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The problem of the hydrodynamic stability of a planar flame front is solved for the complete 
system of equations describing a subsonically propagating flame, including thermal 
conduction, energy release due to chemical reactions and viscosity, for the case of the flame 
propagation in a gravitation field. It  is shown that the supplementary condition that 
the velocity of the flame normal to the front be constant, which is needed to solve the problem 
in ideal hydrodynamics, is valid in the presence of all of these processes for perturbations 
with wavelength very long compared with the thickness of the combustion zone. 
For such perturbations the growth rate of the instability is given asymptotically by the 
Landau formula for the hydrodynamic instability of the flame front, independently of the 
activation energy and the order of the chemical reaction. It is shown that in practice 
the viscosity does not influence the growth rate of the instability and the instability growth 
rate becomes considerably less than the value given by the Landau formula for 
wavelengths large compared with the thickness of the flame, A220A. The Rayleigh-Taylor 
instability of a flame propagating in a strong gravitational field becomes dominant for 
the long-wavelength perturbations. Suppression of the growth rate of Rayleigh-Taylor 
instability due to convection (mass flow across the flame front) becomes particularly 
pronounced when the finite thickness of the combustion zone is treated. 

1. INTRODUCTION 

As is well known from fluid dynamics,' all surfaces of 
discontinuity in ideal dissipationless fluid motion can be 
divided into two classes: tangential discontinuities, in 
which there is no material flow across the surface of dis- 
continuity, and those in which material does flow across 
the surface of discontinuity. The latter are divided into 
shock waves (which move with supersonic velocity relative 
to the original material) and deflagration waves. In the 
system of coordinates attached to a deflagration wave front 
both the incoming flux (the flux of the unburned material) 
and the outgoing flux are subsonic. In order that a flow 
with a surface of discontinuity exist it must satisfy the 
condition of evolutionarity, i.e., it must respond uniquely 
to small perturbations. In treatments of the ideal hydrody- 
namics equations this means that the number of conditions 
at the discontinuity must be one more than the number of 
simple waves that can move away from the discontinuity 
along characteristics. For tangential discontinuities and 
shock waves the evolutionarity condition is satisfied, while 
for a slow combustion wave (plane) evolutionarity re- 
quires that an additional condition be imposed in order to 
determine the velocity of the surface of d i s c ~ n t i n u i t ~ . ' ~ ~  
Slow combustion is a flow in which the region of exother- 
mic reactions propagates relative to the unburned gas due 
to thermal conductivity. This means that heat from the hot 
burning gas is transmitted by thermal conductivity to the 
adjacent cold layers of unburned gas, causing the reaction 
rate there to rise sharply and initiating motion. The veloc- 
ity with which a flame propagates in the slow combustion 
regime is substantially less than the speed of sound due to 
the high activation barrier; this speed is determined by the 

chemical reaction time and the rate of heat release from the 
burning zone into the cold unburned gaseous mixture. It 
can be found as an eigenvalue by simultaneously solving 
the chemical kinetics equations and the hydrodynamics 
equations including heat cond~ction. ' ,~ Then the thickness 
of the combustion region is found to be of order A=xl/ul,  
where ul is the velocity with which the flame propagates 
relative to the unburned gas and X, is the thermal conduc- 
tivity. 

In most cases of practical interest the thickness of the 
combustion zone is negligible in comparison with the typ- 
ical length scales of the problem, and hence the flame can 
be regarded as a discontinuous surface of zero thickness, 
i.e., a flame front, which separates the combustion prod- 
ucts and the unburned gaseous mixture. This assumption, 
however, prevents us from treating the processes that de- 
termine the velocity with which the front moves; since this 
velocity is indeterminate, it must be prescribed a priori. 
Accordingly, in order to treat the stability of this motion 
some additional condition must be imposed on the per- 
turbed front velocity, which is not a consequence of the 
equations of hydrodynamics. The question of how to 
choose the correct auxiliary condition for this problem has 
been posed in many papers, including those aimed at the 
stability of slow combustion. 

The first to treat the hydrodynamic stability of a planar 
slow-combustion front using the model of discontinuous 
flow were ~ a n d a u ~  and ~arrieus. '  As the additional con- 
dition they assumed that the normal component of the 
flame propagation speed relative to the unburned gas re- 
mains unchanged as a result of perturbations. With this 
assumption it was found that a flame is absolutely unstable 
against arbitrary perturbations that bend the flame front, 
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for perturbations with wavelength down to the front thick- 
ness. The rate at which the instability grows as a function 
of perturbation wave number k=2r/A is given by 

Here a2= T2/T1 =p1/p2 is the amount of thermal expan- 
sion the gas undergoes in the flame, i.e., the ratio of tem- 
peratures (densities) in the gas behind the front (subscript 
2) and ahead of it (subscript 1 ). 

From (1) we would expect that the flow behind a 
flame front would become turbulent even at values of the 
Reynolds number Re)Au2/v- 1, with typical density gra- 
dient lengths comparable with the thickness -A of the 
combustion zone. But experiments show that spontaneous 
turbulence in the flow behind a flame front only sets in for 
values Re- lo3 of the Reynolds number and above, and 
that the characteristic length scale of the gradients is two 
orders of magnitude greater than the flame 

Thus far many papers have been published (see Refs. 
3, 6, and 7 and the citations they contain, Refs. 8-17), in 
which the authors try to resolve this contradiction by tak- 
ing into account various factors which might stabilize a 
flame front due to thermal diffusive and viscous effects. 
Among the latter we note the phenomenological approach 
of  arks stein,' who assumed that the velocity of a flame 
depends on the curvature of the front. This dependence is 
associated with transverse diffusion and thermal conduc- 
tion, but just as in the case of the Landau condition, was 
not derived from the equations of hydrodynamics. Another 
phenomenological approach was used in Refs. 13-1 8, 
where transport processes (thermal conduction, diffusion, 
viscosity) were included in the solution of the stability 
problem, while at the chemical reaction front, regarded as 
a surface of discontinuity, an additional condition was in- 
troduced which determines the dependence of the reaction 
rate on the temperature ahead of the front. It is evident 
that dissipative effects stabilize the instability, as a result of 
which these treatments yield reasonable estimates for the 
stabilization scale length. However, an exact solution of the 
spectral problem requires rigorous justification and formu- 
lation; all attempts made thus far to prove the conditions at 
the reaction f r ~ n t ' ~ " ~  contain some assumptions, equiva- 
lent to the condition being derived. 

A similar problem, related to the insufficiency of the 
boundary conditions at a surface of discontinuity, has been 
intensively investigated in recent years in connection with 
the problem of the stability of an ablation front. An abla- 
tion wave is formed when a target is irradiated by laser 
radiation at high intensity. This front is a thermal conduc- 
tion wave which transports the energy absorbed from the 
laser radiation in the direction of the cold initial material. 
The instability of an ablation front resembles the Rayleigh- 
Taylor (R-T) instability, but the presence of a flux of 
material and other stabilizing factors substantially changes 
the appearance of the instability spectrum. In order to de- 
scribe convective stabilization of the R-T instability many 
 worker^^'-^^ have used the model of discontinuous flow, 
which necessitates the introduction of additional condi- 

tions on the surface of discontinuity. Just as in the case of 
the stability of a flame front, it is impossible in principle to 
derive these conditions from this model. 

The only way to get an exact solution to the problem of 
the stability of the deflagration wave is to include all pro- 
cesses that affect wave propagation. For a slow combustion 
wave this means solving the full system of hydrodynamic 
equations, including thermal conduction and chemical ki- 
netics. Here the unperturbed flow is found from the con- 
tinuous solution determined by these physical processes. 
This approach enables us to derive a solution to the flame- 
front stability problem in the discontinuous limit as the 
first approximation in an expansion in powers of A/A -0 
and to find the exact boundary condition at the disconti- 
nuity. Liberman et al.24 have derived a complete solution 
to the problem of the hydrodynamic stability of a slow 
combustion wave for an inviscid fluid including chemical 
reaction kinetics and thermal conduction. It was shown 
there that for long-wavelength perturbations ( A/A -0) the 
condition that the propagation speed relative to the un- 
burned gas be constant follows from the complete system 
of equations for small perturbations including thermal con- 
duction, and the instability growth rate is given by Eq. ( 1 ). 
Furthermore, the growth rate is substantially reduced in 
comparison with the Landau formula ( 1) even at long 
wavelengths A- 102h>h. The growth rate has a maximum 
at A-40A and vanishes at A -- 20A. 

In the present work we derive a solution to the flame- 
front stability problem including viscosity, thermal con- 
duction, and chemical reaction kinetics. We show that for 
all physically reasonable values of the viscosity the latter 
has no effect on the rate at which the flame instability 
grows. The solution of the problem of stability of a slow 
combustion front in a gravitational field shows that even in 
the presence of acceleration the correct auxiliary condition 
in the discontinuous model is the Landau condition that 
the normal velocity of the front relative to the unburned 
gas remain unchanged. We show that convective stabiliza- 
tion of the Rayleigh-Taylor instability is associated with 
the finite thickness of the transition region, and contains 
the natural time scale of the unperturbed flow as a param- 
eter. 

2. STEADY PROPAGATION OF A SLOW COMBUSTION 
WAVE 

We consider the problem of a slow combustion wave, 
including the structure of the transition region where com- 
bustion takes place for the case in which the Lewis number 
satisfies Le= pcpD/x = 1, where D and x are the diffusivity 
and thermal conductivity of the gas, p is the density, and cp 
is the specific heat at constant pressure. This assumption 
imposes no fundamental restriction from the standpoint of 
the hydrodynamic processes, but enables us to simplify the 
problem by avoiding treatment of the purely chemical in- 
stability. Formally this assumption corresponds to com- 
bustion of a mixture of gases with similar molecular 
weights. The velocity with which the flame propagates in 
all cases of practical interest is small compared with the 
speed of sound, so we take M = u JP/YP < 1. It can be 
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shown3 that for such an isobaric flow when the diffusivity 
and thermal conductivity are equal the profiles of fuel con- 
centration and temperature are similar, so that the diffu- 
sion and thermal conduction equations reduce to the same 
equation. To be specific we will assume that the combus- 
tion process is described by a single equivalent first-order 
reaction. The reaction rate is assumed to depend on tem- 
perature according to the Arrhenius law. We will also as- 
sume that the flame velocity is sufficiently small that the 
gravitational acceleration and viscosity have little effect on 
the structure of the unperturbed flow. These conditions can 
be expressed in terms of the smallness of the corresponding 
dimensionless parameters: 

where M = u Jp/y~ is the Mach number, Fr=  is 
the Froude number, P~ , , ,=Y~,~CJX is the Prandtl number 
with respect to the bulk and shear viscosities respectively, 
u is the flame speed, P is the pressure, y is the adiabatic 
index, g is the gravitational acceleration, and Y ~ , ~  are the 
bulk and shear viscosities. Under these conditions the en- 
ergy transport equation contains no terms with viscosity or 
gravitational acceleration. To simplify the analysis we will 
assume that the thermal conductivity and viscosity are in- 
dependent of temperature. Then the system of equations 
describing flame propagation takes the form 

Here Q is the heat of the thermal reaction and W(p,T) is 
its rate. We assume that the unburned and burned gases 
are described by the ideal-gas equation of state, 

Assuming the Arrhenius law for the reaction rate and tak- 
ing into account the identity of the temperature and con- 
centration we find 

where E is the chemical reaction activation energy, r is the 
induction time, and T2 = T1 + alQ/cp is the final tempera- 
ture of the combustion products, determined by the fuel 
concentration a l  in the original mixture. 

We consider a one-dimensional plane flow. We assume 
that the z axis is coincident with the material flow velocity. 
In the comoving coordinate system the unburned gas with 
density pl  (at z= - oo ) flows into the combustion zone 

with velocity u,;  the reaction products flow out of the 
combustion zone with density p2 (at z= co ). For very sub- 
sonic flow, to within terms of order ~ ~ 4 1 ,  M2flr(l, 
pr1,,M24 1, if we take into account Eq. (2),  then Eqs. (3) 
and (4) have the following constants of motion: 

puZ= const, (7 )  

P= const. (8) 

To solve Eq. (5)  we find it convenient to go over to 
dimensionless variables, scaling all quantities by their ini- 
tial values at z =  - co. Then if we take into account the 
constants of motion (7)  and (8) ,  all variables associated 
with the unperturbed flow can be expressed in terms of a 
single quantity, the dimensionless temperature 0 = T/Tl : 

In the flame propagation problem the temperature profile 
is the eigenfunction of an eigenvalue problem determined 
by the solution of Eq. (5) with the corresponding bound- 
ary conditions. The flame propagation speed is determined 
from the eigenvalue of the problem. 

To solve Eq. (5) we introduce the dimensionless coor- 
dinate {=z/A, where A = X / ( ~ C ~ U , ~ )  is the thickness of 
the combustion zone and the dimensionless activation en- 
ergy is 8' =E/T1. In these variables Eq. (5) assumes the 
form 

with the boundary conditions 

Here A = A/(uZ1r) is the eigenvalue of the problem. 
For estimates we can conveniently use a simple ana- 

lytical solution to the problem ( lo)-( l l )  for the temper- 
ature and for the normal flame propagation speed, derived 
by Zel'dovich and Frank-Kamenetskii in the limit of large 
activation energy.3 In the variables used here the temper- 
ature profile assumes the form 

and the corresponding eigenvalue is 

Typical scaled profiles ( 0  - 1 ) / ( a 2  - 1 ) for a slow com- 
bustion wave with various values of the activation energy 
and thermal thickness are shown in Fig. 1, where trace 4 
corresponds to the solution ( 12), which is asymptotically 
correct for large activation energy. 

As can be seen from Fig. 1, the thickness of the heating 
region is of order unity in the dimensionless variables and 
is essentially independent of both the activation energy and 
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FIG. 1 .  Scaled temperature profiles in a combustion wave: I )  9 =70, 
0,=8, In A=14.3; 2) 9=42, 0,=6, In A=11.7;3) D=21, 0,=3, In A 
= 10.4; trace 4 corresponds to Eq. (12).  

the amount of thermal spreading. The region where the 
energy is released in the chemical reaction is considerably 
narrower. 

3. SPECTRAL PROBLEM FOR SMALL PERTURBATIONS 

Let us consider the spectral problem for the stability of 
a steady planar flame against small perturbations which 
bend the front. By virtue of the symmetry of the problem 
the solution can be found in the form 

where x is the transverse position variable, k is the pertur- 
bation wave number, a is the growth rate, and @(z) is the 
amplitude vector of the perturbations. Since we are inter- 
ested only in perturbations that grow in time, in the future 
we will assume Re(a)  > 0. 

It can be shown24 that for Le= 1 the concentration and 
temperature perturbations remain similar, and in the limit 
~ ~ < 1  the density perturbations are related to the temper- 
ature perturbations by 

Taking into account (9) and ( 15) we find equations for the 
small perturbations (14) in the form - - 

d j  
- 

o u w  
-=K,'j'- K--K-, 
d 02- 0 O 

dii 

where we have introduced the following notation for the 
dimensionless temperature perturbations, material flux, 
transverse and longitudinal momentum fluxes, and the vis- 
cous stress: 

The dimensionless wave number and growth rate, respec- 
tively, are 

Note that only the bulk viscosity enters explicitly into the 
equations. 

The boundary conditions for Eqs. (16)-(20) are the 
vanishing of all perturbations in the limit f -  * oo. The 
boundary conditions at i oo can be imposed for finite val- 
ues of f1 and f2  far enough from the transition region so 
that for f < f and f >  f, the flow may be treated as uni- 
form. The conditions that the flow be uniform are given by 
the inequality 

d(ln O)  
IT(4min{ l ,~ l  for 5=f1,f2.  

In the uniform-flow region for f < f and f > f2  the solu- 
tion of the equations for the perturbations are found in the 
form of a superposition of solutions of the form 

where the argument of the exponential in (23) is chosen so 
that p > 0 for f < 5, and p < 0 for f > 6,. Substituting the 
perturbations in the form (23) into Eqs. ( 16)-(20), we 
find the characteristic equation for the index p. Taking into 
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account the vanishing of the perturbations at 6- * co we 
find that in the incident flow three modes are possible: 
sound 

ps=K, 

thermal 

a==)+ IJ- 
and viscous 

Three modes are also possible in the outgoing flow: 

acoustic 

rotational 

and chemical 

The structure of these modes is similar to that found in 
Refs. 12 and 24. We note only that the temperature per- 
turbation is nonzero only for the thermal and chemical 
modes. The condition that the solution of Eqs. (16)-(20) 
vanish at infinity can be represented in the form of bound- 
ary conditions at {=el and c=c2: 

Conditions (24) and (25) are relations involving the 
components of the desired functions @((), which reduce to 
three algebraic equations for components of the function 
@(el )  and three equations for the components of @(c2). 
The system of equations (16)-(20) together with the 
boundary conditions (24) and (25) completely determine 
the spectral problem of the stability of a steady combustion 
wave. 

4. STABILITY OF THE FLAME FRONT; ZERO-VISCOSITY 
CASE 

The solution of the spectral problem, the determina- 
tion of the instability growth rate for arbitrary values of the 
wave number K, can in general be done only numerically. 
The numerical solution technique was presented in Ref. 24. 
The results of the numerical solution of the spectral prob- 
lem for the case of an inviscid fluid Pr =O in the absence of 
a gravitational field ( 1/Fr = 0) is shown in Fig. 2, where 
the dimensionless growth rate SK=oA/u, is plotted as a 
function of the perturbation wave number K= kA for com- 
bustion waves with different values of the heat release in 
the reaction. 

FIG. 2. Instability growth rate uA/u,,=SK versus the dimensionless 
wave number K=kA. The numbers labeling the traces correspond to the 
temperature profiles in the combustion waves shown in Fig. 1 .  The dashed 
straight lines correspond to solutions in the model of a discontinuous 
flame front. 

From Fig. 2 we see that the instability growth rate for 
small values of the wave number agrees well with the 
Landau solution ( 1 ), regardless of the activation energy 
and the extent of thermal spreading. However, it should be 
noted that a significant deviation in the growth rate from 
values given by Eq. (1) occurs even for wavelengths 
A> 100A, and for Az20A the growth rate vanishes. Thus, 
the hydrodynamic instability of a flame occurs only for 
perturbations with long wavelengths such that kA(0.3 
holds. The calculations show that for fixed a2 the instabil- 
ity growth rate is essentially independent of the activation 
energy. 

An analytical solution of the flame stability problem 
can be found in the long-wavelength limit for perturbations 
with wavelengths large in comparison with the thickness of 
the transition region (the combustion zone). As was noted 
in the previous section, this implies 

where the boundaries of the combustion zone are deter- 
mined by the inequality (22). Taking into account the 
exponential decay of dO/d< in the uniform-flow region, we 
can represent (22) in the form 

Thus, taking into account (26) and (27) we can represent 
the condition for the validity of the long-wavelength ap- 
proximation in the form 
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Note that this condition is more stringent than the usual 
condition K =  kA(1 for the applicability of the model of an 
infinitesimal front thickness. 

In view of the very different scales on which the hy- 
drodynamic modes & ( g )  ,Fv (g )  ,& ( 6 )  and the thermal 
modes G T ( { )  ,&-(()fall off, the boundary conditions ( 24 )  
and (L5) for the perturbations of the hydrodynamic vari- 
ables j ,  C, g can be represented in the form 

- - - 
u l = - j , ,  @ l = - ( ~ - l ) j l  for { = g l ,  ( 29 )  

- 
C 2 + g 2 -  ( S + 2 a 2 ) j 2 = 0  for g = C 2 .  ( 30 )  

The boundary conditions for 8 and d 6 / d g  are determined 
by the behavior of the thermal modes and reduce to expo- 
nential decay on scales smaller than or of order the thick- 
ness of the combustion zone. 

Let us consider the solution of Eqs. (16) - (19)  for 
long-wavelength perturbations. Equation ( 19) for the tem- 
perature perturbations can be represented in the form 

where 

Note that 

P [d@/dg]  = 0.  

It can be shown24 that the first and second terms on the 
right-hand side of ( 31 )  are of the same order in K, and to 
lowest order in ~ ( 1  the solution of ( 31 )  is 

which obvio_usly satisfies the required boundary conditions 
on 8 and d@/dg. The expression for 8 ,  determined by Eq. 
( 34 ) ,  signifies a displacement of the flame parallel to the g 
axis by an amount 6g= f T .  

Integrating Eqs. (16) - (18) ,  we find to first order in E 

When we Eke into account the expression ( 35 )  derived 
above for j ,  Eq. ( 31 )  for the temperature perturbation 
assumes the form 

P[6] = ( ~ ~ + j l ~ / f ~ ) O  (38 )  

to first order in E .  Note that the function 6=f #/d{ is 
the solution of Eq. (3! )  corresponding to the zero eigen- 
value of the operator F. This is the only eigenvalue of Eq. 
( 38 )  for which the perturbed solution can correspond to 
unstable growth (Rev> 0 ) .  Thus, we obtain the supple- 
mentary condition for the perturbation amplitudes 

K S + ~ ~ / ~ ~ = O .  (39 )  

Equation ( 3 9 )  together with the boundary conditions 
( 29 ) ,  ( 30 )  and the constants (35) - (37)  at f = g 2  consti- 
tute a closed system of equations for the perturbation am- 
plitudes, the condition for whose consistency yields the 
solution of the problem of the perturbation growth rates: 

To elucidate the physical meaning of this solution it is 
convenient to return to dimensional variables. It is obvious 
that the constants (35) - (37) ,  applied to the point ( = g 2 ,  
are nothing but the conditions for the continuity of the 
mass and momentum flows at the surface of discontinuity, 
which corresponds to a combustion zone of finite thickness 
in the long-wavelength approximation. In the case of an 
incompressible gas p  = pl = const the quantity f = GTA is a 
small displacement of the flame front, so that Eq. ( 40 )  
written in dimensional variables as 

is nothing but the condition for the constancy of the nor- 
mal velocity of the flame front, used in Refs. 1, 4, and 5. 

5. STABILIZATION OF THE INSTABILITY FOR A 
COMBUSTION ZONE OF FINITE THICKNESS 

The solution obtained above to the problem of flame 
stability is the first term in an expansion in powers of E .  

The numerical solution of the spectral problem shows that 
considerable stabilization occurs even for wavelengths 
much longer than the thickness of the combustion zone 
(see Fig. 2 ) .  Consequently, we can expect that the solution 
of the problem is a good approximation to within terms of 
order ~ ( 1 .  

If we include relation ( 39 )  the function ( 34 )  is the 
solution of the thermal conduction equation ( 3  1 )  to within 
terms of order E ~ .  Then the constants of Eqs. (16)-(  18) to 
within terms of order E~ are 

- 
where joy Co, 9 ,  are first-order terms in the expansion in 
E for j ,  ii, 9, determined by the constants (35)-(372 
including the boundary conditions ( 2 9 ) .  Substituting j  
from ( 42 )  in the right-hand side of ( 3 1 )  we find 
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and 

By means of the substitution @ = $ exp(c/2) we can 
convert Eq. (45) to an equation with a self-adjoint 
operator,3 in which the last term on the right-hand side of 
(45) is a small perturbation in the long-wavelength ap- 
proximation. The corresponding corrections to the eigen- 
value of the equation can be obtained from the standard 
perturbation theory for a self-adjoint operator.25 To within 
terms of order e2<1 we have 

where 

In the "ideal hydrodynamic" treatment of the flame stabil- 
ity problem relation (47) can be regarded as a supplemen- 
tary condition analogous to the Markstein ~ondi t ion ,~  de- 
scribing the change in the flame velocity associated with 
curvature of the front. But this condition does not exhaust 
all the effects associated with the finite thickness of the 
combustion zone unless the integrals (42)-(44) are taken 
into account. 

The conservation laws (42 )-(44), evaluated at fj = (,, 
together with (29), (30), and (47), yield a closed system 
of equations for the perturbation amplitudes for which the 
compatibility condition leads to the following value for the 
growth rate to within e2<1: 

where So is determined by Eq. (40) and 

Equation (49) predicts stabilization of the unstable 
flame front for any value of the activation energy. The 
condition that the fluxes at the boundary points 11,  t2 are 
uniform enables us to replace the limits of integration in 
(50) by * co . For an estimate we use the value K; ' which 
follows from (50) for a combustion wave with a large 
activation energy in the model (12) of Zel'dovich and 
Frank-Kamenetskii: 
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Note that since thermal conduction stabilizes the mode 
even for K< 1, the estimate (50), (5 1 ) for the magnitude of 
the wave number at which the growth rate vanishes is quite 
accurate. For example, Kc=0.3 at @,=8; Kc=0.31 at 
0,=6; and Kc=0.28 at 0,=4, which agrees well with the 
numerical results (Fig. 2).  

6. FLAME STABILITY INCLUDING VISCOSITY 

The formulation of the flame stability problem in a 
viscous gas flow is given in Sec. 3. The numerical solution 
of the spectral problem ( 16)-(20) in the absence of a grav- 
itational field (l/Fr=O) with the boundary conditions 
(24), (25) has been obtained by iteration. 

For a given approximate value S=S, of the eigenvalue 
the system of differential equations (16)-(20) was inte- 
grated three times over the interval [(, ,(*I with the bound- 
ary conditions [@I (61) =&, ) =&- and @3(61) =@,] 
and three times over the interval ['*,(,I with the boundary 
conditions q4((,) =@,, @5((2) = F V ,  F6(f2) = @ C .  After 
this we found a new approximate eigenvalue S=S,+' by 
Newton's method: 

where 

This method of determining the eigenvalues is based on 
the fact that the desired eigenmode must be expandable in 
the eigenfunctions Fs, qT,  and @, at (=6, and must go 
over into a solution that can be represented as a superpo- 
sition of the functions F A ,  qV ,  @= at 6=f2. This require- 
ment reduces to the condition that the determinant (53) 
vanish at any point in the interval [(1,(2]. 

As the "matching" point (* for the solutions from the 
right and the left we use the point corresponding to the 
maximum rate of energy release in the thermal conduction 
equation. This choice of the matching point provides for 
the greatest accuracy in searching for eigenvalues, since in 
both cases the trajectories away from the points 6=11 and 
<= 6, are attractive. 

We also looked for eigenvalues of the system (16)- 
(20) in the complex plane. The calculations showed that 
there are no complex eigenvalues in the problem. 

The numerical solutions of the eigenvalue problem re- 
veal that all values of the viscosity of practical interest have 
no effect on the stability of the flame, and the calculated 
values of the instability growth rates agree with those ob- 
tained for zero viscosity. In the numerical calculations we 
assumed values of the Prandtl number in the region 0.2 
< P r <  1. 
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We can arrive at the same conclusion based on the 
analytical solution if we note that in Eqs. (16)-(20) in the 
region of heating and burning we have 

Then repeating calculations analogous to those in Sec. 5, 
we can show that to within terms of order pr2E2 the ex- 
pression for the growth rate is the same as (49). 

7. FLAME STABILITY IN A GRAVITATIONAL FIELD 

Let us consider the effect of a gravitational field on the 
stability of a propagating flame. The combustion wave is 
assumed to be propagating parallel to the gravitational 
field. If the acceleration is in the direction of the flame 
front velocity, then the gravitational field will tend to sta- 
bilize the instability; but if the acceleration is directed op- 
posite to the flame velocity, then the cold dense fuel is 
supported by the light combustion products, and in this 
flow it is possible for the Rayleigh-Taylor (R-T) instabil- 
ity to develop.' The importance of the gravitational field in 
relation to the actual instability of the flame is determined 
by the Froude number Fr = U;'/~A. Since, as shown in Sec. 
6, the viscosity has little effect on the growth rate, we will 
set Pr, = O  in what follows. 

Let us consider the solution of Eqs. (16)-(19) in the 
long-wavelength limit. Since the gravitational field does not 
effect the structure of the hydrodynamic modes ps(c), 
@ "( c) ,  @A (g), the boundary conditions in the incigent and 
outgoing flows for the hydrodynamic variables j, i7, .? 
remain the same as (29), (30). The gravitational field also 
does not affect the solution of the perturbed thermal con- 
duction equation, and hence the dimen_sionless shift cT of 
the flame front and the perturbation jl of the mass flux 
(40). Compared with the previous calculation, a difference 
arises in the integration of the Euler equation, where an 
additional term appears: 

In zeroth order in E, corresponding to the model of a flame 
as a discontinuous front, the expression for the growth rate 
takes the form 

In the case of a large gravitational field for sufficiently 
long-wavelength perturbations, Eq. (56) goes over to the 
usual expression for the Rayleigh-Taylor instability 
growth rate: 

Stabilization of the flame instability, both the instabil- 
ity of the combustion front and the Rayleigh-Taylor insta- 
bility, is due to dissipation caused by the finite thickness of 
the flame front. The corresponding stabilizing terms in the 
expression for the growth rate appear in higher order in the 

expansion in E( 1. Calculations similar to those carried out 
in Sec. 5 yield the following expression for the dimension- 
less perturbation growth rate S to within terms of order E ~ :  

Consider the case in which the main contribution to 
the instability comes from the gravitational field, 
0 2 ~ ( ~ r - ' .  To first order in E, i.e., representing the flame 
as a surface of discontinuity with zero thickness, we have 
expression (57) for the growth rate. 

As is well when the finite thickness of the 
front (finite density gradient) is taken into account, the 
instability growth rate decreases relative to that in expres- 
sion (57) even in the case of a fluid at rest: 

where L - p(dp/dz) - ' is the characteristic thickness of 
the transition region. 

It is evident that treating the finite thickness of the 
flame front for the R-T instability must lead to a similar 
effect in the terms in expression (58) which are linear in E. 

Since they are independent of the mass flow, these terms 
cannot depend on the Froude number, which determines 
the relationship between the gravitational field and the 
mass flow. In view of this we separate those terms, repre- 
senting them in the form (59). Then in the case of a large 
gravitational acceleration, neglecting the effect of the flame 
instability itself, from (58) we find for the dimensionless 
growth rate of the instability 

where 

and 

Here I= L/A is the effective thickness of the transition 
region (the flame), and the perturbation wavelength at 
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FIG. 3. Dimensionless growth rate as a function of wave number for a 
flame propagating in a gravitational field with different values of the 
Froude number: I )  Fr= 10; 2) Fr= 1; 3) Fr=O. 1 for 02=S. The dots 
correspond to the case of zero gravitational field and the dashed curve 
corresponds to the analytical result (65). 

which the growth rate vanishes is ilg=2aA/Kg. For the 
case of a flame with a high activation energy the model of 
Zel'dovich and Frank-Kamenetskii yields for I and Kg 

Returning to dimensional variables, we find for the insta- 
bility growth rate of a flame with large activation energy 
the expression 

where 1 is determined by (63) and the dimensionless coef- 
ficient f i  is equal to 

Thus, the stabilization of the Rayleigh-Taylor instability is 
largely due to the finite thickness of the flame and, strictly 
speaking, cannot be described using the model of an infi- 
nitely thin front.20-23,29-31 

Figure 3 shows the results of solving the flame stability 
problem numerically in a gravitational field for different 
values of the Froude number Fr= 10, 1, and 0.1 for traces 
1, 2, and 3 respectively. For large values Fr( 1 of the grav- 
itational icceleration the magnitude of the instability 

growth rate is mainly determined by the Rayleigh-Taylor 
instability and agrees satisfactorily with the approximate 
expression (65 ) . 

It is interesting to note that if we consider the motion 
associated with a combustion wave in a gravitational field 
for Fr(1 as a model of an ablation wave for a laser target, 
Eq. (65) yields a satisfactory approximation to the results 
of numerical m ~ d e l i n ~ , ~ ~ - ~ l  and explains the convective 
stabilization of the Rayleigh-Taylor instability in an abla- 
tion flow. 

8. CONCLUSION 

The solution of the stability problem for a flame front 
with viscosity, thermal conduction, and the kinetics of the 
chemical reaction taken into account, in particular for a 
flame propagating in a gravitational field, reveals that the 
condition that the velocity with which the flame propa- 
gates remain unchanged is valid for perturbations with 
long wavelengths, considerably greater than the thickness 
of the combustion zone, A> 100A. For such long- 
wavelength perturbations the asymptotic form of the 
growth rate is determined by the Landau formula ( 1 ) in 
the absence of a gravitational field and by (56) in the 
presence of such a field. We have shown that the hydrody- 
namic instability of a flame front is stabilized even for 
perturbations with wavelength much greater than the 
flame thickness, where the instability growth rate is inde- 
pendent of viscosity. For the case of a flame propagating in 
a gravitational field we have shown that convective stabi- 
lization of the Rayleigh-Taylor instability can in principle 
not be described using a flow with a discontinuity, and is 
related to transport processes responsible for creating the 
flow and determining the finite thickness of the combustion 
region. We have obtained an estimate for the characteristic 
perturbation wave number (64) at which the R-T insta- 
bility is stabilized by mass flow. 
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