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The properties of a two-photon optical field radiated under the action of a coherent pump by 
two or more flat nonlinear crystals without inversion centers, separated by a linear 
medium, in particular, a vacuum, are analyzed. It is shown that interference between the 
spontaneous fields of the crystals leads to the appearance of additional structure in the 
spectrum of the field, with a scale inversely proportional to the distance 1' between the 
crystals. The probability for emission of two photons at the times t, and t,+t has two or more 
maxima in its dependence on t with the distance between them proportional to I'. 

1. INTRODUCTION 

The Ramsey method of separated fields is widely used 
in beam spectroscopes and masers.' In this method the 
region of interaction between the molecule and the reso- 
nance field inducing a transition between two levels of the 
molecule divides spatially into two parts with an interval 
between them in which the field is absent. As a result, the 
observed spectrum g ( w )  ( w  is the field frequency), which 
has a total transit-time width of order 1/27 (T is the time 
it takes a molecule to cross the field region), acquires fine 
interference structure with period l/r', where 7' is the 
time it takes a molecule to cross the gap between the fields, 
which is much greater than T. 

In the present paper it is shown that an analogous 
phenomenon takes place in the emission of a photon pair 
by a macroscopic body of nonlinear material (usually a 
transparent piezocrystal) according to the scheme 
16- k,+k,, where 16 is the pump wave vector (the spon- 
taneous parametric scattering (SPS) effect; see, for exam- 
ple, Ref. 2).  The design of this experiment is shown in Fig. 
1. Here the field and the material exchange roles: the roles 
of the two field regions and the "dark" gap between them 
are played by two nonlinear layers of thickness 21 sepa- 
rated by a linear layer of thickness I'; the role of the mol- 
ecule is played by the signal (k,) and idler (kb) modes of 
the electromagnetic field; and the role of the transit time of 
the molecule ~ ( 7 ' )  is played by the difference in the time it 
takes the signal and idler photons to cross the nonlinear 
(linear) layers, which is determined by the dispersion of 
the group velocity. 

We assume the pump to be classical and prescribed, 
which makes the problem linear and corresponds to the 
usual experimental conditions. In the molecular model this 
approximation corresponds to the case of a weak field. At 
the same time, our model allows an additional possibility: 
the parameters T and/or T' can be negative, in which case 
opposite signs on T and 7' imply cancellation of dispersion 
in the linear and nonlinear layers. 

Below we will consider in more detail (but in a pre- 

liminary fashion) the more general problem of n identical 
nonlinear layers separated by n-  1 identical linear gaps. 
Here the width of the central maximum in the SPS spec- 
trum in a fixed direction is narrowed as a result of the gaps 
by a factor of 1 + T'/T (in the case T'/T > 0). 

Note that the SPS effect in two or more crystals, but 
with different geometry, was considered in Refs. 3-6, 
where the possibility was considered of formulating new 
EPR-Bell-type experiments. Interesting interference ef- 
fects, arising as a result of mixing of the signal and/or idler 
beams radiated by two crystals with a common coherent 
pump, were observed by Mandel et al. 7-9 

2. PARAMETRIC SCATTERING SPECTRUM IN A 
MULTILAYER MEDIUM 

The SPS effect presents the unique possibility of pre- 
paring an almost pure two-photon field with macroscopic 
coherence scales and easily varied space-time 
s t r u ~ t u r e . ~ " ~ ~ "  In the first approximation in the pump am- 
plitude Eo the field state vector has the form 

where a: is the photon creation operator in the k mode, 
(0) is the vacuum state and the function Fkk, has the 
meaning of an effective field describing the shape of the 
two-photon wave packet ("biphoton") in the spectral rep- 
resentation. Its Fourier transform defines the structure of 
the biphoton in 8-dimensional space-time, which can be 
measured by the coincidence method with two broadband 
point detectors. 

There are three main ways of controlling the structure 
of the biphoton: placing various optical elements (filters, 
diaphragms, beamsplitters, lenses, etc.) in the pump field" 
or the scattered radiation or varying the geometry 
of the nonlinear scattering region.3 Here we will consider 
the last method. 

We assume an interaction energy of the form X ~ 3 ,  
where x is the quadratic susceptibility of the crystal. In the 
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cccAF FIG. 1. Scheme for observing Ramsey interference in parametric 
light scattering: the pump photon k, decays into two photons k, and 

b kb as a result of coherent mixing in the two nonlinear crystals - k* (hatched regions) separated by a linear medium, in particular, air. 

\ 

diffraction-free approximation the modes of the scattered 1-exp(-i6) exp[-in(6+6')] - 1 
field are pairwise coupled by the conditions w + i% = oo and f k  = exp[-i(6+Sf)]-1 
k, +&, =0, as a result of which we have (for more detail, 
see Ref. 2) 

- 
sin(6/2) sin[n(6+S1)/2] 

- 

Fkk, = - i r  fksk,j; , (2)  6/2 n ~ i n [ ( 6 + 6 ' ) / 2 ] ~ ~ ~ ( - ~ ~ ) '  (1 1) 

where 
' 

where 2a =n6 + (n - 1 )Sf. The first factor in the last line 
of Eq. ( 1 1 ) describes the ordinary SPS spectrum in the Ith 

r = 2 ~ ~ -  G x ~ o ~  (3)  layer, and the second, the effect of interference between the 
is the parametric gain coefficient in a layer of thickness spontaneous fields radiated by the n crystals. 
L=nl  and the function If ordinary instead of homodyne detectors are used, 

n the scattered field will appear to be stationary, and in pho- 

f k =  C firn' ,  (4) tons per second out to one transverse mode, i.e., within a 
m=l solid angle of h2/a2, where a is the transverse diameter of 

1 the radiating region (practically the diameter of the pump 
fim'=z r + ' d ~ ~ ( ~ , ~ )  ~ , ( k , z )  Dm(&,z) ( 5 )  beam) in the direction 6 for small 6 according to Eqs. (2) 

rn and ( 11 ) its intensity ~ ( 6 )  will be equal to 
describes how dispersion of the refractive index in the lin- dw 
ear and nonlinear media affects the efficiency with which & ( a )  = IOU' ~ ( o , 6 )  - r = r 2 ~ v ( 6 ) ,  

2 (12) 
the three waves interact. Here D m ( k j )  is the propagation 
function (reckoned from the plane z=0) and where 

zm= -ml- (m- 1)Z' ( 6 )  N(w,6)= (13) 

is the coordinate of the left boundary of the mth nonlinear 
layer. According to Eq. (4) the effective field consists of n 
components, which can interfere as a consequence of the 
assumed coherence of the pump field over the entire non- 
linear region. 

If we neglect reflections from the boundaries of the 
layers, we have 

where k, and k; are the longitudinal components of the 
wave vectors in the nonlinear and linear media. The 
boundary conditions take the form kl = k; . From Eqs. 
(5)  and (7) we find that 

where 6 = A1, 6' = A ' If , 
- 

A(w,6) =ko-k,- k,, (9)  

(here we have neglected the slow dependence of r on o, 6, 
and 4 ) .  If the condition g,,,,,= 1 is fulfilled, the parameter 
Av(6) has the meaning of an effective spectral width (in 
hertz) for observing in the given direction. 

In the absence of gaps (S1=O), Eq. (14) gives the 
usual spectrum for the layer L=n l  

whose effective width is inversely proportional to L so that 
N = L'AV K L. When the dispersion cancels (6 + 6' = 0) it 
is necessary to replace L in Eq. ( 15) by I, resulting in an 
increase in the spectral width and the total intensity by a 
factor of n in comparison with a solid crystal of length L. 

Let the synchronism condition be fulfilled for some k, : 
A(w,,6,) =O. Frequently a linear expansion of the func- 
tion A(m,6) in the vicinity of ma, 6, suffices: 

are the wave detunings, w=o(k )  is the frequency corre- 1 
sponding the wave vector k, and 6 is the angle between k T=I[u; - u i l  C O S ( ~ , +  ] / C O S  gb ,  (17) 

and the z axis (the scattering angle). Note that the func- 
tion fLm) should change sign under reversal of the direc- p=kotg(6,) (18) 

tion of the polar axis in the mth crystal, since then X +  -x. (we assume the polarization of the scattered field to be 
Substituting the expression (8)  in Eq. (4),  we find the ordinary). Here fl =a - w, , are the scattering angles 

total effective field radiated by the n layers: within the crystal for the signal (k,) and induced 
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(kb=i;,=k-ka) waves, ana u , , ~  are the group velocities. 
The expansion of 6' (@,a), which, however, contains a con- 
stant component 6; = Af(ka), has an analogous form. In 
the case of vacuum gaps and small scattering angles we 
have 6'=0. Note that for i+a,b4 1 the parameter T has the 
meaning of a difference in the transit times of the induced 
and signal photons through the nonlinear layer (and anal- 
ogously for T'). 

Let 9 =a,. Then by virtue of relation ( 16) the spectral 
function ( 14) takes the form 

Plots of this function for selected values of the parameters 
are shown in Fig. 2 for 6; = 0. Note that for T+T' =0, 
6; = *a, and n even, it follows from Eq. (19) that g ( R )  
=0, i.e., the radiation is completely suppressed (the same 
result follows from Eq. (8)  for 6 + 6' = .t a ) .  

3. PARAMETRIC SCAlTERlNG BY TWO LAYERS 

Let us consider the case n=2 in more detail. Accord- 
ing to Eq. ( 19) 

This function describes the observed spectrum in the Ram- 
sey method in the case of a weak field if by R we under- 
stand the difference between the field frequency and the 
frequency of the molecular transition, by r and T' the tran- 
sit times of a molecule through the field regions and the 
gap between them, and by 6; the phase difference of the 
two fields.' In essence, expression (20) is the response of a 

FIG. 2. Spectrum of parametric scattering by 
n sequentially arranged crystals. Dirnension- 
less frequency (a-a , ) r /2r  is plotted along 
the abscissa, the parameter a = T/T' is propor- 
tional to the ratio I'/l of the length of the gap 
between the crystals to their length. The 
dashed curve (the envelope of the spectrum) is 
the spectrum for the case of dispersion cancel- 
lation, i.e., for a =  - I. 

linear oscillator to two pulses with frequency ma-0, du- 
ration T, interval r', and phase difference 6;. 

Let us find the total intensity ~ ( 9 ) .  defined according 
to Eq. ( 12) by the parameter Av. From Eq. (20) it follows 
that if the condition 1 1 + rl/r ( > 1 holds, Av does not de- 
pend on the presence of the gap, i.e., Ramsey interference 
only redistributes the energy within the spectrum: 

However, for the reverse inequality Eq. (20) gives 

Thus, for r+r1 = 0  (dispersion cancellation) and 6; 
= 2ma, m=O, .t 1, ..., the spectral width and the intensity 
double, and for 6; = (2m + I )a ,  they vanish. 

Let us now consider another method for detecting the 
effect-with the help of two sensors and a scheme of de- 
layed coincidences. Let two broadband sensors detect the 
photons in two conjugate directions k, and kb. We assume 
the distances to the z=0  plane along these directions to be 
identical. According to Eq. (2), the probability of register- 
ing the signal photon at the time to and the induced photon 
at the time tb=t,+t is proportional to the Fourier trans- 
form of the function f k =  f(w) defined by Eq. ( 11): 

The function f ( t )  has the sense of the shape of the two- 
photon wave packet, which can be conveniently described 
in terms of a leading wave emitted by one of the detectors 
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FIG. 3. Scheme for forming a two-pulse photon correlation function 
G ( t ) :  the world line of the signal photon that intersects the z=0 plane at 
the fixed time t,=O is depicted by the dashed line. Possible world lines of 
the idler photon, which presumably has a lower velocity, are depicted by 
the solid lines. 

back toward the scattering region, where it is effectively 
reflected and from which it propagates toward the second 
d e t e ~ t o r . ~ , ~ " ~ , ' ~  

Setting n = 2 in Eq. ( 1 1 ), extending the limits of inte- 
gration in expression (23) to infinity, and using expansion 
( 16), we obtain 

Here we have introduced the function Il(x),  equal to 1 for 
0 < x  < 1 and 0 outside this interval. According to Eq. 
(24), the effective field f (t),  whose square determines the 
probability of delayed coincidences, consists of two rectan- 
gular pulses of duration 1 T 1, separated for 1 1 + T'/T 1 > 1 
by some interval (equal to T' for T, T' > 0). Such a shape of 
the biphoton is readily explained (Fig. 3), assuming that 
the photons are emitted in pairs by each cross section of 
the two nonlinear layers with equal probability and prop- 
agate with group velocities u , ~  and uAYb (see Eq. ( 17) ). 

For 1 1 + T'/T 1 < 1, the impulses overlap, which hand- 
ily explains any increase or decrease of the total intensity 
according to Eq. (22). 

The differential probability of delayed coincidences 
(with dimensions of secP2) in the case of broadband de- 

tectors with 100% efficiency and aperture equal to the co- 
herence area is equal to the correlation function for the 
photon fluxes: 

(25) 

[here we have used Eqs. (21) and (24)]. 
If 1 1 +T'/T 1 > 1 holds, then the last term in expression 

(25) is equal to zero, i.e., the pulses overlap (see Fig. 3).  
In this case observation in an isolated run of the difference 
in readout times t belonging, for example, to the interval 
[O,T] allows one to say that the photons were created in the 
first crystal. If t is registered exactly, it is possible to iden- 
tify the z coordinate of pair creation (this, of course, is 
simply the obvious interpretation of the quantum formal- 
ism). 

For the reverse inequality, the pulses of the effective 
field (24) overlap either completely or partially. In this 
case, according to Eq. (25), for 6; = &.n in the overlap 
region G(t) =0, and for 6; = 0, G(t)  is doubled, i.e., beams 
of radiation from two given segments Az, and Az2 of the 
first and second crystals either suppress or amplify each 
other [compare Eq. (22)]. Thus the indeterminacy of the 
region of pair creation leads to a unique sort of interfer- 
ence, exhibited in the way the probability of delayed coin- 
cidences depends on the dispersion properties of the gap. 
Note that these latter properties can be inhomogeneous in 
z, in which case it is necessary to replace 6'=AfZ' by the 
corresponding integral phase (compare the influence of a 
magnetic field inhomogeneity in the Ramsey method1). 

The scheme of coincidences with resolution time much 
greater than the coherence times 1 T 1 and 1 T' I gives a total 
rate of coincidences per unit time equal to 

Comparing with Eq. (12), we find that N,=N, .  This 
equality is in agreement with the obvious picture of pho- 
tons emitted only in pairs and is used for etalon-free cali- 
bration of photodetectors.13"4 

In conclusion, we note that the present effect, like 
other two-photon parametric effects (including even the 
hypothetical two-photon "accelerated" radiation, which 
should be registered by two detectors accelerated in a vac- 
uum in opposite directions9), has a close classical analog, 
differing only in its additional "background." This follows 
from a general phenomenological description of linear 
transformations in quantum optics.4 To realize the corre- 
sponding classical experiment, it is necessary that, in addi- 
tion to the pump beam, intense signal and induced 
"starter" radiation with brightness exceeding that of the 
zero fluctuations of the vacuum fall upon the nonlinear 
crystals. 
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It should be possible to use this effect to measure dis- 
persion and to shape the superluminescence spectrum. 
Note also that a similar kind of interference should also be 
observed in four-wave parametric mixing (see Ref. 3). 
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