
Quantum limit on force measurements 
S. P. Vyatchanin and A. 6. Matsko 

M. K Lomonosou State University, 119899, Moscow, Russia 
(Submitted 19 March 1993) 
Zh. Eksp. Teor. Fiz. 104, 2668-2675 (August 1993) 

During continuous measurements of the coordinate of a test oscillator, the inverse fluctuation 
effect does not impose a lower limit on forces which can be observed: There is no 
standard quantum limit for forces. The error of force measurements decreases with increasing 
pump level. The pump can be in a coherent state; there is no need for a squeezed, 
energetic, or other nonclassical state. Dissipation in a mechanical oscillator (at absolute zero) 
leads to the existence of an optimum power, at which the minimum force is given by a 
quantum Nyquist formula, in which the energy of zero-point fluctuations, fiR/2, is replaced 
by fiR. 

1. INTRODUCTION 

The quantum noise of a displacement sensor is a key 
problem in an interference gravitational-radiation antenna 
(we have the LIGO project in mind) as well as in several 
other fundamental experiments. The sensitivity of the sen- 
sor is determined by the inverse fluctuation effect on the 
object.'-3 In the case of continuous measurements, this fluc- 
tuation effect leads to a standard quantum limit, 
AXsQL= ( ~ 2 m w ~ ) " ~  for an oscillator (m and wM 
are the mass and frequency of the oscillator) and 
AXSQL= ( f i ~ / m ) " ~  for a free mass (T is the observation 
time). The standard quantum limit is reached at an opti- 
mum pump power level. The standard quantum limit is 
believed to also determine a minimum observable force 
(again, during continuous measurements of the coordi- 
nate). 

In the present paper we show that during continuous 
measurements of a coordinate the inverse fluctuation effect 
does not impose a lower limit on forces which can be ob- 
served: There is no standard quantum limit for forces. We 
use the example of a very simple optical sensor. The error 
of force measurements decreases with increasing pump 
level. The pump can be in a coherent state; there is no need 
for a squeezed, energetic, or other nonclassical state. We 
also show that dissipation in a mechanical oscillator (at 
absolute zero) leads to the existence of an optimum power, 
at which the minimum force is governed by a quantum 
Nyquist formula [Eq. (13) below] in which the energy of 
zero-point fluctuations, fiR/2, is replaced by fiR. 

To see how the standard quantum limit is obtained, we 
consider the example of the optical sensor in Fig. 1. The 
displacement X of a mechanical oscillator changes the 
phase of the reflected wave by an amount A# = 2woX/c (mo 
is the average pump frequency; c is the velocity of light). If 
the incident wave is in a coherent state (with an average 
energy fiwdn and a phase uncertainty A$coh= 1 / 2 6 ,  
n s l ) ,  the error of a coordinate measurement is 
AXmeaS~c/(4w0 6 )  - 1/ 6 .  The inverse effect in this case 
reduces to a fluctuation of the radiation-pressure force act- 
ing on the oscillator: FLP- - $. This fluctuation causes 
a coordinate perturbation AXinf = 2 h o  &/cmwM. An op- 

timization of the sum ( h ~ , , ~ ) ~  with respect to 
n then gives us AXsQL at the optimum pump level n = no,, . 

It  would seem that an increase in the pump level 
(n > n,,,) would lead to simply a strong perturbation, 
which would "paint over" the useful signal. However, this 
is not the case. Let us assume that the incident wave is in 
a coherent state and that the fluctuations of the amplitude 
and phase are uncorrelated. The radiation-pressure force is 
proportional to the amplitude, so the amplitude fluctua- 
tions convert into phase fluctuations in the reflected wave: 
An amplitude-phase correlation arises. This result means 
that the reflected wave is in a squeezed state (Fig. 2). The 
very same radiation-pressure mechanism which perturbs 
the oscillator thus leads to a squeezed reflected wave. If the 
external agent acting on the oscillator now corresponds to - - 
a phase shift A#,h of the reflected wave (as shown by the 
dashed lines in Fig. 2), this agent will be observable 
through observation of a squeezed quadrature component 
B+ (not of the phase). The latter can be measured destruc- 
tively in a balanced homodyne arrangement. Detection of 
the squeezed quadrature component allows the instrument 
to "not see" the perturbation which it introduces and to 
detect the external force within an error determined by 

AXmeas. 
The error of force measurements depends on only the 

initial uncertainty of the phase in the incident wave. If the 
pump is in an ultracoherent state (A#gA$coh), the accu- 
racy is better. 

If a disturbance of the initial uncertainties in the coor- 
dinate and momentum of the oscillator is to be avoided, the 
frequency of the external force, WF, must not be equal to 
the resonant frequency of the oscillator: I WF-WM 17% 1 
(for a free mass, WFT) 1 ). 

For the optimum detection of an external force within 
an error below the standard quantum limit, the noise of the 
instrument must be correlated in a special way.3 But this 
requirement means that the pump is in a squeezed, not 
coherent, state.4 In this paper we show that a preliminary 
squeezing is not necessary. 
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FIG. 1. Optical instrument for detecting mechanical displacements. A 
plane electromagnetic wave is incident normally on the surface of an ideal 
plane mirror. The external force changes the mirror coordinate X. This 
change causes a change A4,=2woX/c in the phase of the reflected wave 
(w, is the average pump frequency, and c is the velocity of light). This 
change is to be measured. 

2. ANALYSIS OF A DISPLACEMENT SENSOR 
FIG. 2. If the incident wave is in a coherent state, its fluctuations will be 
described on this phase diagram by a circular spot which is revolving at a 
distance 6 from the center. The dispersions of the quadrature compo- The boundary condition which the incident and nents ( A ~ B , )  and ( A ~ B ~ )  are equal. Because of the ponderomotive non- 

reflected waves is written linearity (the radiation pressure), a phase-amplitude correlation arises in 
the reflected wave. This correlation corresponds to a squeezing of the 
quadrature component Bd;  the circle becomes an ellipse. 

where 2A ( t)  and 2 B ( t)  are the mean complex electric field 
amplitudes, a(w) and b(w) are annihilation operators of, 
respectively, the incident and reflected waves describing 
quantum fluctuations [their commutation relations are 
[ a ( w ) a + ( w ' ) ] = [ b ( w ) b + ( o ' ) ] = S ( w - w ' ) ;  their expecta- 
tion values are (a+(w)a(w)) =b+(w)b(w')) =O], and S 
is the area of the mirror. We assume o,J/c41, and we 
expand the exponential function in a series. In zeroth order 
in the small quantities we then have A(t)  = - B(t).  In first 
order we have 

where X(R)=(2~)-"~J~,~(t)ex~(iRt)dt is the Fou- 
rier transform of X, and W=AA*Sc/2r is the average 
power of the incident wave. For simplicity we set A =A* at 
this point. In taking this approach we are ignoring the 
Doppler effect (radiation friction and parametric fre- 
quency conversion); its incorporation leads to terms 
smaller by a factor of wM/ao than those which are written 
out. 

A mechanical oscillator is subjected to a force 
F = FLp+Fs+ FFL , where FLP is the radiation-pressure 
force, given by 

(below we drop the first term and assume fi+R/wo 
-- 1 ), and Fs is the signal force, which is to be determined. 
We assume 

Fo sin(wFt) for -r/2<t<r/2, 
0 for t<- r /2  and t>r/2.  (4)  

The quantity FFL is the fluctuation force, which is related 
to a damping 6: 

The operators e (R)  and e+(Q)  here describe the heat res- 
ervoir of the mechanical oscillator; their commutation re- 
lation is [e (R)e+(R ' ) ]=S(R-a ' ) ,  and their expectation 
values are (e+(R)e(R1))=6(R-R')nr(Q) ,  nr(Q) 
= (exp(fiQ/kBT) - 1 ) -', where T is the reservoir temper- 
ature, and kB is the Boltzmann constant. 

Substituting (3) and (5)  into the equation for the me- 
chanical oscillator, finding an expression for the Fourier 
harmonic X(R) ,  and substituting this expression into (2), 
we find the following result for the reflected wave: 
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where Z ( R )  = a$- R2- 2iSR. Introducing the quadra- 
ture component in the standard way, 

B@(R) = [b(oo+R)exp(i$) +b'(wo-fl) 

xexp( -i$) I ( 8 )  

[the second quadrature component is B*+ ,,2 ( R I], we find 

BJ1(R) =cos($+ y)e'#[a(wo+R)eiy~- +a+ 

X (wo-R)e-'Yc+] -i sin($+y)ei# 

x [a(wo+R)e'Y(2~+C_) + a + ( ~ ~ - R ) e - ' ~  

where K= 1 Kl +iK2 1, $=arctg(K2/Kl), y =sin $/K, 
C+=(1+2K1)/K, C-=(I-2Kl)/K, and 

Wwo 4Fs(R) 
Bs(R) = - 4- 

f i  mcZ(R) 
sin $. 

Expressions (9) were derived under the condition K)1, 
which corresponds to a strong inverse fluctuation effect. In 
the case $+y=O we have a squeezing of the component 
Bg,(R). 

Expressions (6)-(9) hold under the condition 
n = W r / h o  (< nmax = (mc2wM/h;) (the major axis of 
the ellipse in Fig. 2 is much smaller than the mean ampli- 
tude). 

3. FORCE LIMIT FOR A LOSSLESS MECHANICAL 
OSCILLATOR 

In this case we have S=O, K1 =0, K2=4woW/ 
[mc2(w$- R2)]. 

We assume that the external force has a narrow spec- 
trum: TWF) 1. The observation condition 2 ) Bs(R) 1 AR 
2 ~~(AB$(R)AB,&-R) )AR can thenbe written 

Here n = .rr W/hoAR, An - 2r/r.  We see that the error in 
the measurement of the external force falls off with increas- 
ing pump level n .  The quantity Xs is essentially the same as 
AX,,,. The derivation of (10) ignored the noise due to 
the uncertainty in the initial values of the coordinate and 

FIG. 3. For a mechanical oscillator with dissipation, the fluctuations in 
the reflected wave are described at resonance (ll=o,) by an ellipse. The 
minor semiaxis of this ellipse is equal to the diameter of the circle for the 
incident wave; there is no squeezing. The area of the ellipse is larger than 
that of the circle because of the dissipation. 

momentum of the oscillator. The spectrum of this noise 
occupies a band Aw near the frequency WM, and this noise 
does not affect the measurement error if I uM-wF 1 BAR. 

In the detection of gravitational waves, one is inter- 
ested in detecting a broad-band signal, i.e., in the case 
r=2.rr/uF. If the bulk of the signal spectrum is far from 
resonance (wF> WM; the free-mass case), condition ( 10) 
remains valid, with one reservation: The angle $ depends 
on R, so experimentally it is a more difficult task to dis- 
tinguish the quadrature component 5 B$cn, (R)dR over a 
broad band. 

4. FORCE LIMIT FOR A MECHANICAL OSCILLATOR WITH 
DISSIPATION 

In this case the dispersion of the squeezed component 
is 

We see that at resonance (uM=wF, K2=0, K1 =K) 1, 
sin $=0) the sensitivity drops to zero. In this case there is 
essentially no squeezing (Fig. 3). Far from mechanical 
resonance, under the conditions K2, K1, sin4 =a, we find 
the following expression for the amplitude of the minimum 
detectable force: 
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%3F2m8Af2 
FZo min r [ ( 2 n r +  1) +f ( & + 2 ~ , ) ] .  

(12) 

It can be seen from (12) that there is no monotonic in- 
crease in the sensitivity with increasing pump level. There 
exists an optimum pump level n(2K1 = I ) ,  at which the 
maximum sensitivity is achieved: 

~2 . - o mln - fwr4mSAf2 a [n,+;+f]. (13) 

We see that this is simply the Nyquist formula; the last 1/2 
in the brackets corresponds to the quantum noise of the 
instrument. 

5. CONCLUSION 

In the absence of mechanical dissipation, the sensitiv- 
ity in (10) thus increases with the pump level. We do not 
obtain information on the total mechanical coordinate- 
only on the part of this coordinate which is caused by the 
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external force. The validity of this comment is not re- 
stricted to the detection of external forces. In quantum 
nondemolition measurements of energies on the basis of 
the shift of the dielectric constant of a nonlinear 
d ie le~t r ic ,~ .~  for example, the fluctuation self-effect of the 
test mode again imposes no limit on the sensitivity. 

We are deeply indebted to V. B. Braginskii for suggest- 
ing the problem and for a discussion of the results. 
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