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Multisoliton solutions of the Kadomtsev-Petviashvili equation describing nonlinear wave 
processes in media with positive dispersion are analyzed using exact and approximate methods. 
The scattering of two-dimensional solitons is found to be accompanied by an infinite 
phase shift of their trajectories. It is shown that the stationary multistructures found earlier 
are degenerate states appearing during anomalous (slow) soliton scattering and 
disintegrating under the action of perturbations. 

1. INTRODUCTION 

The Kadomtsev-Petviashvili (KP) equation 

which has been denied to describe quasiplane wave beams 
in weakly nonlinear dispersive media1 has acquired the sta- 
tus of a prototype equation in the modern physics of non- 
linear waves, thanks to a large number of special proper- 
ties: the presence of symmetries and integrals of motion, 
broad classes of exact solutions, etc. The characteristics of 
solutions to this equation are essentially different for wave 
processes in media with positive p > 0 (KP 1 ) and negative 
p < 0 (KP2) dispersion. Thus, even in the original work1 it 
was established that the plane soliton solutions are stable 
with respect to wave front modulation in media with neg- 
ative dispersion and are unstable in media with positive 
dispersion. At the same time, as was shown first 
numerically2 and later two-dimensional 
solitons localized in all directions and falling off as x - ~ ,  
Y-2 (Fig. 1) may exist in media with positive dispersion. 
The stability of such solitons has been e~tablished.~ 

Investigation of the multisoliton formulas describing 
the scattering of two-dimensional reveals a strik- 
ing property. Not only do two-dimensional solitons retain 
their shapes and initial parameters after collisions (ampli- 
tude, velocity, size), but their phase shift also turns out to 
be equal to zero. But it does not mean that the interaction 
of such solitons is as trivial as the interaction of pulses in 
linear nondispersive media. Detailed studies, the results of 
which are presented in this paper, show that the interaction 
even between two solitons by no means reduces to super- 
position of their fields, and can lead to unexpected effects 
which are characterized by an infinite rather than zero 
phase shift. 

The structure of two-dimensional solitons allows one 
to suggest the existence of bound states of two and more 
solitons, i.e. multistructures, because their fields do not 
decrease monotonically in space but, instead, contain local 
minima (see Fig. 1). In fact, a set of bisolitons was discov- 
ered by means of numerical simulations, whose amplitudes 
depend on the distance between them.6 Explicit analytical 

expressions both of steady-state bisolitons and of more 
complicated structures were found in Ref. 7, but the sta- 
bility of these structures has not been studied yet. Here we 
shall show that the interpretation of bi- and multistruc- 
tures as bound states of individual solitons is not a simple 
matter. Besides, the multistructures are themselves unsta- 
ble. 

At present there exist, besides the canonical KP model, 
similar two-dimensional equations which possess the above 
properties,899 but are not integrable. Soliton interactions 
can be studied by means of an approximate approach based 
on soliton perturbation theory. In this theory the solitons 
are considered as classical particles obeying Newton's 
equations.10 In the one-dimensional case this approach is 
effective and obvious enough," but its generalization to 
two dimensions involves a number of unusual properties 
(thus, for example, the mass of interacting particles which 
correspond to two-dimensional solitons is anisotropic). As 
the perturbation theory is quite general and is used both 
for integrable and nonintegrable models, it is useful for 
studying two-dimensional solitons. Within the framework 
of the KP1 equation we succeed in analyzing the familiar 
solution and also new exact ones and in comparing them 
with results of the approximate approach. This allows one 
to estimate the efficiency and range of applicability of this 
approach. 

2. INTERACTION OF TWO-DIMENSIONAL SOLITONS: 
EXACT SOLUTIONS 

Below, we investigate the properties of solutions of the 
KP 1 equation, reducing ( 1.1 ) to the dimensionless form 

The exact multisoliton solutions of this equation can be 
constructed by different methods (see, for example, Refs. 
3,4). For our purposes it is convenient to write them in the 
Hirota form: 
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FIG. 1 .  The longitudinal (a) and trans- 
verse (b) cross-sections of a two- 
dimensional soliton (solid lines) and their 
linear asymptotic forms (dashed lines). 

where q, = det[(x+ipg - PZkt+~k ' 6k,/ + ( l-Sk,/)/ 
(pk-p/) 2 fi] and 6k,/ is the Kronecker symbol. Here k,l 
= 1,2,3, ..., N=2M, M is a natural number, the constantspk 
and Ok determine the velocity and the phase of each soli- 
ton, pk+M=jFk, and Ok+M=i?k. It can easily be shown that 
the leading term of the polynomial q,(x,y,t) is a product of 
the polynomials (x,y,t) corresponding to individual soli- 
tons; for the variable u(x,y,t) it means that when the soli- 
tons are far enough from each other, their fields form a 
linear superposition. This implies that individual solitons 
in the solution (2.2) are asymptotically free as t- A oo and 
move along their unperturbed trajectories. We shall call 
the process of soliton interaction described by formula 
(2.2) normal soliton scattering. In Fig. 2 a typical set of 
trajectories of two solitons is shown. It was determined by 
the coordinates of the soliton maxima on the x,y plane in 
the solution (2.2). All the trajectories are divided into re- 
flected and transmitted ones depending on the values of the 
impact parameter. 

Until recently it was considered that the above solu- 
tions present a complete picture of multisoliton scattering 
which is even simpler than the soliton scattering in the 
framework of other integrable models, where, at a mini- 
mum there is a phase shift along the soliton trajectories.'' 

The absence of any traces remaining after two-dimensional 
solitons interact, which is also characteristic of the inter- 
actions of linear pulses in media without dispersion, even 
misled some researchers to believe that such solitons 
"don't interact at a11."13 

But detailed analysis of the multisoliton formula shows 
that besides the ones described above there are other types 
of scattering which can be obtained from (2.2) using ap- 
propriate renormalization. For example, from this formula 
for M = 2  one can obtained a new solution of the KP1 
equation, in the limit pk-'pl by changing the origin of time: 
t -, ti= 8 ~ ' 3 / ( ~ ; - ~ : ) ~ .  In the reference frame which moves 
along the x axis with a unit velocity (pk=p/= 1 ), this SO- 

lution is as follows: 

where {=x-t and a is an arbitrary parameter. In the 
particular case a=O, a similar solution was discovered first 
in the work of Johnson and ~ h o m ~ s o n , ' ~  but its structure 
and the physical sense were not analyzed. 

A Y 

0 - FIG. 2. The trajectories of the relative distances between 

/------ 
soliton maxima in the exact solution (solid lines) and in the 
asymptotic approach (dashed lines) for asymptotic veloci- 
ties: AV,=O, 5; A V,,=O, 1 .  
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For the upper signs, the set of solutions (2 .3 )  describes 
the collision of two solitons moving along the x axis from 
- oo at t -  - co, with equal asymptotic velocities. The con- 
stant a plays the role of impact parameter in the scattering 
theory, since at t=O it determines the distance between the 
solitons. As will be seen from the asymptotic approach 
developed below, two-dimensional solitons moving one af- 
ter the other attract one another. Therefore, they move 
closer together even if the initial distance between them is 
much larger than their characteristic sizes. During this 
process the amplitude of the front soliton is decreasing 
while the amplitude of the back soliton is increasing. At 
the same time, they repel one another along they axis. As 
a result, solitons get closer in x and move apart in y, their 
amplitudes equalizing again as the solitons diverge. As t -  
+ oo , a pair of identical solitons forms that are infinitely far 
apart in y and propagate to parallel one another in the x 
direction. The rate of convergence and subsequent diver- 
gence changes in time as - I t 1 - 'I2. 

This solution can be inverted by choosing the lower 
signs in formula ( 2 . 3 ) .  In this case two identical solitons 
moving in the x direction parallel to each other and at an 
infinite distance along y slowly approach, are rearranged 
and, at t -  + oo, diverge in x, acquiring their initial ampli- 
tudes and velocities. 

We shall call such processes, as well as more compli- 
cated ones where a larger number of solitons with identical 
amplitudes take part, anomalous soliton scattering because 
the distances between solitons change asymptotically 
slower than they would according to a linear law. 

3. INTERACTION OF TWO-DIMENSIONAL SOLITONS: 
ASYMPTOTIC APPROACH 

The exact solutions presented in Sec. 2, as well as 
many others where solitons are basic elements, can be ac- 
curately reproduced by using the asymptotic approach.lO.ll 
On the one hand, this method has a number of restrictions, 
since it is based on the expansion of unknown solutions in 
powers of a small parameter. On the other hand, it has 
great advantages since its range of applicability also in- 
cludes nonintegrable models in the theory of nonlinear 
waves. Application of this approach to integrable models, 
for example, to the KP1 equation, as in our case, allows 
one to delimit its range of applicability by comparison with 
exact solutions and, besides, to understand better the phys- 
ical meaning of the exact solutions. 

The asymptotic approach is based on two main 
assumptions: lo 

1 )  The solitary waves are spaced rather far apart so 
that the correction to the field of each soliton is a super- 
position of "tails" of other solitons. These "tails" can be 
found by solving the linearized initial equations. 

2 )  The relative soliton velocities are much smaller 
than their average speeds. 

The first assumption allows one to represent a solution 
to the KP1 equation for M interacting solitons as a formal 
asymptotic series: 

where vk are the fields of the individual unperturbed soli- 
tons, V k  are their velocities, taken to be of the same order 
of magnitude so that E =  I Vk-VII/I  Vk+VII is a small 
parameter, and ~ ( ~ ) ( x , ~ , t )  are the rn-th order corrections 
caused by the soliton interaction. 

Owing to the second assumption the initial equation 
can be solved systematically by assuming that the param- 
eters of individual solitons vary in a quasistationary man- 
ner: V k ( & t ) ,  Rk(&t) .  Consequently, in the vicinity of each 
kth soliton one must solve a linear equation for dm)  that 
depends on time implicitly, and whose solvability condi- 
tions yield the equations of motion of solitons as classical 
particles:10 

M 

( R k .  Vvk)Pk= - X V R ~ W I ( R ~ - - R I ) ,  
I= 1 

(3 .2)  

where Pk is the momentum of the unperturbed soliton with 
components 

( P k ) x = 4 8 ~  d m ,  

and the pair-interaction potential W k ( x , y )  is related to the 
profile of a single soliton vk(x ,y )  by 

Here ak and bk determine the soliton velocity components: 
2 ( ~ ~ ) ~ = a i + b ~ ,  ( vk),= -2ak,  and xk,  yk are phase con- 

stants. 
The assumptions 1 )  and 2 )  leading to the system (3 .2 )  

to the first order in E yield a completely integrable system 
of particles in the complex plane z=x+iy .  This system is 
referred to as the Calogero-Moser system. Expressing the 
soliton coordinates in the form Zk=Xk+iYk  we write the 
Hamiltonian of this system as 

As is well known,12 the coordinates Z k ( t )  are the ei- 
genvalues of the matrix k with elements 

where ZkO and Z ,  are the initial particle locations and 
velocities. 

Thus, the 2D soliton interaction in the framework of 
the KP1 equation, which is solved exactly by formula 
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(2.2), is described asymptotically by the Calogero-Moser 
system with implicit solution (3.4). (It  is interesting to 
note that the last solution coincides with the polynomial 
p(x,y) of degree M, corresponding to the rational solution 
of the KP1 equation and determining the y dependence of 
the poles in this solution.16 As E + O  the solution (3.4) 
asymptotically approaches the exact solution (2.2) in the 
region IZ,-Z,l $1. 

3.1. Normal scattering of two-dimensional solitons treated 
by the asymptotic method 

Using momentum conservation we relate the reference 
frame to the center of mass of the solitons so that the 
conditions 

M M 

Zk=O and 2 Z,=O 
k= 1 k= 1 

(3.5) 

hold. 
Then the solution (3.4) for two solitons (M=2)  is 

described by the complex second-order curves 

where H=Hr+iH,+O is the complex Hamiltonian of two 
particles in the system (3.3). Analysis of these curves 
shows that the soliton coordinates increase linearly in time 
at t- A oo according to the formulas 

Thus, (3.6), like the exact solution (2.2), describes a 
normal collision of two solitons with nonzero asymptotic 
velocity which move along the unperturbed trajectories af- 
ter the interaction. 

In Fig. 3a the relative distances AX, AY between the 
Moser particles in the lower-half plane (all trajectories are 
mirror-symmetric in the upper-half plane) are shown by 
dashed lines versus the impact parameter (initial y dis- 
placement of the solitons, which is determined by the pa- 
rameter t,. Here the solitons are copropagating with the 
parameters A V,= 0, A V,=O, 5; Hr > 0, Hi=O. In terms of 
the exact solution (2.2) the trajectories of the individual 
soliton maxima are shown in the same figure by solid lines. 
As is seen from Fig. 3a, there is not only qualitative but 
also a good quantitative agreement between these two 
types of trajectories. 

In absolute coordinates the trajectories of the Moser 
particles differ from those of the soliton maxima, which are 
more complicated and not mirror-symmetrical relative to 
the x-axis (see Fig. 3b). But this difference is substantial 
only in the region of strong overlapping of the soliton fields 
( I AX I, I A Y I < lo) ,  where the approximate theory is ob- 
viously incorrect. 

It is interesting to note that for a two-soliton collision 
with zero impact parameter the copropagating motion is 
transformed to the transverse motion after some time in- 

FIG. 3. a )  The same as Fig. 2, but for AV,=O, 5; AV,,=O. b) The 
trajectories of two solitons in the exact solution. 

terval. In the particle system with the Hamiltonian (3.3) 
this process is described by the solution (3.6) (Hi=O, 
to=O), which consists of two branches corresponding to 
motions along the x and y axes and joined at t= A l/Hr 
(see dashed segments in Fig. 3a). 

But for the exact solution, the wave field shows a more 
complicated picture at the time of collision. Under the 
action of the local minimum in the profile of the rear fast 
soliton the front soliton splits symmetrically along x into 
two pulses which propagate perpendicular to the initial 
motion and turn into solitons. This process was first illus- 
trated computationally by c re em an." At nonzero but 
small impact parameter this gives rise to loops which are 
described by temporal local maxima (Fig. 3b) rather than 
by real solitons. 

To demonstrate the efficiency and accuracy of the ap- 
proximate method we compare the largest distance be- 
tween two solitons during copropagating (Hr>  0 )  motion 
with the relative asymptotic velocity AV, (Fig. 4) for the 
exact solution (solid line) and for the approximate one 
(dashed line) where 1 A Y 1 = 2/A V,. As is seen from this 
figure, the agreement between the two approaches worsens 
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FIG. 4. Plot of the largest distance between two solitons in copropagating 
motion vs the relative asymptotic velocity A V, . 

FIG. 5. As in Fig. 2, but for AV,=O, AV,,=O. 

in the region of large asymptotic velocities at AV,= 1 
where the second assumption of the asymptotic method 
does not hold. Nevertheless, qualitative (and even satisfac- 
tory quantitative) agreement of the curves is observed in 
the region A V,) 1 too. 

3.2. Anomalous scattering of two-dimensional solitons 
using the asymptotic method 

As follows from Eq. (3.6), the distance between two 
solitons during copropagating motion increases without re- 
striction when their relative asymptotic velocity (i.e., their 
energy H)  tends to zero (Fig. 4). But the solution (3.6) 
does not hold in this case. Only by changing the origin of 
time by replacing t-+ t+  l /H one can obtain the solution 
describing the interaction of solitons with identical asymp- 
totic velocities: 

The trajectories of particle motion within this solution 
(Fig. 5, dashed curves) are hyperbolas. Note that in the 
limit t-+ co all trajectories of this set converge to the 
vertical axis. This means that after interaction the solitons 
move with identical velocities parallel to the x axis sepa- 
rated by an infinite distance. Comparison with the exact 
solution (2.3) shows that the trajectories of particles and 
soliton maxima do not, actually, differ for any values of to 
except very small ones (see Fig. 5). Thus, at H=O the 
solution (3.6) describes irreversible interaction of two par- 
ticles, which gives rise to infinite phase shift of their tra- 
jectories. 

4. BOUND STATES OF SOLITONS AND THEIR DECAY 

4.1. Manifolds of stationary solutions 

As has been noted above, the presence of local minima 
of the field in a single soliton structure (see Fig. 1 ) suggests 
the existence of bound states of two and more solitons. 
Such structures were in fact first discovered numerically6 

and later analytically.' But their interpretation in terms of 
interacting solitons is not trivial. First of all, we note that 
for two solitons the first order of perturbation theory yields 
the Calogero-Moser two-particle system, which has no sta- 
tionary solutions. In principle, higher-order corrections 
can give rise to bound states, but these corrections are 
rather difficult to calculate and have not been obtained 
until now. 

Another way to construct steady-state formations 
within the Calogerc+Moser system is to take into account 
a larger number of particles. The problem of determining 
stationary solutions for the Hamiltonian field (3.3) was 
studied in the context of finding rational solutions for the 
Korteweg-de Vries (KdV) It was proved 
that such solutions exist for a certain number of particles 
(solitons, in our case): M=N(N+ 1)/2= 1, 3, 6, 10 ,... . 
Each rational solution is invariant to the action of N com- 
muting flows of "higher9'-order equations for the KdV- 
hierarchy and is stationary for all the others. From this it 
follows that N generalized coordinates exist for each man- 
ifold. For our case it means that the coordinates of the 
equilibrium configuration of M solitons depend on N com- 
plex parameters. 

The simplest equilibrium configuration exists for three 
(N=2) particles. It is written as follows: 

where the complex parameter q specifies the distance be- 
tween solitons and rotation angle of the entire configura- 
tion on the x,y plane. Thus, Moser particles are located at 
equal distances from the center of three rays intersecting at 
an angle of 120". 

We found a set of rational solutions7 describing steady- 
state multisoliton structures, and proved that the degree P 
of the polynomial, related to solitons the number of M by 
P= 2M, is P= N(N+ 1 ) . Hence each equilibrium state in 
the Calogero-Moser system corresponds to an exact 
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steady-state multisoliton solution of the KP1 equation. For 
three solitons this solution can be written explicitly in the 
Hirota form: 

where f =x- t .  The soliton configuration for the states 
symmetrical about the f axis are shown in Fig. 6a versus 
the parameter a at b=O. A similar dependence on the pa- 
rameter b at a=O is shown in Fig. 6b. In the latter case the 
solitons are arranged symmetrically about the y axis. The 
dashed lines denote the approximate solution (4.1 ) which, 
as is clearly seen, agrees well with the exact solution for 
IZk( >5. As an illustration the function v(f,y) for 
a = 1500, b = 0 is shown in Fig. 7a. 

For q=O three particles of the approximate solution 
(4.1) merge into one particle, but, as has been mentioned 
already, the asymptotic theory is incorrect for small dis- 
tances between solitons. It follows from the exact solution 
(4.2) in that the limit a+O, b-0 the three-soliton solution 
degenerates into a two-humped structure (bisoliton) (Fig. 
7b). It can be shown7 that there is only one solution which 
is symmetrical about both the f and y axes. 

At the same time, a one-parameter set of two-humped 
steady-state solutions which are similar to the bisoliton 
displayed in Fig. 7b was simulated in Ref. 6. As we see 
now, these structures are actually the two-soliton part of 
the solution (4.2), which is located far from the third soli- 
ton (see Fig. 7a). (The numerical simulation was carried 
out using an iterative scheme only for the first quarter of 
the x.y plane and then this solution was completed by re- 
flecting about the coordinate axes.) 

Note also, that the explicit formulas of steady-state 
multistructures presented in Ref. 7 describe only the de- 
generate case of a configuration that is symmetrical in f,y 
when N solitons are arranged on the common straight line 
and the other M - N solitons are hidden in a complicated 
multi-humped relief between them. 

In the Appendix we prove that the energy and momen- 
tum of all steady-state multistructures are independent of 

FIG. 6. The locations of three solitons which 
form a bound state in the approximate (4.1 ) 
(dashed traces) and the exact (4.2) (solid 
traces) solutions for two configurations rela- 
tive to the mean velocity of motion. 

their location relative to each other and are equal to the 
energy and momentum of M individual solitons propagat- 
ing with the same velocity. In the presence of perturba- 
tions, as we shall show in the next section, equilibrium 

FIG. 7. The typical pattern of steady-state three-soliton structure (a);  the 
steady-state bisoliton which is formed as a result of degeneracy of the 
three-soliton solution (b).  
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states of solitons are destroyed and the multistructure de- 
cays into M > N individual solitons. Apparently, this phe- 
nomenon can be explained as the birth of M-N solitons 
from the binding energy of the unstable N-soliton struc- 
tures. 

4.2. Instability of the steady-state structures. 

One can prove that there are no exponential modes in 
the system linearized about the stationary solutions. How- 
ever, it is clear from the solution (3.4) that all trajectories 
outside the manifolds tend to infinity, growing secularly 
with time. Therefore, there are no periodic breather mo- 
tions, which agrees with the Krichever theorem2' about the 
algebraic time dependence of the algebraic poles of the 
solutions of the KP1 equation. This implies that all equi- 
librium states corresponding to multisoliton structures are 
unstable against small perturbation. 

Employing analysis of the solution (3.4) for M= 3 we 
shall show that the decay time of an equilibrium state 
largely depends on the type of perturbation. 

Using (3.5) we rewrite (3.4) in an explicit form: 

where P(t)  =po+plt+p2? and Q(t) =qo+q1t+q2?+q3t3 
are polynomials with coefficients pi, qi which are expressed 
in terms of the initial coordinates and velocities of the 
particles. 

As follows from the analysis of the asymptotic form of 
the solution for Zk at t+  m, the solution of Eq. (4.3) 
describes the normal scattering of three solitons in two 
cases: either for q3#0 or for q3=0 and p2#0 (in the sec- 
ond case, one soliton has the asymptotic velocity of the 
center of mass). 

When the parameters p2 and q3 vanish simultaneously, 
a set of algebraic equations arises for the initial data, whose 
solvability leads to solutions describing the anomalous soli- 
ton scattering: Zk- f,  where s < 1, at t+ =t a. Comparison 
of (4.3) with the polynomials q(x,y) corresponding to 
three-pole rational solutions of KP1 equation shows that in 
this case there exist only two groups of solutions Zk(t) ,  
determined implicitly by cubic equations: 

In the first case we have s= 1/2, and the solitons as- 
ymptotically approach the coordinate axes. Therefore, like 
(3.8), the solution (4.4) describes the anomalous interac- 
tion of three solitons, which results in particles scattering 
at an angle .rr/2 with the direction of initial motion. 

In the particular case r=O the other solution (4.5) has 
a branch of the equilibrium three-particle states (4.1 ), 
where the rotation angle is determined by the phase of the 
complex parameter q. If +O, the particles move from this 
configuration with the power s= 1/3, tending asymptoti- 
cally to another branch of the stationary configuration with 
rotation angle depending on the phase of the parameter r. 
Thus, the presence of rays where the potential of three- 
particle interaction has an extremum slows down the soli- 
ton scattering still more but does not lead to a phase shift 
after interaction. 

This analysis of particle dynamics in the approximate 
Calogero-Moser system is corroborated by the correspond- 
ing exact solutions. The process of three-soliton anomalous 
scattering which behaves as t'I3 is determined by four pa- 
rameters and has the following form: 

Here again we have set (=x-t, the pair of parameters 
a,b determines the steady-state three-soliton solution 
q,,((,y,a,b), and the other pair c,d determines directions to 
which the scattering solitons tend asymptotically. The typ- 
ical picture of anomalous scattering is presented in Fig. 8a 
for a = 1500, b=O, and c=O for parameter d varying (the 
dark circles denote the soliton positions in the equilibrium 
state at d =  0). 

As is noted above, the complication of soliton dynam- 
ics in comparison with the asymptotic solution for Moser 

particles occurs only when the distances between solitons 
are small (a,b,c,d=O), when instead of triple soliton merg- 
ing at the intermediate scattering stage a two-humped 
structure forms similar to that shown in Fig. 7b. Because of 
the anisotropic properties of the wave fields this structure 
may decay in different ways, depending on the type of 
perturbation. For deformation in the direction parallel to 
the mean motion (a =0, c=O), one observes the splitting 
of one hump of the multistructure into two solitons and 
their subsequent scattering (Fig. 8b). For a perturbation 
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FIG. 8. The processes of anomalous decay of the bound three-soliton 
state described by the solution (4.6). 

transverse to the motion (b=0, d=O), the third soliton is 
born from the local maximum (see Fig. 7b) which bounds 
two solitons (Fig. 8c). These processes correspond to two 
nonlinear modes destroying the structure and determining 
its instability under small perturbations. 

In Appendix we show that nonstationary processes de- 
scribed by Eq. (4.6) for c, d#O have energy and momen- 
tum identical to the steady-state multistructure. Hence, the 
normal or anomalous decay behavior is determined by the 
additional energy introduced by perturbance. 

5. CONCLUSION 

The analysis of soliton dynamics in terms of the KP1 
equation, carried out using an asymptotic approach, has 
shown that when the asymptotic velocity vanishes, the soli- 
ton interaction is, again a scattering process but it proceeds 

more slowly than the normal one and leads to an infinite 
phase shift of their trajectories. Besides, for some number 
of solitons there exist equilibrium states corresponding to 
bound states of individual solitons. Evidently, all solutions 
of this type correspond to multiple poles of wave function 
in the "k-space" of the inverse transform method," which 
have not been considered before. But finding a complete set 
of exact solutions in place of the general solutions (2.2) 
which are invalid in this case is beyond the scope of our 
consideration. 

We would like to point out the good agreement of 
results obtained using the asymptotic technique and exact 
solutions. It gives us hope that application of this tech- 
nique to nonintegrable models will be effective. To reach 
this end, we only need to know the linear asymptotic be- 
havior of solitary waves that can be found by solving the 
linearized initial problem. However, in two-dimensional 
problems it is not easy to construct the Green's function 
for self-adjoint operators, and the successive determination 
of higher corrections in asymptotic series (3.1 ) is difficult. 
As a result, the behavior of the soliton interaction at small 
distances cannot be considered using this approach now. 

APPENDIX 

We shall show by direct calculation that the momen- 
tum and the energy of the wave field consisting of M in- 
teracting two-dimensional solitons are determined by the 
asymptotic values of each soliton velocity even if they form 
a bound steady state. For the equation (2.1 ) the momen- 
tum U(x,t) of the field and the energy (Hamiltonian) are 
written as follows: 

1 
P, = I u2dx dy, 

Since the M-soliton solution is a rational 2M-pole so- . 
lution of the KP1 equation, in accordance with the general 
Krichever theoremz0 it can be written in the form 

It is not difficult to see by direct substitution of the 
formula (A.3) into the KP1 equation (2.1) that the mo- 
tion of the poles Xk(y,t) is determined by the pair of com- 
muting equations 

ax, ax, 12 -+ -  + I  
at  ( a ~ )  m+k 

Using the representation (A.3), Eq. (A.4a), and the 
Cauchy integral formula we can evaluate the integral 
(A.1): 
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where u k = l  (uk=O), if Xk(y,t) lies in the upper half 
(lower half) of the complex plane. 

It follows from (A.4b) that the asymptotic behavior of 
the poles at y- & co is 

Therefore 

where Pk is the momentum of the free kth soliton with 
velocity Vk . 

Similarly, the integrals in (A.2) can be calculated. As 
a result we have: 
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