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The circular dichroism of an isotropic medium of chiral molecules, 
Im (n + - n - )/Im (n + + n - ) , decreases like w-2 at frequencies w much higher than Ry but 
much lower than z2Ry and like w-3 at frequencies much higher than Z2Ry, where Z 
is the charge of the nucleus of the atom characterizing the given chiral group. The electron- 
spin contribution to the circular dichroism is found to be finite only in the second 
order of spin-orbit coupling. It is also established that the photoelectron polarization in the 
absorption of unpolarized light is due to the chiral nature of the molecules and amounts 
to a fraction Z2a3 of the degree of geometric asymmetry. 

1. INTRODUCTION 

Molecules and crystals that are mirror reflections of 
each other are called optical isomers. When light travels 
through a medium with an abundance of isomers of defi- 
nite chirality, along with rotation of the polarization plane 
the values of absorption coefficients for left- and right-hand 
polarizations of light differ. This phenomenon is known as 
circular dichroism (CD). This paper studies CD for 
w)Ry, where ~ ~ = m a ~ / 2 = 1 3 . 6  eV is a characteristic 
value for atomic and molecular transitions. 

Our reason for interest in the high-frequency behavior 
of CD is twofold. First, according to many hypotheses 
(see, e.g., Ref. I ) ,  circularly polarized light may be the 
cause of the optical activity (OA) of biological molecules 
and the obvious left-right asymmetry in nature. In the 
ultraviolet range, asymmetric photochemical processes 
leading to OA were discovered in e ~ ~ e r i m e n t s . ~ - ~  Second, 
an interesting question is how correlations in the electron 
spin and momentum in a chiral molecule, which result 
from spin-orbit intera~tion,~,' manifest themselves in ab- 
sorption of light. As is known, the high-frequency behavior 
of OA is determined by this very interacti~n.~ Knowing the 
angle of rotation of the light's polarization plane in the 
frequency range w - ~ - ~ ' ~ a ~ ~  makes it possible to deter- 
mine the distance between the energy levels of optical iso- 
mers caused by the parity-breaking weak interaction be- 
tween an electron and the nucleus.' In view of this it is 
natural to study the spin-orbit contribution to the high- 
frequency asymptotic behavior of CD. 

The refractive index of a medium, n(w), is related to 
the amplitude of forward scattering by a single molecule, 
f (w), via the well-known formula 

where N/V is the concentration of molecules. According 
to the optical theorem, the imaginary part of the refractive 
index is related to the total cross section of absorption of 
light by a single molecule by the following formula: 

27rN N 
Im n(w) =-y-- Im f (w) =- u(w). 

w v 2w v 

CD emerges as a result of the difference in the cross sec- 
tions of absorption of photons with different signs of cir- 
cular polarization A: 

Here is the photon polarization vector and n the unit 
vector defining the direction of light propagation. 

Quantitatively the CD effect is characterized by the 
ratio of the difference between the left- and right-hand po- 
larization cross sections to the cross section independent of 
the photon spin: 

Our aim is to study the behavior of 'q(w) at high frequen- 
cies. As the first step we write (4)  in terms of an amplitude 
ratio. As long as the frequency of the incident light is not 
too high (w < ma) ,  we can take into account only the 
lowest-order multipoles, that is, the first two terms in the 
expression for the matrix element of light absorption: 

Here d=er and p =e(l+a)/2m are, respectively, the op- 
erators of electric and magnetic dipole moments. The E2- 
transition is unimportant because its contribution vanishes 
after averaging over the random orientation of the scat- 
terer. Averaging leads to the following formula for the 
circular dichroism 'q in the transition between the "in" and 
"f' states: 

At frequencies w-Ry the relative CD value is of the 
order of ac. The fine-structure constant emerges from the 
ratio of the M1 and E l  amplitudes, and the factor 'q- lop2 
reflects the extent of geometric asymmetry of the mole- 
cules. 

Further progress requires knowledge of the electron 
wave functions in chiral molecules. 
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2. ELECTRON WAVE FUNCTIONS IN A CHIRAL MOLECULE 

Let us consider an external electron moving in the field 
V of several fixed centers located at points r,: 

For optical isomerism to occur, the molecules must have at 
least four centers: N>4. If the characteristic charges Z of 
the nuclei of the atoms comprising the chiral group are 
moderate, z2a2 4 1, the spin-orbit interaction 

can be considered a small perturbation. To lowest order in 
a this interaction can be ignored. It is convenient to assign 
the origin of coordinates to one of the centers, 

and use the set of eigenfunctions corresponding to the mo- 
tion in the field U(r). The distortion of spherical symmetry 
by the potentials Va is taken into account perturbatively. 
To be specific we put N = 4  and Va(lr - ra l )  = 
- a G f f [ r  -ra1-l. 

It is clear from the start that there can be no degener- 
acy in the potential (9) and that the wave functions are 
real and have no definite parity. Let us first consider two 
energy levels El, and E2, corresponding to different s-states 
with wave functions s l(r)  and s2(r) in U(r) .  Here and in 
what follows the angular-dependence normalization con- 
stant (4n)-'" is discarded, with all integrations over an- 
gles in matrix elements interpreted as averages. The dipole 
part of the potential V, 

leads to mixing of p-states into the initial s-states. For our 
purposes it is sufficient to consider the admixture of two 
p-waves with different radial dependences p1 ( r )  and p2(r) 
to the lower level and one of them (the closest) to the 
upper: 

The three vectors A, B, and C are determined by the mol- 
ecule geometry. Using perturbation theory, we can write 
them as follows: 

The calculation of the El-M1 interference (12) in the 
transition between the wave functions is elementary: 

Im(i l l l f)(f  lrli)  

Here the pt stand for the dimensionless quantities inside 
the square brackets in ( 12). As expected, the effect is pro- 
portional to nl . (n2Xn3) and vanishes if the molecule is 
flat. Note that the nontrivial dependence 
Ka(r) = O(ra- r ) r / e +  8(r-  ra)ra/2 in the formula for the 
dipole part of the perturbation is mandatory for optical 
activity to manifest itself in the transition between the wave 
functions ( 1.1 ). Indeed, the fact that we employ Vdip in the 
form 

leads to a situation in which all three vectors A, B, and C 
are parallel and A . (B X C) =O. 

On the ordinary physical scale .Z2a2& 1 the above 
model of a chiral molecule closely resembles that devel- 
oped in Refs. 9 and 10. The constructed wave functions 
prove useful in analyzing the high-frequency behavior of 
rl(w). 

3. THE ASYMPTOTIC FORMS OF q(w) 

When w>Ry, the final state of an electron lies deep 
within the continuous spectrum. The electron's energy 
Ef= Ei+ w = k2/2m is close to w.  This imposes the follow- 
ing restriction on the photoelectron's velocity: 

This condition ensures the validity of the Born approxima- 
tion, making it possible to consider the potential energy V 
in the final state a small perturbation. In the leading order 
this approximation yields the following asymptotic for- 
mula for a+ +a- (see, e.g., Ref. 11 ): 
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Here ZeR depends on the subshell from which ionization 
proceeds. 

Now the matrix elements of the E l  and M1 transitions 
are integrals of a rapidly oscillating (on the atomic scale 
l /ma) function qf - elk", which implies that the leading 
contribution to the asymptotic behavior is provided by the 
lowest multipole components of the wave function qin . The 
plane wave in the final state results in the orthogonality of 
the E l  and M1 transitions and, hence, the disappearance of 
optical activity. A finite effect emerges if we allow for the 
admixtures to the final-state wave function caused by the 
potential Vdip distorting the spherical symmetry. This 
means that at high frequencies the CD cross section proves 
to be suppressed, in comparison to the ordinary photoelec- 
tric cross section, by additional powers of the Born param- 
eter a / v  = JRy/w. Since all the radial integrals build up 
at distances r of order l/k, the use of Vdip in the form ( 14) 
is justified. 

Let us choose the initial-state wave function in the 
form (1 1). In calculating the M1 transition, the orbital 
angular momentum operator selects the p-wave admixtures 
with the same radial functions p, ( r )  and p2(r) in the final 
state. All the other admixtures to the final-state wave func- 
tion yield only small corrections to the E l  transition and 
can be discarded. Bearing this in mind, we get 

Over distances r of order l/ma the wave function sk(r) 
closely resembles the s-wave free-motion radial function 
sin( kr)/r. Then the calculation of the El-M 1 interference 
in the transition between the wave functions ( 1 1 ) and ( 17) 
poses no serious difficulties: 

1 
=- (AX B) . D p2~k?dr Jom 9 

Allowing for the fact that ID I is of the order of a(ma12, 
we arrive at the following estimate for ~ ( w ) :  

Here pk(r )  is a radial p-wave function whose asymptotic 
behavior coincides with that of the free-motion wave func- 
tion. Generally, calculating the ratio of the radial integrals 
in (19) requires knowing the shape of U(r) and the wave 
functions p, ,  p2, and s,. In the limiting case of w$Z2Ry, 
the final-state wave functions can be assumed to be rapidly 

oscillating everywhere, even at very small distances r< l/ 
Zma. Then the ratio of radial integrals is determined by 
the behavior of the wave functions p l  ( r ) ,  p2(r) ,  and s, ( r )  
at zero argument and can be calculated completely: 

Bearing this in mind, we arrive at the following estimate 
for the asymptotic behavior of the El-M1 interference 
normalized to the square of the E l  amplitude: 

Ry const, Rygw<z2Ry, 

'(w) mag(,) (z2Ry/W, U > Z ~ R ~ .  
(21) 

Note that (a, - a- ) / ( a+  +a- ) for w $ z2Ry is Z2 times 
smaller than the respective expression in (21) since in this 
case the photon-spin independent cross section is deter- 
mined by ionization of the inner electron shell and contains 
an additional factor Z2. 

4. CIRCULAR DlCHROlSM AND SPIN-ORBIT INTERACTION 

The rapid decay of CD as the frequency increases sug- 
gests that a smoother behavior is caused by effects ignored 
in our analysis. Below we consider the contribution to the 
CD asymptotics originating in the electron spin. 

In the zeroth order in the spin-orbit interaction the 
spin and coordinate parts of the wave functions are factor- 
ized for any state I i,o) of an electron in a chiral molecule: 

where x is a bispinor. All levels in the discrete spectrum 
are two-fold degenerate. According to the Kramers theo- 
rem, this degeneracy remains even after spin-orbit interac- 
tion is allowed for in any perturbation order. The first 
order mixes the initial state I in,a) with arbitrary interme- 
diate states I n,ol): 

Summation over a' is done via the completeness relation, 
after which we can use (8) to transform (23) to 

Now we can write the contribution of the spin part of the 
M 1 transition to the El-M 1 interference. Since a performs 
transitions between initial states of type (22) only with the 
same spatial dependence, 

when we calculate the electron-spin contribution to the 
optical activity of the transition the sum over intermediate 
states disappears to first order in the spin-orbit interaction: 
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Here we have introduced the notation L = p x V V ( r ) .  
Since the direction of the electron spin in a chiral molecule 
is not fixed, we must average over these directions after 
which ( 2 6 )  vanishes. Thus, it is not sufficient to allow for 
the spin-orbit interaction in first-order perturbation the- 
ory. This conclusion agrees with the fact that the spin- 
orbit interaction contributes to the high-frequency asymp- 
totic behavior of the real part of the amplitude of optically 
active scattering only in second-order perturbation theory.' 

Allowing for relativistic corrections to the optical ac- 
tivity of a transition in second-order perturbation theory 
requires careful consideration. There are several sources of 
such corrections. It can be shown, however, that consider- 
able Z-buildup emerges only because of corrections related 
to additions to the electron wave function caused by the 
spin-orbit perturbation and is not contained in the contri- 
butions related to current modifications, the higher-order 
terms in the multipole expansion, etc. 

Allowing for corrections to the wave function in 
second-order perturbation theory in conjunction with dou- 
ble counting of first-order corrections leads to the follow- 
ing expression for the electron-spin contribution to the op- 
tical activity of the transition: 

Here 
At w 
mate 

averaging is performed over the initial-spin direction. 
-Ry the following appears to be a reasonable esti- 
of the magnitude of the effect: 

Considerable Z-buildup emerges because of the singular 
behavior of the operator 

at zero, that is, because of the first term in ( 2 9 ) .  
With the frequency of the incident light increasing, the 

expression ( 2 7 )  is nonzero even if no allowance is made for 
the effect on the final state of the distortion of the spherical 
symmetry of the potential. Here the main contribution to 
the sum over the intermediate states n is provided by the 
levels for which this potential is one hundred percent im- 

portant. In other words, Ein-Ek-Ry and Ef -Ek-w. 
Then we can ignore the last term in ( 2 7 ) ,  which results in 

We limit our discussion to an estimate of this expression in 
the frequency range R ~ ( W ( Z ~  Ry. Here the matrix ele- 
ments of the spin-orbit interaction build up at small dis- 
tances of order (Zam)-', are independent of the photo- 
electron velocity, and in order of magnitude are given by 
the following expression: 

( V,,) -z2a2 Ry. ( 3 1 )  

Thus, estimating the high-frequency behavior of ( 3 0 )  nor- 
malized to the square of the El amplitude, we get 

5. PHOTOELECTRON POLARIZATION 

The intramolecular spin-orbit interaction results in a 
new interesting effect related to photoelectron polarization. 

Let us consider ionization of chiral molecules by un- 
polarized light. The probabilities of finding an electron in 
the final state with its spin directed along or counter to the 
direction of light propagation prove to differ. Such effects 
associated with the passage of electrons through optically 
active media were discussed earlier in Ref. 12. 

The density matrix of the final electrons polarized 
along n  has the form 

The effect under discussion is characterized by the quantity 

Here W ( n )  is the probability of finding the photoelectron 
spin directed along n. 

The probabilities in ( 3 4 )  are proportional to the 
square of sum ( 5 )  averaged over the polarization of the 
absorbed photon and the random position of the molecule, 
with allowance made for the density matrix pf :  

Here the u-matrix arose from pf .  For 5 to be finite we 
must allow for the effect of spin-orbit interaction on the 
electron state in the chiral molecule. Now the first-order 
perturbation theory ( 2 4 )  proves sufficient. The final for- 
mula for the asymmetry of polarization is 
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In the frequency range o-Ry, where the photoelec- 
tron velocity is of the order of a ,  the ratio is given in 
order of magnitude by the following expression: 

This result is smaller by a than the estimate made in Ref. 
12 of the helicity acquired by slow electrons (v-a) in 
their passage through a medium of molecules of definite 
chirality. 

6. DISCUSSION AND CONCLUSIONS 

In this paper we arrived at (21) because we used a 
model of chiral molecules in which the potential distorting 
the spherical symmetry was taken into account by pertur- 
bation techniques. It is clear, however, that qualitatively 
the result will be the same if we step outside the scope of 
this approximation. Indeed, the condition for perturbation 
theory to be applicable in deriving the wave functions ( 11 ) 
is only that I A 1 ,  I B I, and I C I be much less than unity. 
Nowhere in our further discussion have we employed this 
fact. 

Let us now discuss the contributions to the asymptotic 
behavior provided by the multipole components of the 
wave functions of higher order than the s- and 
p-components, which were ignored in ( 11 ) . For W )  Ry 
the asymptotic form is determined by the behavior of the 
wave functions at zero, with the result that the contribu- 
tions are suppressed in comparison to the s-p effect owing 
to the additional powers of Ry/w. In the frequency range 
R ~ ( ~ ( z ~  Ry, the higher-order multipole components of 
the wave function can, apparently, provide contributions to 
the CD that are similar in their frequency behavior. In our 
discussion we ignore these contributions because they pos- 
sess a different and more complicated geometric structure 
than nl . (n, x n,) and a priori have a smaller geometric 
factor {. 

For organic molecules the characteristic charges Z of 
the nuclei of atoms comprising a chiral group lie in range 
6-8. Hence, the frequency at which q(w) begins to behave 
like o-3 is below the limit of applicability of the multipole 
expansion used to obtain (2 1 ) . Here the spin-orbit contri- 
butions to CD are negligible. These effects may prove im- 
portant and lead to a smoother frequency behavior in chi- 

ral compounds containing elements with higher values of 
Z. Comparison of (21) and (32) shows that the spin 
contribution to CD becomes important when 
o> ( Z a )  -'I3 Ry. This frequency satisfies the condition 
w(ma for Z >  22. In exotic compounds with very heavy 
elements in the chiral group the spin-orbit interaction can- 
not be considered small in comparison to the effect of the 
surrounding atoms. In this situation it is clear that sepa- 
rating the contribution to the asymptotic behavior of CD 
into the spin contribution and the "ordinary" is clearly 
unjustified. 

The effect of the emission electrons acquiring polariza- 
tions parallel or antiparallel to the direction in which the 
incident light propagates is interesting because it can serve 
as the measure of spin-momentum correlations inside chi- 
ral molecules. Here the spin-orbit interaction is present in 
first-order perturbation theory, which gives some hope that 
the asymmetry of polarization will be discovered in exper- 
iments. For compounds containing heavy atoms the effect 
being discussed can amount to one part in a hundred from 
the extent of the geometric asymmetry of a molecule. 
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Translated by Eugene Yankovsky 

This article was translated in Russia, and it is reproduced here the way it 
was submitted by the translator, except for the stylistic changes by the 
Translation Editor. 
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