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Numerical and analytical techniques are used to obtain and analyze a model for the motion 
of explicitly nonadiabatic particles in a dipole field, applicable to the region of stochastic 
instability. The basic ingredient of this model is the central trajectory (CT), a particle 
trajectory passing through the center of the dipole like a field line. In contrast to the 
generally accepted adiabatic model, in which the motion of a particle is treated with respect 
to a magnetic field line, here the motion is treated with respect to the CT. Approximate 
analytical expressions are obtained describing the CT. An iterative scheme is derived to 
describe the evolution of trapped particles passing through the midplane of the 
confinement system many times. 

1. INTRODUCTION 

The present problem is related to the range of applica- 
tions of the theory of nonintegral systems.' In our case the 
dynamical system consists of a particle and a magnetic 
field. More specifically, we are concerned with particle mo- 
tion in a dipole confinement system, the so-called Stormer 
problem for trapped particles.2 The Hamiltonian of this 
system, strictly speaking, is not integrable, and so chaos, 
i.e., irregular motions, can occur (see, e.g., Ref. 3). Inter- 
est in a phenomenon such as deterministic chaos in mag- 
netic systems stems from the fact that it can be the prin- 
cipal factor limiting plasma ~onfinement.~ Dipole systems 
attract particular attention, since in this case the solution 
of the problem has practical implications for space physics. 
For example, this applies to the dynamics of trapped par- 
ticles in the magnetosphere (the Van Allen belts) of the 

The stability of particle motion in a confinement ge- 
ometry depends on how well the transverse adiabatic in- 
variant (the particle magnetic moment) p = mu: /2 B is 
conserved, where v, is the velocity component transverse 
to the magnetic field B. This invariant is destroyed due to 
the resonant interaction between the Larmor precession of 
the particle and its longitudinal oscillations between the 
mirrors of the system when the resonances overlap in phase 
space.4 

There are two ways of investigating this process. The 
way we have chosen is based on integrating the equations 
of motion and calculating the change Ap in the invariant 
over a half-period of the longitudinal  oscillation^.^ The re- 
sults of the calculations are interpreted on the basis of 
"jumps" in Ap that occur when the particle crosses the 
midplane.' In this approach the quasiperiodic oscillations 
of p naturally drop out of consideration. 

The other approach, which is based on the Hamil- 
tonian formalism, has certain methodological advantages.' 
By means of canonical transformations the Hamiltonian is 
changed to the form H= Ho+ h, I h I < Ho, where Ho is the 
unperturbed Hamiltonian. For an axisymmetric system it 
has the form ~ ~ = ~ ~ / 2 m  + p ~ ( s ) ,  where p/m=vll =s is 
the parallel velocity and s is the position on a field line; the 
drift velocity is disregarded. The operation analogous to 
the determination of Ap by the first approach is the iden- 
tification of the resonant Fourier harmonics in the pertur- 
bation h. Then, as follows from Ref. 8, the change Ap is 
determined by the entire particle trajectory, and not just 
the vicinity of the minimum B. 

The effectiveness of resonant processes depends on the 
adiabaticity x = p/R,, where p = v/w is the full Larmor 
radius in the midplane, R, is the radius of curvature of the 
field line, and w is the gyrofrequency. In the geomagnetic 
field there are trapped particles with x - 1. For sufficiently 
small values X <  1 the magnetic moment p is an invariant in 
an axisymmetric confinement system.g As x increases it 
becomes necessary to modify (sharpen) the expression for 
p by introducing correction terms from the asymptotic se- 
ries for the magnetic However, even for 
x 2 0.1 the picture becomes more complicated, and higher- 
order terms clearly do not help.13 The main reason for this 
is that the use of asymptotic series for p (without recov- 
ering the exponential corrections, which for 0.1 5 jy < 1 are 
no longer small, especially near X- 1 where Ap-p), be- 
comes not only problematical but incorrect. Moreover, the 
modified expressions for p are so complicated that it is 
awkward to use them in practice. 

These difficulties are largely overcome through the use 
of the quasiadiabatic model of particle motion, which we 
suggested in a brief comm~nication.'~ In this model the 
guiding field line is replaced by the trajectory that passes 
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through the center of the dipole. In consequence p and the 
loss cone change. This model, in particular, yields a simple 
scheme for the change in p corresponding to the concept of 
a discontinuous jump associated with the passage of a par- 
ticle through the midplane. 

In the present work we treat the quasiadiabatic model 
of particle motion in more detail and extend it using ana- 
lytical and numerical methods. 

2. STARTING EQUATIONS 

The complete solution of the Stormer problem for the 
motion of a charged particle in the field of a magnetic 
dipole is only possible using numerical simulation, combin- 
ing analytical and numerical techniques. 

As the starting equation for the numerical calculations 
of single-particle orbits and the required variables on a 
particle trajectory we used the equation of motion in the 
form 

where 

(2)  

R is the particle radius vector (the coordinate origin is at 
the center of the dipole), e and v are the particle charge 
and velocity, c is the speed of light, and M is the dipole 
moment. At each point R a basis {el,e2,e3} is constructed 
and the velocity components are determined: 

v=vll e3+v, (el sin q+e2 cos q ) ,  
(3  

UII = (ve3) = v cos a ,  u1 = v sin a ,  

where vll is the component vll B, v, is the component 
v l  B, q is the phase measured from the meridional plane 
in the direction of particle rotation, and a is the pitch 
angle, i.e., the angle between the vectors v and B. Equation 
( 1) was integrated numerically for protons in the geomag- 
netic dipole field with moment M =  8.1 . G - cm3 using 
a fourth-order Runge-Kutta scheme. 

As is well known, in an axisymmetric field there exist 
two constants of motion: the energy (mv2=const) and the 
generalized angular momentum, which for a dipole field 
can be written in the form 

1 /2 (i) lR + ($ ) sin a sin q cos3 A = 2y, 
- 

here R = R/Cst= ( ~ / 3  ) 1/2~os2 A, where C,,= (eM/ 
mvc) 'I2 is the Stormer length and R =R&OS~ A, where Re 

is the equatorial distance from the center of the dipole to 
the field line, A is latitude, and y is the Stormer constant 
determined from the initial  condition^.^ For protons in 
the geomagnetic field we have ~ ~ , = 5 . 9 3 . 1 0 ~ / p ,  
=5.04. ~ O - ~ ~ C L ~ ,  where p is the momentum in MeV/s, 
L=RJRE specifies the field line on which the particle is 
located at a given moment, and RE is the earth's radius. 
From (4) it follows that on the particle trajectory the fol- 
lowing relation holds rigorously 

for the region of finite motion for y > 1. 
As shown by Amirkhanov et al.,13 the definition 

p = (mv2/2 B) sin2 a leads to large errors for sin a, 5 X, 
where a, is the pitch angle in the midplane. In this case it 
is necessary to use for the quantity p its expression in the 
laboratory coordinate system, including the transverse 
(magnetic) drift: 

where vd is the first-order drift v e l ~ c i t y . ' ~ ~ ' ~  In our vari- 
ables expression (7) assumes the form 

2 2 Vl B VX v -- (v, +2vll ) ---=- (l+cos2 a )  f (A), (8) d - e ~  B 2 

where 

However, for x 2 0.13 this expression also becomes unsat- 
isfactory. 

3. THE CENTRAL TRAJECTORY AND ITS PROPERTIES 

The first to draw attention to the special role of the 
trajectory passing through the center of the dipole was 
~ t o r m e r , ~  who made the assumption that this trajectory is 
the axis of rotation for particles near the dipole. However, 
subsequently this idea was not followed up. 

We first describe the numerical algorithm for deter- 
mining the CT and some of its properties. Then we will 
consider the theoretical possibilities for obtaining formulas 
describing the CT. 

From the definition of the CT it follows that a particle 
must be injected from the center of the dipole along 
the specified field line with pitch angle a =O or .rr, depend- 
ing on the hemisphere. To reduce the numerical integra- 
tion, the injection point was taken on the given field line 
at a distance from the center of the dipole such that its 
position had essentially no effect on the results of the 
calculation. This situation was achieved even for 
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R i 5  (0.3-0.6)RE(A,> 56"), where R, is the distance from 
the dipole to the injection point, and A, is the latitude of 
this point. The numerical integration of Eq. ( 1 ) shows that 
the particle motion along the CT takes place almost with- 
out rotation (v, =vd). The equatorial values of the phase 
Fo = p (A = 0)  and pitch angle Eo = a (A = 0)  are approxi- 
mated for 0.06<~,(0.20 by 

sin Zo= 1 . 4 0 5 7 ~ , ' . ' ~ ~ ~  exp( -0.01217/~,), 

and for 0.20qi(0.75 by 

sin exp( -0.1775/~,), 

where xi=x(Rei) is the initial value of the parameter and 
R,,= R ~ C O S - ~  A,; here Re, is the distance from the dipole to 
the point at which the given field line intersects the equa- 
torial plane. It is noteworthy that E0 and q0 depend only 
on the parameter X, which reaffirms its universality. The 
equatorial radius vector of a particle is determined by Zo 
and @, using expression (6), which in this case assumes the 
form 

The relation ( 11 ) characterizes the extent to which the CT 
'differs from the field line (Re> Re,). Naturally, as xi-0 
the radius satisfies Re-Re,, and the CT approaches closer 
and closer to the field line not only near the dipole, but also 
on the equator, where this difference is largest according to 
(6)  and (11). 

A particle moving along the CT from the dipole (CT,) 
after crossing the equator turns around and is reflected at 
some R > R,. But if the velocity vector of this particle turns 
through an angle equal to a-F0 when it arrives at the 
equator, leaving the pitch angle E0 unchanged, then it goes 
along the CT (CT,) on the other side of the equator also. 
Thus, when the CT passes through the equatorial plane it 
undergoes a kink, characterized by the quantities Fo1 ,EO 
and Fo2,E0. Here the phases are related by q0, +FO2=a 
(for x < 0.13 they satisfy qol =@02=a/2). It turns out that 
the complete CT consists, as it were, of two CTs and 
changes discontinuously in transitions from one hemi- 
sphere to the other. In Fig. 1 the CTs are shown corre- 
sponding to the results of the numerical integration of ( 1 ) . 
The upper and lower CT are symmetric with respect to the 
equator, and for them at any latitude the relations 
Rl(A) =R2(A), a l(A)=a2(A),  pl(A) +p2(A)=a  hold. 
The angular separation between the points 50,@01 and 
EO,GO2 is determined by the quantity 

Y = 2 arcsin (sin Eo sin S ) , S = a/2 - Fol = go2 - a/2, 
(12) 

for which approximate functions can be given in the form 

FIG. 1.  Example of the central trajectory in the meridional pz plane 
( p 2 = ~ 2 + g ) .  Injection conditions: Ri=0.3R,, R,=3.0R3, energy 
W=600 MeV ( ~ ~ ~ 0 . 5 5 3 ) .  Trace I is the particle trajectory from the 
dipole to the equator and then to the reflection point in the lower hemi- 
sphere. The portion of this trajectory between the dipole (injection point) 
and the equator is the CT for the upper hemisphere. Trace 2 is the CT for 
the lower hemisphere obtained by artificially changing the particle phase 
on the equator, and trace 3 is the original field line. 

I 1 .36X;0.044 exp( - 0.969/xi), 0.06<~,<0.20, 
sin v/2 = 

1 . 4 2 ~ ; ' ~ ~  exp( -0.946/~,), 0.20<~,<0.75. 
(13) 

Now we proceed to theoretical estimates. The approx- 
imate expression for the CT was given by ~ t o r m e r . ~  It  was 
used to integrate the equation of motion by means of power 
series for R (s) and cos2 A(s), where s is the wavelength. 
For R the following expression was obtained: 

which we write in the form 

where 

xi= 3 /4g  [see Eq. ( 1 1 )I. The principal shortcoming of Eq. 
( 15) is the slow convergence of f, (A in the limit A - 0). 

In order to find the functions R (A), p(A), a(A), and 
x(A) of interest to us we use Eqs. (5)  and (9) and the 
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FIG. 2. Longitudinal dependence of R for the central trajectory with 
injection point R,=0.3R3,  R,=3.0R3. Results of numerical integration: 
trace I corresponds to the energy W=600 MeV (x i=0 .553) ,  trace 2 to 
W=400 MeV (,y,=0.433), trace 3 to W=200 MeV (,y,=0.292), and 
trace 4 to W= 50 MeV (xi,--0. 141 ). The solid curves were obtained using 
(19). 

natural assumption vL =vd (i.e., p=O), and in a first ap- 
proximation sin p= 1. Then from (9) it follows that 

(1 +2x2 f2)1'2- 1 
sin a = x f -xf. 

Eliminating the quantity sin q, sin a from (5) and (9) and 
substituting ( 16) we obtain 

Solving (17) by means of iterations, we find 

FIG. 3. Dependence of a on 1. The notation is the same as in Fig. 2. The 
solid traces were obtained using ( 2 0 ) .  

3 f [ ( 1 + $ ~ f f  ~ o s ~ A ) ~ / ~ - l ]  
sin p = 

2 2 1 / 2 -  . ~ o s ~ A ( 1 + ~ ~ f f ~ 0 ~ ~ A ) [ ( 1 + 2 ~ ~ f )  11 

(21 

The equatorial values Z0 and @, are obtained from (20) 
and (21 ) for A=0. For xi< 1 we have [sin a =xi f ,  E o z x i ,  
sin q, ,- 1 - $x; f cos3 il, @0 -- 7r/2 - 4,y?/3.]. The accuracy 
with which Eqs. (19)-(21) describe the CT is clear from 
Figs. 2-4; it is 5 10% for x is  1.0. Although the exact 
trajectory can be found only by integrating Eq. ( 1) numer- 
ically, nevertheless the above equations ( 19) - (2 1 ) enable 
us to obtain important information of a general nature 
about the properties of CT, without recourse each time to 
numerical methods. For example, from ( 19) the difference 
between the guide field line in the adiabatic theory 
(R=R,cos2 A) and the CT that plays the role of the guid- 
ing center trajectory is immediately clear. It is typical that 
all these results depend only on il and the parameter X, 
which retain the properties of the field and particle in 
themselves. 

4. THE QUASIADIABATIC INVARIANT 
It follows that 

Now consider the motion of particles with initial con- 

( 
1 ditions different from Eo and @,. Instead of the adiabatic ' 

cos2 A +j xif c"' +- x:f cos6 . ( ) invariant p we introduce the quasiadiabatic invariant, 9 
which we define by p*=(mv22~/sin2a*),  where the 

Substituting ( 18) in ( 16) we have quasi-pitch-angle a* is the angle between the velocity vec- 
tor and the tangent to the CT. As already noted in Refs. 13 

(1+2x: f2+iX: f 3  cos3 A ) " ~ -  1 and 14, p* is essentially constant on the trajectory between 
sin a = (20) the reflection point and the equator, while the analogous 

x f (1 +ixf f cos3 A )  quantity p - B- 'sin2 a can change by several orders of 
magnitude. Figure 5 shows how p* changes on a particle 

From (5) and (20) it follows that trajectory over three periods of the longitudinal oscilla- 
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FIG. 6. Values of Aa*(4=O) as a function of X: I )  Aa*=v; 2) Aa* 
I 

FIG. 4. Dependence of e, on /1 under the same conditions as in Fig. 3. The =$~&(AP/P),=% 
solid curves were obtained using (2  1 ). 

point. This agrees to within - 10% with the theoretical 
tions. As can be seen from the figure, it satisfies p* =const 

value of Ap found in Ref. 16. The value of the jump Aa* 
to the left and right of the equator, and only at I = 0  does is related to the jump in the CT by a discontinuous change in p* (and hence in a*) occur. 
The size of the jump is given by Ap* = p,, - pm, = Ap 

= (Ap/p)p, where p, is the value of p at the reflection (22) 

- 
where the variables Ci and @ refer to the CT. The change in 
a*, as can be seen from the numerical experiments 
(see Fig. 5 ) ,  is described by the adiabatic law 
sin2 (a*/B) =const. This implies that between the reflec- 

5 - 
-..-?*.--..,d-.------ - tion point R, and the equatorial value a* there exists a 

relation, familiar in adiabatic theory:18 

where Ap/p is calculated according to Refs. 5 and 16. The 
accuracy of this relation is clear from Fig. 6. Expression 
(22) together with (13) enables us to make an additional 
comparison of the numerical and theoretical values of 

FIG. 5. Behavior of the quasiadiabatic invariant p*- B-'sin2a* on the independent of the particle phase and energy. Setting 
particle trajectory over six reflections from the magnetic mirrors. Initial R m = R ~  we find 
conditions: W=200 MeV, L=2.9 (xi--0.272), ao=19.83"; q0=71.89"; 
/1,=0. sin a,*= [ ( 4 ~ - 3 ) ~ ~ ] - ' / ~ ,  (24) 

2 ----~~..... 
1,O 

- 4 
- r?-- 
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Ap/p (Ref. 17). For example, the result of calculating 
Ap/p by the method of steepest descent, taking into ac- 
count the merging of the singular points (poles and saddle 
points16) yields a result very close to the numerical values. 

The angle a *  increases monotonically as the particle - 
moves from the equator toward the reflection point, where 
it satisfies a*=z-/2. For any value of the latitude I we 
have 



where a: is the critical (limiting) value of a *  determined 
by the loss cone. 

5. MAPPING WITH THE CT 

The heading "mapping with the CT" is chosen only to 
emphasize the fact that the particle axis of rotation, and 
consequently the guiding trajectory, is the CT. Hence in a 
new coordinate system determined by the unit vectors 
eTj ,eFj ,e$, the unit vector e:, must be directed along the 
tangent to the corresponding CT, (the subscript j= 1, 2 
indicates motion away from or toward the dipole). On the 
equator, as already noted, it is determined by the parame- 
ters ito and ijjoj which characterize the deviation of e: from 
e3. The unit vector e: is shifted in g, clockwise for posi- 
tively charged particles and in the opposite direction for 
negatively charged particles. The transition from the usual 
basis (el ,e2,e3) to {ey,,e,*i,e;j) is achieved by turning the 
original system about e3 in the direction of rotation and 
particle drift through an angle ijjoj, and then aligning the 
vector e3 with e? (rotation through the angle Eo). In anal- 
ogy with the Euler angles in analytic geometry, the trans- 
formation between the systems can be represented as 

cos a =cos a? cos &,-sin a? sin & cos 4, , 

where # is the rotational phase measured from the plane 
determined by the vectors e3 and e:. From this, in partic- 
ular, follows the general expression for the loss cone in the 
old coordinate system, which is obtained by replacing a 
with a, and a* with a: in Eq. (25), where a: is defined by 
(24). It is easy to show that even for relatively small values 
of X(  -0.1) it is necessary to take into account the depen- 
dence of a, on the phase g,, resulting from the particle drift. 

When the trajectory crosses the equator, in connection 
with the change in the system of coordinates (the trans- 
formation from CT1 to CT2) the angular coordinates of the 
particle will be transformed as follows: 

where 

cos a:2=cos a:l cos v+sin a:l sin v COS(#,,~ -qo), 

sin v sin(qSn1 - #o) 
sin #nz = 

sin a:2 9 

- sin go sin 26 
#o = arcsin 

sin v 

After a time r2/2 following the passage through the 
mirror point, the particle returns to the equator. There we 
have ayn+l,, = aZ2, and the change (increase) A 4  of the 
phase can be written in the form1' 

where ij is the Larmor frequency averaged over the longi- 
tudinal oscillation, fl is the frequency of longitudinal os- 
cillations, and x=x(R,). In the determination of F(a) the 
difference between the field line and the CT is disregarded, 
since the main contribution to the function F ( a )  comes 
from the integrated singularity at the reflection points,5 
where, according to (19), this difference is negligible. Fi- 
nally, taking into account Eqs. (22)-(27), we arrive at 
heuristic mapping equations, which consist of Eqs. (26) 
and 

The transformation to the usual coordinate system from 
the CT system is carried out using (25). 

In analogy with Refs. 4 and 7, The mapping (26), 
(28) can be put in the form of the standard Chirikov map- 
ping 

I,*+,=I:+K* sin On, 8 n + 1 = 8 n + I ~ + l ,  (29) 

where 

K* is the stochasticity parameter, o=# -q0 - n/2, and 
a f  is found from the resonance condition i3=2rR) 
(here r=G/2R=3F/?rx is an arbitrary whole number). 
For the mapping in the usual coordinate system7 
[ ( I ( a ) n - I ( a ) n +  ,, X <  1 )] the stochasticity parameter as- 
sumes the form 

1.52(14-sin2 a)  
K= - x cos a ~ i n ~ . ~ ~ ~  a 

where 

The expression for $(a) after the transformation is taken 
from Ref. 16. The boundary of the region of global sto- 
chasticity, determined from the condition K* = 1 or K= 1 
(Refs. 4 and 7)  is shown in Fig. 7. For comparison two 
versions are shown. 

As is well known, the reason for using discrete models 
of the motion is that they permit long-term predictions to 
be made over a time - lo6 periods of the longitudinal par- 
ticle oscillations. Furthermore, they make it very easy to 
distinguish stationary, quasiperiodic, and chaotic motions. 
This model works efficiently for xi < 1 and a *  5 45", which 
corresponds to the region of the stochastic instability (see 
Fig. 7). 

A more precise estimate of the boundary of the region 
of applicability for the model with a CT can be obtained 
from the following considerations. On the equator the drift 
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sin2 a:t sin a:t 
T,=$ In - 

sin a,* ' 

FIG. 7. Boundary of stochasticity: I) XC= 1.0; 2) K= 1.0. 

velocity of a particle moving on the CT is equal to 
[vdC-x/2 (2 - sin2&,) v] according to (8 ) , while for a par- 
ticle with arbitrary pitch angle we have [vd=x/ 
2(2-sin2a)v]. From the condition that these two drift ve- 
locities agree to better than 10% we find using (20) 

For xi 5 0.416 we have amin = 0; a,,, is determined from 
the condition (3 1 ) . For ~ ~ 0 . 4 1 6  we have am,,= 37". This 
condition corresponds to an important physical case, in 
which particles are close to the loss cone, i.e., they have 
reflection points near the surface of the earth. 

In this case simple analytical estimates can be made of 
the particle lifetime from the diffusion equation:4 

Here the diffusion rate is 
- - 

where the superior bar indicates averaging over phase, 
f ( p )  is the distribution function, q(p)  =pS is the source 
density, and P> - 1 is a constant. Using the standard 
procedure,4 we obtain 

sin ast 
sin a, ' ast%aC, (32) 

where T, is expressed in terms of the number of passes of 
the particle between the mirror points, as, corresponds to 
the boundary of stochasticity K =  1 (see Fig. 7) ,  and 6$/ 
x z 2  for a(1. In the system with the CT, taking into 
account (23) instead of (32), we find 

where a:t is determined from the condition K*= 1 and 
a,* is the value of a *  on the adiabatic loss cone [cf. Eq. 
(22)l. To switch from discrete time to continuous we must 
multiply (32) and (33) by the average value .rr/ f l .  

6. CONCLUSION 

To conclude our analysis of the model of motion for 
the nonadiabatic case we note that using the CT enables us 
to retain in a modified (relabeled) form the main ideas of 
the adiabatic theory. This is expressed verbally in the ad- 
dition of the prefix "quasi" to the words defining p*  and a* 
in particular. Ultimately it is found that this model of the 
motion includes the adiabatic motion (p*=const) be- 
tween the equator and the reflection point and back and 
the discrete model (26), (28), or (29) for multiple longi- 
tudinal particle oscillations. As a whole the model of the 
motion can be called "the CT model," and its discretized 
part can be called "mapping with the CT." For X-0 the 
model with the CT goes over to the adiabatic model with 
the corresponding guiding field line. These results may be 
useful for studying the dynamics of particles in confine- 
ment systems with different types of magnetic field geom- 
etry. 
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