance from the surface over a characteristic dis- 
tance much greater than a. 

Analysis of the quadratic trinomial in u, in the square 
root in (2.17) shows that it vanishes at the points 

The sign of sineo here is determined by the sign in (2.10). 
The two signs on the 1 in (2.18) determine the two ends of 
a segment along the uy axis on which perturbations (2.17) 
are slow magnetosonic waves. Off this segment, the pertur- 
bations kS, become surface perturbations. That perturbation 
which increases with distance from the x axis must be 
discarded, since it does not satisfy the boundary condition 
at infinity. The damped perturbation should be included 
among the outgoing waves.9 

Below we make use of the circumstance that when the 
velocity v, is sufficiently large the waves in (2.17) are sur- 
face waves, regardless of do. It can be shown that the func- 
tion ~ , ( 8 ~ ) ,  given by (2.18), is bounded in absolute value 
by 

The maximum value, (2.19), is reached at B0=7-r/6. If 

the waves in (2.17) are surface waves for any value of go. 
Note that v,m"" is equal to the maximum value of the 

projection of the group velocity of the slow magnetosonic 
wave onto the y axis. In the approximation V,< VA, this 
projection is 

In addition, this value is also reached at 8=n-/6. Inequality 
(2.20) thus means that all the slow waves are coming into 
the sheet or going out of it in the cases of an inflow or 
outflow of medium. 

3. SMALL PERTURBATIONS INSIDE THE CURRENT SHEET 

Here we wish to derive some equations for the pertur- 
bations of the MHD properties, SQ, inside the sheet, i.e., 
for Q- p. In this case we have y 5 a. 

We first linearize the MHD equations. We set Q,rO, 
JsQ/Jz=O. The equations for Su, and 6Bz, which are set 
equal to zero, can then be separated from the equations for 
the other small quantities. In the approximation a< b, we 
can ignore the derivatives Jp/Jx, JB/Jx, and ap/Jx in the 

latter equations. The left side of inequality (2.2) shows 
that we can also ignore the derivative Jux/JX. 

Let us consider, for example, the linearized continuity 
equation 

a s p  au,  as^, ap a s p  a s p  au - 
at +6pz+p-+bx-+ux-+u a, ax  ax  -+sp-L Jy Jy 

Since the velocity variations inside the sheet are two- 
dimensional, we must ignore the terms with Jv,,/Jy in ad- 
dition to the terms containing the derivative Jux/Jx. We 
choose the sign in (2.10) to be the same as the sign of v,. 
Inside the sheet, I v, I is a decreasing function of 1 y 1 , while 
k, is constant. It thus follows from (2.3) and (2.10)- 
(2.12) that I wll I increases with decreasing 1 y 1 and it sat- 
isfies the condition 

Evaluating 

we find the following from (3.2) and the left side of (2.2): 

If we choose instead the other sign in (2.10), then there 
exists a y such that wll =0, and this inequality does not 
hold. Similar arguments hold for the other equations. In 
the zeroth approximation in the small parameters given by 
(2.2) we thus have JQ/ax=O. In addition, we set dQ/ 
Jt=O in all the equations. 

We replace JsQ/Jt by 

and d6Q/dx by ik,%Q, where ( is the amplitude of the 
displacement of the current sheet as a whole.4 We find a 
system of linear ordinary differential equations with re- 
spect to y: 
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where the prime means the derivative with respect to y. 
Here we have used 

p +  ~ 2 / 8 a =  const, (3.10) 

which follows from the y component of the unperturbed 
momentum equation under approximation ( 1.6). 

When the unperturbed MHD properties Q and the fre- 
quency w from system (3.4)-(3.9) satisfy certain relations, 
we can derive boundary conditions (conservation laws) 
which relate the amplitudes of the perturbations on differ- 
ent sides of the current sheet. 

For a 1 D discontinuity these conditions are found by 
integrating the linearized equations over the thickness of 
the region in which the unperturbed quantities vary and by 
letting this thickness go to zero. 

For example, we integrate induction equation (3.9), 
substituting in v:= -wi kx [see (2.3)] and 6By from (3.5): 

Here and below, the curly brackets mean the jump in a 
quantity across the discontinuity. We assume that 6Q var- 
ies only slightly within the discontinuity if the condition 
kya g 1 holds in the exterior. In particular, we can eval- 
uate the integral proportional to oil supex: 

Let us compare this expression with the jump: 

The requirement kya g 1 is satisfied in our case by waves 
(2.16) and (2.17). The relation between the perturbations 
6Q in such waves under approximation (1.6), (2,2) is 
given by 

Using (3.12), we find that the condition 

is the same as the inequality kya g 1, i.e., the right side of 
(2.2). Similar arguments for the other terms in (3.9) lead 
to the boundary condition 

{Bx(6vy+iwll f (3.13) 

The use of the same procedure for Eq. (3.5) yields 

! Since we have 
i 

in magnetosonic waves under approximation (2.2), Eqs. 
(3.13) and (3.14) are satisfied if 

and thus 

In contrast with a 1D discontinuity, 6Q varies substantially 
in the current sheet. We show below that the perturbations 
of a medium with ky  g l/a outside the sheet may lead to 
perturbations inside the sheet of such a nature that we have 
k; % l/a, where k: has an imaginary part. Such perturba- 
tions undergo an exponential damping or growth with a 
length scale much smaller than a, and the estimates of the 
terms in Eq. (3.9) found above for the general case are not 
valid. 

To derive boundary conditions at the current sheet as 
a discontinuity surface, we seek solutions of system (3.4)- 
(3.9) inside the sheet for given values of o and k,. We 
assume that only those waves for which the condition ky 
g l/a holds have nonzero amplitudes outside the sheet. We 
can make Eqs. (3.4)-(3.9) dimensionless by the following 
changes in the variable and in the unknown functions: 

The quantities 6 p  here are related by (3.12); the expres- 
sions for 6uy and 6By contain boundary conditions (3.16) 
and (3.17) explicitly. 

We substitute expressions (3.18)-(3.24) into (3.4)- 
(3.9) and introduce the following small parameters in ac- 
cordance with (2.2) and (2.4): 

As a result we find equations which determine dimension- 
less functions: 
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- 1 iz SB,= ( i z l l  GG)'+KGi S i , + ~ ~ ( F $ 5 i i - - ~ i ~ ) .  

(3.31) 

Since we are interested in solutions of system (3.26)- 
(3.3 1 ) in the approximation (2.2), we let E; go to zero. As 
a result, the equations reduce to 

Terms proportional to E~ have been retained in ( 3.34) - 
and (3.36), since inside the sheet we have Gi( ,wll 
5 1/& [see (1.7)] andEp" - l /~~I see  (3.10)]. In addi- 
tion, we have used an expression for k, which follows from 
(2.11) and (2.12): 

In system (3.32)-(3.37), Eqs. (3.32) and (3.34) are 
not differential but areglgebraic definitions of the functions 
SF and SF,. After SB, from (3.33) is substituted into 
(3.37), the latter becomes a total derivative with respect to 
y, and its integration leads to 

We have set the constant of integration in this equation 
equal to zero, since the perturbation outside the sheet is a 
superposition of magnetosonic waves, for which (3.15) 
holds. Integration of (3.35) leads to 

Substitution of (3.34), (3.39), and (3.40) into Eq. (3.36) 
reduces the latter to an inhomogeneous first-order equa- 
tion: 
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Expressing the dimensionless quantities in the coefficient of 
6% in terms of dimensional quantities, we find that this 
coefficient is [see (3. lo)]  

Equation (3.41) can be integrated in quadrature. The 
solution of system (3.33), (3.35)-(3.37) is 

- - 
6By= - B$F,,, (3.44) 
- - 

6Bx= -i(B$G)', (3.45) 
- - 

SF= Co - B 3  B, . (3.46) 

Solution (3.43)-(3.46) has a singularity at the point 
yo, at which we have 

- - 
A=E$+B, I--- 

P 
- - 2 (  PW I back 1 Op )=o, 

and the integrand in (3.43) becomes infinite. By expressing 
SQ1 in terms of SQ in the system (3.4)-(3.9), one can 
show that it has a singularity only at y=O, where uy=O. 
This result means that in some neighborhood of yo we 
cannot ignore the small parameters in (3.26) 4 3 . 3  1 ) and 
switch to (3.32)-(3.37). The neighborhood of the point yo 
will be discussed below. 

We now wish to find the other solutions of system 
(3.26)-(3.31) in the region in which (3.43)-(3.46) hold. 
For definiteness we assume that v: - V'i [see ( 1.7)], i.e., - 
w 1 backlo, - E ~ .  This relation holds if x is not close to 0 or 
* b. Solution (3.43)-(3.46) is valid when the integrand in 
C3.43) is on the order of one. Since we have 
B, S 1, F- inside the sheet, we find from (3.43) and 
(3.47) that in this case we have - 

A- 1. (3.48) 

The other solutions of system (3.26)-(3.3 1 ) satisfy then 
the WKB approximation in the sheet and can be found 
from dispersion relation (2.13). Expressing the dimension- 
less quantities in A in terms of dimensional qua~tities, and 
noting that we have k, = wT/ y, we find that A is related 
in the following way to the coefficient of k j  in (2.13): 

Under condition (3.48), in the zeroth approximation 
in E,, the solutions of Eq. (2.13) have the form of (2.14) 
and 

where F= V: k:- 20i . 
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It follows from inequality (2.2) that wave vectors 
(2.14), (3.50), and (3.51) satisfy the condition ky) l/a. 
These perturbations satisfy the WKB approximation in the 
sheet. Dispersion relation (2.13) is valid for them, since in 
the limit l/kp+O the terms in Eqs. (3.4)-(3.9) contain- 
ing derivatives of the unperturbed quantities are negligibly 
small. Expressions (2.14), (3.50), and (3.51 ) give us four 
solutions of system (3.4)-(3.9). The perturbations in 
(3.52), on the other hand, do not satisfy the WKB approx- 
imation, since the condition ky4  l/a holds in their case. In 
this case we cannot ignore the derivatives of the unper- 
turbed quantities in (3.4)-(3.9), so Eq. (2.13) does not 
hold. Such perturbations are described by (3.43)-(3.46). 

4. SOLUTION OF THE LINEARIZED EQUATIONS AT THE 
SHEETBOUNDARY 

To find boundary conditions we need to determine the 
magnitude of a perturbation at the boundary of the sheet, 
i.e., at Q = c  In this case we have agy( l /kF.  If Q = p ,  
solution (3.43)-(3.46) does not apply, since the coeffi- 
cients in (3.41) are much smaller than unity and we can- 
not ignore small parameters in the derivation of this equa- 
tion. 

We find solutions of Eqs. (3.26)-(3.3 1 ) near the sheet 
boundary, in the region - 

Q- 1. (4.1) 

Since we have p i n ~ p e x , ~ f ~  >my, there exists a value y for 
which-we-have F) 1, Gll ) 1, although for y% 1 we always 
have Q'/Q 4 1. 

We substitute (3.27) into (3.31), and then (3.31) and 
(3.28) into (3.30), as in the derivation of (3.41). How- 
ever, we retain terms proportional to EO: 

Here we have used (3.38) and the inequalities E ~ < E ~ , E ~ ,  
which follow from (2.2). 

Since the derivatives 6< and 6 3  appear in (4.2) with 
a small parameter, they can be found in a first approxima- 
tion from Eqs. (3.34) and (3.35), which do not contain 
small parameters. We differentiate (3.34) and use (3.39) 
and (3.40). Setting Q 4 1, and using (3.42), we then find 
an equation for the function 6%: 

[c.f. (3.41)]. 
If 1 - 3 F q  %c0, then 2 % ~ ~  [see (3.47)], and L3.41) 

holds. We assume 1 -F/Fq 5 EO; then we have A 5 EO, 
and all terms in Eq. (4.3) are important. In this case, in a 
first approximation, it is sufficient to substitute SF from 
(3.40), rather than (3.29), into (4.2), so E, does not ap- 
pear in Eq. (4.3). 

At the layer boundary ( 161 = 1) we have 

and Eq. (4.3) becomes 6%=0. After an integration, this 
equation reduces to 

Expression (4.4) along with (3.43)-(3.46) determines 
three solutions of_system (3.26)-(3.31). The other three 
equations, with 1 Q 1 = 1, satisfy the WKB approximation 
with wave vectors (2.5), (2.14), and (2.15). 

Let us go bazk to the neighborhood of the point &, at 
which we have A=O. It follows from Eq. (3.10) and con- 
dition ( 1.7) that the point yo can, in general, be in either 
the region y5 1 or the region y$1. If 

- 
then with A =O terms containing FJ appear in the equation 
for 6% in the first approximation. Since we have - 1, 
these terms are comparable to the terms proportional to 
dv,/dx, which we ignored in deriving system (3.4)-(3.9). 
In order to find SFy near the point yo in this case we thus 
need to solve a partial differential equation. 

We assume 

We then have Fi 4 1,  and at y = yo the function SF,, is 
described in the first approximation by an ordinary differ- 
ential equation. In particular, in region (4.1 ) this is- Eq. 
(4.3). This equation does not have a singularity at A=O, 
and the solution of (3.26)-(3.3 1 ) near the point yo is given 
by (4.4), (3.43)-3.46), (2.5), (2.14) and (2.15). 

Finally, we wish to establish the correspondence be- 
tween the perturbations inside and outside the sheet. We 
assume that (4.6) holds, and we assume that (3.48) holds 
for y5 1. 

Solving system (3.26)-(3.3 1 ) in the region 
1 4 ( p , q  ) 4 I/&,, we can show that the following corre- 
spondence prevails: Perturbations which are determined by 
the wave vectors k,d from (2.5) and kj from (2.14) outside 
the sheet become (3.50) and (2.14) inside the sheet. In 
other words, they are the same roots of Eq. (2.13) for 
different values of jY Wave (2.15) becomes one of pertur- 
bations (3.51) (with the plus sign or the minus sign, de- 
pending on the sign of vy). Accordingly, the superposition 
of (3.43)-(3.46) and the second of perturbations (3.5 1) 
corresponds to the set (2.16) and (2.17). 

Furthermore, we can choose a frequency all from the 
interval (2.2) such that the solution proportional to Co is 
present in the sheet for any value of 5 In this case the 
solution which is proportional to C* in region (4.1 ) be- 
comes a perturbation with wave vector (3.5 1 ) and y5 1. 

The waves with k y  4 l/a outside the sheet thus lead to 
perturbations inside the sheet for which the condition 
kp ) 1 /a  holds. 

I 
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5. BOUNDARY CONDITIONS AND EVOLUTIONARITY 
CRITERION 

To derive the conditions under which the current sheet 
is evolutionary, we derive boundary conditions on the cur- 
rent sheet as a discontinuity surface. 

If the perturbation amplitudes (2.14), (3.50), and 
(3.51) with k,% l/a inside the sheet are nonzero, then 
there are no boundary conditions on the surface of the 
sheet corresponding to the those which hold at 1 D discon- 
tinuities. If these conditions do hold, then they tell us, in 
particular [see (3.17)], that Sv, remains constant as the 
sheet is crossed. In addition, the magnitude of the pertur- 
bations in (2.14), (3.50), and (3.5 1 ) changes substantially 
over a distance a, and (3.17) generally does not hold. Be- 
low we consider only those perturbations for which the 
mode amplitudes in (2.14), (3.50), and (3.51) are zero. 
This requirement is satisfied by a solution of Eqs. (3.4)- 
(3.9) in which the constant Co is nonzerq, while the other 
constants are zero (see the discussion at the end of Sec. 4). 

To find the boundary conditions satisfied by the per- 
turbation proportional to Co, we note that Eqs. (3.23) and 
(3.24), with (4.4) taken into account, lead to the bound- 
ary values in (3.16) and (3.17) for Sv, and SB,. From 
(3.17) we find 

{Sv,} = 0. (5.1) 

Relation (3.16) does not lead to an additional boundary 
condition, since it is equivalent to ( 3.17). Expression 
(3.46) determines a second boundary condition: 

Finally, (3.45) implies 

- 
on both sides of the discontinuity, since S$=0 and Bi=O. 

The reason for the appearance of condition (5.3) is 
that we are dealing not with an aribitrary perturbation but 
one for which only the constant Co is nonzero. If there are 
other perturbations inside the sheet, condition (5.3) gen- 
erally does not hold. Since S B, is not zero in magnetosonic 
waves, condition (5.3) along with (5.1 ) and (5.2) consti- 
tutes four boundary conditions relating the wave ampli- 
tudes outside the sheet. Equations (3.32) and (3.34) do 
not give us additional boundary conditions, since they hold 
for perturbations in magnetosonic waves. 

We now write Eqs. (5.1 )-(5.3) explicitly; i.e., we ex- 
press all quantities in terms of density perturbations. As we 
mentioned toward the end of Sec. 4, the set of perturba- 
tions in (2.16)-(2.17) outside the current sheet corre- 
sponds to a superposition of (3.43)-(3.46) and (3.5 1 ) in- 
side the sheet. Accordingly, if only the constant Co is 
nonzero inside the sheet, then outside the sheet we have 
waves (2.16) and (2.17), and the amplitudes in (2.5), 
(2.14), and (2.15) are zero. Using the relationship be- 
tween the perturbations of the MHD properties in magne- 
tosonic waves under approximation (2.2), we find from 
(5.1)-(5.3), respectively, 

The "+" and the "-" here specify quantities outside the 
sheet, on the y=  + co and y =  - oo sides; the "i" specifies 
the three waves in (2.16) and (2.17). Here we have made 
use of the condition k;+ = - k;- , which follows from the 
symmetry of the flow. 

We wish to find solutions of these equations for the 
cases in which the medium is flowing in and out. In other 
words, we wish to find the amplitudes of the outgoing 
waves in terms of the amplitudes of the incoming waves. 

If medium flows into the sheet, there are two outgoing 
waves (one on each side). Since there are four equations, 
the system (5.4)-(5.6) has solutions only if the amplitudes 
of the incident waves satisfy certain relations. For arbitrary 
amplitudes, Eqs. (5.4)-(5.6) do not have solutions. This 
means in particular that condition (5.3) cannot hold for 
such perturbations. Since Eq. (5.3) always holds if Co is 
the only nonzero arbitrary constant, the violation of this 
equality leads to nonzero values of the other constants- 
i.e., perturbation amplitudes with $ > l/a-inside the 
sheet. Consequently, there are no boundary conditions at 
the surface of the current sheet, i.e., the sheet is not a 
discontinuity, and we cannot conclude that it is not evolu- 
tionary. 

Let us assume that medium is flowing out of the sheet. 
In this case there are four outgoing waves (two on each 
side). We specify these waves by the indices i= 1, 2. The 
amplitudes 6pk2 are then expressed in terms of the ampli- 
tudes Sp2 of the incident waves, as follows: 

All the quantities k, in (5.7) are taken on one side of the 
discontinuity. It follows from (5.7) that if we have ki 
= k j  and k:#k;, then 6p: becomes infinite; i.e., the re- 
flection coefficients and refractive indices are not bounded. 

Under what conditions are the wave vectors of the two 
outgoing waves the same? It was shown back in Sec. 2 that 
if 

then there is always a resonant angle 13: at which the ex- 
pression in the radical in (2.17) is zero, and the two roots 
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of (2.17) are the same. This angle is found from Eq. 
(2.18). At 80=8:, both waves in (2.17) are outgoing 
waves, since only one incoming wave exists in the case of 
an outflow of medium. In this case, this wave is given by 
(2.16), with k;#k;. 

If (5.9) does not hold, the expression in the radial in 
(2.17) is negative, and the waves are surface waves for any 
80 (Sec. 2). In this case all the wave vectors are different, 
and we have ki#ki for i f j .  The reflection coefficients and 
the refractive indices are therefore bounded. 

CONCLUSION 

In summary, if a medium is flowing into the current 
sheet, or if inequality (5.9) does not hold, we cannot draw 
the conclusion that the sheet is not evolutionary. Let us 
assume that relation (4.6) holds in the case of an outflow 
of medium and that the outflow velocity is smaller than the 
projection of the group velocity of the slow magnetosonic 
wave onto the normal to the sheet [see (5.9)]. Then there 
exists a perturbation such that (first) boundary conditions 
hold at the surface of the sheet and (second) the ampli- 
tudes of the outgoing waves which are determined from 
these conditions are arbitrarily large in comparison with 
that of the incoming wave in the limit as E ~ O ,  i.e., in the 
case of a sufficiently high conductivity. In this case the 

perturbation is not described by linear equations. Accord- 
ingly, a reconnecting current sheet is not evolutionary as a 
discontinuity, since there is no initial change in the flow. 
This change might be a splitting of the sheet into 1 D evo- 
lutionary discontinuities, as has been observed in numeri- 
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