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A theory is derived for the anisotropic collisional relaxation of the polarization moments of 
excited atoms in gases and for the numerous polarization effects accompanying this 
relaxation during excitation by monochromatic laser light. The anisotropy of the distribution 
function of the relative velocities of the atoms excited by the laser and of the atoms of 
the surrounding gas mixture is analyzed as a function of the laser frequency and the masses 
of the particles. Expressions are derived for the rate constants of the anisotropic 
collisional relaxation of atomic polarization moments in terms of dynamic multipole moments 
of the velocity distribution function and also in terms of the rate constants of the 
extremely anisotropic relaxation in oppositely directed monoenergetic beams. Selection rules 
are found which determine whether dynamic multipole moments of the distribution 
function participate in a collisional mutual conversion of polarization moments of different 
ranks. The dynamic quadrupole moment of this function is shown to play a governing 
role. It is responsible for the most characteristic processes in the anisotropic collisional 
relaxation. The condition for a transition from anisotropic relaxation to quasi- 
isotropic relaxation is found. This condition depends on the laser frequency. Calculations are 
carried out on the collisional conversion of the alignment of atomic angular momenta 
into their orientation for the particular case of the 2p4(3p(3/2),) state of the neon atom and 
on the onset of an alignment from the level populations for the 3p 2 ~ 3 / 2  state of the 
sodium atom. The effect of the alignment of the atomic states and that of the laser frequency 
on the collisional transfer of populations between atomic levels are studied for the case 
of the hyperfine levels of the 3 ~ ,  state of the cadmium atom. Transient anisotropic collisional 
relaxation processes which occur after the excitation of the atoms by the laser pulse 
lead to beats in the light polarization signals. This polarization beat signal is calculated for 
the 4p ,P3/, state of potassium atoms. Methods for regulating the extent of anisotropy 
of the relaxation of the polarization moments during laser excitation are discussed. 

1. INTRODUCTION 

The polarization of the light emitted by excited atoms 
is determined by the ordering of the angular momenta of 
the electron clouds of the atoms. The polarization mo- 
ments p:, which are irreducible spherical tensor compo- 
nents of the density matrix a,,, of the ensemble of excited 

atoms serve as qualitative and also quantitative character- 
istics of this ordering. Their ranks K take on integer values 
from 0 to W, where J is the quantum number of the angu- 
lar momentum of the given atomic state; their projections 
onto the quantization axis (q)  take on values from - K  to 
+K.  D'yakonov, Perel', and ~ m o n t l - ~  were the first inves- 
tigators to reach a clear understanding that the description 
of all possible types of order of the atomic angular mo- 
menta reduces to the specification of polarization moments 
and that the polarization of the emitted light (linear, cir- 
cular, or, in general, elliptical) is determined completely by 
these polarization moments. It follows from the selection 
rules for dipole radiation that the linear polarization of the 
light is determined by five independent components of the 
second-rank polarization moment p: (also called the align- 
ment tensor), while the circular polarization is determined 

by three independent components of the first-rank polar- 
ization moment p i  (the orientation vector). 

Atomic collisions alter the states of the excited atoms. 
In particular, the ordering of their angular momenta 
changes. These changes lead to collisional relaxation of the 
polarization moments and thus to a change in the light 
polarization observed experimentally. This fact underlies 
polarization-spectroscopy methods for studying the effect 
of collisions on the internal state of atomic particles. These 
methods, combined with quantum collisions theory, con- 
stitute a rapidly developing branch of modern optics. The 
work in this field is reviewed in Refs. 4-7. 

Starting with the fundamental studies by Perel', D'ya- 
konov, and ~ m o n t , ' - ~  research on the effect of collisions on 
the ordering of atomic angular momenta and on the polar- 
ization of light has been carried out for the case of random 
collisions, in the course of which the directions of the par- 
ticle collisions are distributed at random (isotropically ). In 
this isotropic case, the resultant effect of collisions on the 
density matrix of the excited atoms is spherically symmet- 
ric, and all the polarization moments p i  decay indepen- 
dently, with rate constants which depend on their ranks K 

but not on their projections q. This circumstance leads in 
particular to differences in the rates of collisional disrup- 
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tion of the alignment and orientation, i.e., of the linear and 
circular polarizations of the light.2,3 

The mechanism for the collisional relaxation of the 
ordering of the angular momenta of excited atoms becomes 
considerably more complicated in the anisotropic case, in 
which the velocity distribution of the colliding particles has 
a special direction. This circumstance was first pointed out 
in papers by one of the present authorsgy9 and, indepen- 
dently, by ~ombardi." The anisotropic collisional relax- 
ation has a number of interesting features, which distin- 
guish substantially from isotropic relaxation. While 
isotropic relaxation simply leads to collisional disruption of 
all types of order of the atomic angular momenta and sup- 
presses the associated polarizations of the light, anisotropic 
relaxation also has a constructive effect, which creates or- 
der. It leads to mutual conversions of the various types of 
order and to the appearance of new types of order of 
atomic angular momenta. In a sense, anisotropic collisional 
relaxation transfers anisotropy from the particle velocity 
distribution to the angular-momentum distribution of the 
electron clouds of the particles.'1 

Distinctive features of anisotropic collisional relax- 
ation follow from simple but rigorous symmetry consider- 
ations. As has already been mentioned, the ordering of the 
angular momenta of the electron clouds of the atoms is 
determined by the polarization moments, which are found 
by expanding the density matrix of the ensemble of atoms, 
crmml, in terms of irreducible representations of the 3 0  
rotation group: 

The square brackets denote the Clebsch-Gordan 
coefficients,12 and m and ml are the magnetic quantum 
numbers of atoms in an electronic state with an angular 
momentum J.  

For isotropic collisions, all particle-collision direction 
are equiprobable, so the net effect of collisions on the den- 
sity matrix of the ensemble of atoms has spherical symme- 
try. Isotropic collisions thus alter neither the rank K nor 
the projection q of the polarization moment. All the polar- 
ization moments decay under the influence of these colli- 
sions in accordance with simple single-exponential laws 
determined by the differential equations 

The constants of the isotropic collisional relaxation, f ,  
which appear in these equations are positive. They depend 
on the rank K of the polarization moment, but not on its 
projection q. It can also be seen from (2) that under iso- 
tropic conditions there is no collisional mutual conversion 
of the polarization moments of different ranks K (or with 
different projections onto the quantization axis, q).  

Under anisotropic conditions, the resultant effect of 
collisions on the ensemble of atoms does not have spherical 
symmetry; it has only axial symmetry, with respect to the 
special spatial direction along which the collisions of par- 

ticles occur most frequently (or most rarely). Accordingly, 
the collisional relaxation of the polarization moments is 
currently classified in terms of irreducible representations 
of the C, ,  group, which contains rotations through arbi- 
trary angles around the anisotropy axis and mirror reflec- 
tions in planes passing through this axis. As a result, the 
anisotropic collisional relaxation of the polarization mo- 
ments of the ensemble of excited atoms of species A in a 
gaseous medium of atoms of species B is described by the 
equations 

Here n, is the number density of the atoms of gas B. The 
matrix of rate constants of the anisotropic collisional re- 
laxation, (vu;l), on the right side of this equation is diag- 
onal with respect to the projections q of the polarization 
moments, but not with respect to their ranks K and K ~ .  

Anisotropic collisions thus "mix" the polarization mo- 
ments of different ranks but conserve their projections onto 
the anisotropy axis. A more detailed examination of the 
symmetry properties shows that if the projections of the 
polarization moments onto the anisotropic axis are non- 
zero (if q#O) collisional mutual conversion of the polar- 
ization moments of arbitrary ranks K and K~ occurs. If these 
projections are instead zero (q=O), only those moments 
whose ranks K and K~ have the same parity undergo mutual 
conversion. 

The picture of the polarization-moment relaxation of 
the ensemble of atoms is thus rendered more complicated 
by anisotropic collisions. This added complexity leads to 
an entire new class of polarization effects, which are im- 
possible in principle under isotropic conditions. Among 
them are collisional conversion of alignment into orienta- 
tion, accompanied by a transition from linear polarization 
of the light to circular polarization;8-10"3-22 collisional gen- 
eration of a longitudinal component pi of the alignment of 
the atomic angular momenta along the anisotropy axis and 
the appearance of a corresponding linear polarization of 
the light;23-32 the appearance of a dependence of the rate of 
the collisional depolarization of the light on the direction 
of the polarization vector with respect to the anisotropy 
a ~ i s ; ~ ~ - ~ ~  the important effect of light polarization on the 
probabilities for collisional transitions between atomic 
levels;3M5 and transient polarization-beat processes due to 
the joint collisional relaxation of polarization moments of 
various ranks.4M9 

We thus see that the anisotropic collisional relaxation 
of the order of the angular momenta of the excited atoms 
is characterized by diverse processes of mutual conversion 
and generation of polarization moments and that it is ac- 
companied by a rich variety of interesting polarization- 
spectroscopy effects. 

One of the most promising methods for experimentally 
studying such effects is to use monochromatic laser light.4 
The laser light plays two roles in this process: While excit- 
ing the atoms of interest, it also performs a selection of 
these atoms in terms of their velocity along the laser beam. 
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Tuning the laser frequency within the Doppler profile of 
the spectral line makes it possible to create an ensemble of 
excited atoms with an adjustable velocity-distribution an- 
isotropy in this case. It thus becomes possible to carry out 
a detailed study of the various processes which occur in the 
course of anisotropic collisions. 

In this paper we are interested in the anisotropic col- 
lisional relaxation of states of excited atoms in gases and in 
the polarization effects accompanying this relaxation under 
conditions of monochromatic laser excitation. In the first 
few sections of this paper we present a theory of aniso- 
tropic relaxation. We then apply it to the most character- 
istic polarization-spectroscopy manifestations of changes 
in the order of atomic angular momenta due to anisotropic 
collisions. 

2. VELOCITY DISTRIBUTION OF COLLIDING PARTICLES 
DURING LASER EXCITATION 

We consider a gaseous mixture of atoms of two species, 
A and B with masses MA and MB, at a temperature T. The 
number density of the A atoms is low in comparison with 
that of the B atoms: nA(nB. We assume that the velocities 
of the B atoms and of the unexcited A atoms have Max- 
wellian distributions. We assume that a monochromatic 
laser beam of frequency v, directed along the z axis, excites 
the A atoms within the Doppler profile of some spectral 
line, which is centered at the frequency vo. The laser light 
is then absorbed exclusively by those A atoms for which 
the z projection of the velocity is 

and depends on the detuning of the laser frequency v from 
the center of the Doppler profile, vo. As a result of the 
absorption of the light, an ensemble of excited A atoms 
with a strictly fixed z velocity component arises. The ve- 
locity distribution of this ensemble is 

MA MA 
~(vA)=- -  2 r k T  exp I --($,+v~,,) 2kT Ib(uh-uo). 

By virtue of the condition nA(nB, the relaxation of the 
states of the excited A atoms is determined by their colli- 
sions with atoms of the background gas B. It follows from 
the Maxwellian velocity distribution of the B atoms and 
from distribution (5) for the velocities of the excited A 
atoms that the distribution of their relative velocities 
v = VB - VA is described by 

This distribution is Maxwellian [corresponding to particles 
with masses equal to the reduced mass of the A and B 
atoms, i.e., MAMB/(MA + M,)] in directions perpendicu- 
lar to the laser beam. Along the beam, this distribution is a 

Maxwellian distribution shifted along the z axis in velocity 
space to the point vx=vy=O, v,=vo, for particles with 
masses MB. The distribution function (6) is determined 
entirely by specifying the three quantities vo, kT/MA, and 
kT/MB. The last of these can conveniently be replaced by 
the two dimensionless parameters14 

The velocity distribution ( 6 )  can then be written 

This distribution has a constant value on the surfaces 

2 
2 2 ( ~ z - ~ o )  

vx+vy+ = const. 
1-17 

In the space of the relative velocity v, these surfaces are 
ellipsoids of revolution, similar to each other, with a com- 
mon center at the point v,= vy=O, v,= vO. These ellipsoids 
are oblate along the z axis and have a minor-to-major semi- 
axis ratio 

In the limit of an "infinitely light" impurity gas 
B (MB(MA), the parameter 17 tends toward zero, and the 
ellipsoids in (9)  become spheres. At the same time, the 
coefficients of the expression in square brackets in the ex- 
ponential function in (8)  tend toward zero. The meaning is 
that anisotropic velocity distribution (8)  tends toward an 
isotropic (and infinitely diffuse) Maxwellian distribution 
in this limiting case. For 1720, i.e., for nonzero masses of 
the A and B particles, the velocity distribution in (8)  is 
always anisotropic, and the deviation of the ellipsoids in 
(9)  from spheres increases with increasing 17, i.e., with 
increasing mass ratio MB/MA. In the limit of an "infinitely 
heavy" background gas B(MB>MA), the parameter 17 
tends toward one, and ellipsoids (9)  become thin disks 
whose planes are perpendicular to the laser beam. For ar- 
bitrary values of the masses of the A and B particles, the 
common center of all the ellipsoids in (9) can be adjusted 
by tuning the laser frequency, which determines vo in ac- 
cordance with (4).  

Figure 1 shows intersections of the ellipsoids of con- 
stant values of the velocity distribution function as deter- 
mined by (9)  and the xz plane for certain characteristic 
values of 17 and vO. A common characteristic of the anisot- 
ropy of the velocity distribution can be found by compar- 
ing the mean square velocities along the coordinate axes 
calculated with the help of this distribution. For distribu- 
tion (8) ,  these mean square velocities are 
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a 
FIG. 1. Contour surfaces of the distribution func- 
tion of the relative velocities of laser-excited atoms 
A and background-gas atoms B. a: Zero detuning 

-. . of the laser frequency and "infinitely light" back- 
ground gas (Av=O,  M B ( M A ) .  The distribution 
of relative velocities is isotropic and "infinitely dif- 
fuse." b: Nonzero detuning of the laser frequency 
and "infinitely light" background gas ( A v f O ,  
M,(M,) .  The distribution of relative velocities is 

C an isotropic, "infinitely diffuse" distribution 
shifted along the z axis. c: Zero detuning of the 
laser frequency and finite masses of the A and B 
particles ( Av=O, M, /MA= 2 . 5 ) .  d: Nonzero de- 
tuning of the laser frequency and finite masses of 

-\ the particles ( A v f O ,  M , / M A = 2 . 5 ) .  e: Nonzero 
detuning of the laser frequency and "infinitely 
light" test gas A ( A v f  0 ,  M B > M A ) .  All the vec- 
tor relative velocities of the A and B particles have 

I I the same z component, equal to u,. 

We take the degree of anisotropy of the distribution func- 
tion to be the difference between the mean square values of 
the relative velocities of the A and B particles along the 
laser beam and in a direction transverse to this beam, di- 
vided by the mean square value of their total relative ve- 
locity: 

The degree of anisotropy lies in the interval -0.5<y< + 1. 
It  reaches its lower limit with [=0 and q =  1 and its upper 
limit when, for an arbitrary nonzero 7, the value of f goes 
offto *m.  

It can be seen from (12) that the degree of anisotropy 
increases monotonically with increasing absolute value of 
the parameter f [and of the detuning of the laser frequency 
from the center of the Doppler profile, which is related to 
the parameter < by Eqs. (4) and (7)]. At the points 
= .t = 0.71, it crosses zero and tends toward one on 
the far wings of the Doppler profile (at f= .t a ) .  The 
points f = *0.71 can be called "quasi-isotropy points."50 
At these points, which are separated from the center of the 
Doppler line by a distance equal to .t 84% of the half- 
width of the Doppler profile, the mean square relative ve- 
locities of the A and B particles are identical along all three 
coordinate axes, and distribution (8)  is in a sense reminis- 
cent of an isotropic velocity distribution. Near the quasi- 
isotropy points, the anisotropic nature of the collisional 
relaxation is muted; in particular, the collisional mutual 
conversion of the polarization moments of different ranks 
disappears. When the absolute value of [ is less than (or, 
correspondingly, greater than ) 0.7 1, collisions of excited A 
atoms with B particles in directions perpendicular to (or, 
correspondingly, parallel to) the laser beam are predomi- 
nant. The degree of anisotropy of the relaxation can thus 
be adjusted easily by varying the laser frequency; it in- 
creases as the laser frequency deviates in either direction 
from the quasi-isotropy points. 

Yet another useful result follows from ( 12): We see 
from this formula that the absolute value of the degree of 

anisotropy y increases monotonically with increasing value 
of the parameter 7, i.e., the mass ratio M B / M A .  Accord- 
ingly, the best way to impose anisotropy on the distribution 
of relative velocities of the colliding particles and to create 
conditions for anisotropic collisional relaxation is to use a 
heavy background gas B-a heavy inert gas or chemically 
stable polyatomic molecules. 

3. RATE CONSTANTS OF THE ANISOTROPIC COLLlSlONAL 
RELAXATION OF ATOMIC POLARIZATION MOMENTS 
DURING LASER EXCITATION 

Since the z axis (the direction of the laser beam) is the 
anisotropy axis of velocity distribution (8),  the collisional 
relaxation of the polarization moments of the excited A 
atoms is described by the differential equations ( 3 ) .  These 
equations have collisional-relaxation rate constants 
(vD;') which are not only diagonal but also off-diagonal in 
terms of the ranks K and K ,  of the polarization moments. 
We turn now to a calculation of these rate constants. 

We first consider the extremely anisotropic case of col- 
lisions of atoms A and B in oppositely directed monoener- 
getic beams, in the course of which their relative velocity 
has a strictly fixed value v and is directed parallel to the z 
axis. In this case the effective cross sections for collisional 
relaxation, D;'(v), of the polarization moments can be 
calculated directly by solving, by the impact-parameter 
method, the system of differential equations describing the 
change in the state of excited atom A in the course of a 
collision with a particle B. We have carried out corre- 
sponding numerical calculations for the case of rectilinear 
particle trajectories, for a power-law splitting of a degen- 
erate energy level of an A atom with an angular momen- 
tum J in the field of an incident particle B, at a distance R: 

The square brackets denote the greatest integer, and m is 
the projection of the angular momentum of the A atom 
onto the A-B direction. If the A and B particles are neu- 
tral, we have n=6, and the value of AC is determined by 
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their dispersive interaction. In the case of a collision of an 
A particle with a B ion we have n=3, and AC is deter- 
mined by the orientational energy of the quadrupole mo- 
ment of the A atom in the electric field of this ion. 

For both interaction laws (n =6 and n = 3), and for 
angular momenta J= 1, 3/2, and 2 of the excited A atom, 
we integrated the system of differential equations numeri- 
cally by the impact-parameter method. We used a large 
number (500) of individual particle trajectories differing in 
impact parameter. For each trajectory we then constructed 
a bilinear combination of scattering matrix elements which 
determines the contribution of the given individual colli- 
sion to the increments in the polarization moments of the 
A atom. We then averaged the results over the impact 
parameter. The values found for the effective cross sections 
uKK1 through these calculations for the anisotropic colli- 

9 
sional relaxation of the polarization moments are tabulated 
in Ref. 41. They can be described by 

where a:' are dimensionless numbers, and the additional 
factor I AC/fiv 1 2/("-1) has the dimensionality of a square 
length. The effective cross sections in (14) are power-law 
functions of the relative velocity of the colliding particles, 
v. The rate constants for the collisional relaxation of the 
polarization moments in this extremely anisotropic case of 
monoenergetic collisions along the z axis are 

To find the rate constants (vu?) for the relaxation of 
the polarization moments in the case of a real, partially 
anisotropic velocity distribution (8), we imagine the colli- 
sional relaxation to be a superposition of an infinite number 
of extremely anisotropic relaxations corresponding to mo- 
noenergetic collisions with velocities v along all possible 
directions, weighted by F ( v ) .  As a result we find the fol- 
lowing expression for the rate constants of interest in Eqs. 
(3): 

x S ( v ) u T  ( u )  u3 sin BdBdqd~), (16) 

where the D are the Wigner functions. The polar angle 8 is 
reckoned from the anisotropy axis (from the laser beam). 
Substituting ( 15) into ( 16) and integrating over the angle 
I), we find 

X U : ~ ( U ) U ~ + ( ~ - ~ ) / ( ~ - ' ) ~ U  sin 8dOdp. 
(17) 

The matrix of coefficients a:' in (14) has several useful 
symmetry In particular, it follows from the 
symmetry of the collision with respect to the plane con- 
taining the vector relative velocity that we have 

Making use of the symmetry properties of the Clebsch- 
Gordan coefficients, we then conclude that only terms with 
even values of I are retained in the sum (17). 

Taking its axial symmetry into account, we see that the 
velocity distribution in (8) has the following expansion in 
Legendre polynomials: 

The coefficients of this expansion are 

Substituting (19) into (17), and integrating over angles, 
we find the following expressions for the rate constants for 
the relaxation of the polarization moments under real con- 
ditions, with partially anisotropic collisions: 

4. DYNAMIC MULTIPOLE MOMENTS OF THE VELOCITY 
DISTRIBUTION 

The result derived in the preceding section of this pa- 
per for the rate constants for anisotropic collisional relax- 
ation can be written in a more compact form. To do this, 
we introduce dimensionless quantities, "dynamic multipole 
moments" of the distribution function of the relative ve- 
locities of the colliding particles: 

These dynamic multipole moments are (within a constant 
factor) integrals of even coefficients (20) in the expansion 
of the velocity distribution, calculated with a weight 
where 

c=(n-3)/(n-1) (23) 

is determined by dynamic law ( 13) for the splitting of the 
degenerate energy level of excited A atom in the field of 
particle B. 

Substituting the explicit expression for velocity distri- 
bution (8) into (20), and then substituting the result into 
(22), we find 
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We see that the dynamic multipole moments of the velocity 
distribution depend on the exponent ( [see (23)] in the law 
describing the interaction of the colliding particles; they 
also depend on the detuning of the laser frequency and the 
temperature and masses of the particles, through the pa- 
rameters f and 17 in (7).  

The integrals in (24) cannot be evaluated in closed 
form, but they can be represented by rapidly converging 
series containing the gamma function and the incomplete 
gamma function. We then find the following formula for 
the dynamic multipole moments of the distribution func- 
tion: 

Using (22), we can put expression (21 ), for the rate con- 
stants for the collisional relaxation of the polarization mo- 
ments, in the following form: 

The coefficient of the summation, 

has the dimensionality of a rate constant (cmP3 . s-I). The 
value of this coefficient is determined by the splitting of the 
given level of the A atom in the field of the B particle [see 
(13)], by the reduced mass of the A and B particles, and by 
the temperature. 

Expression (26), along with Eqs. (3) ,  constitutes the 
law of the anisotropic collisional relaxation of the atomic 
polarization moments for the case of monochromatic laser 
excitation. In addition to the Clebsch-Gordan coefficients, 
which describe the kinematics of the summation of the 
angular momenta, this law includes the coefficients a;l, 
which determine the effective cross sections for collisional 
relaxation in the extremely anisotropic monoenergetic case 
[see (14)] and the dynamic multipole moments of the ve- 
locity distribution,  if) ( f , ~ )  . 

The triangle inequality for the Clebsch-Gordan coef- 
ficients in the sum (26) imposes a requirement which se- 
verely limits the ranks of the dynamic multipole moments 
which determine the rate constants for the relaxation of the 
polarization moments: 

Since the polarization-moment ranks K and K~ can take on 
integer values from 0 to 2.7 for an electronic state with a 
given angular momentum, it follows from (28) that the 
anisotropic collisional relaxation is governed by a small 
number of dynamic multipole moments of the velocity dis- 
tribution function. For the case in which the electron an- 
gular momentum of the excited state is J= 1, for example, 
the collisional relaxation is governed completely by the 
three dynamic multipole moments with ranks 21=0, 2, and 
4; in the case J=3/2, it is governed by the four moments 
with ranks 21=0, 2,4, and 6; for J=2 ,  it is governed by the 
five moments with 21=0, 2, 4, 6, and 8; etc. 

Note that any relative-velocity distribution for which 
all the even dynamic multipole moments Szl are zero for 
121, but for which the odd dynamic multipole moments 
Szl+ can have arbitrary values, is indistinguishable from 
an isotropic distribution function in terms of the properties 
of the collisional relaxation of the polarization moments. 
In the case of such a distribution function, the sum in (26) 
contains only a single term (I=O). From the properties of 
the Clebsch-Gordan coefficients we then find the selection 
rule K = K ~ .  AS a result, the matrix of rate constants for the 
collisional relaxation of the polarization moments turns 
out to be diagonal in K, and its elements are independent of 
q. The axisymmetric relaxation law (3) then converts into 
isotropic relaxation law (2), in which the relaxation con- 
stants are given by 

We thus see that the symmetry properties of collisional 
process ( 18), which leads to the disappearance of the odd 
terms in sum (17), is of fundamental importance in the 
theory of the anisotropic collisional relaxation of polariza- 
tion moments. 

5. COLLlSlONAL MUTUAL CONVERSION OF POLARIZATION 
MOMENTS; CONVERSION OF AN ANISOTROPIC 
RELAXATION INTO A QUASI-ISOTROPIC RELAXATION 

Let us discuss the role played by dynamic multipole 
moments of the velocity distribution function in the colli- 
sional mutual conversion of the polarization moments of 
an ensemble of excited atoms. 

Mutual conversion of the polarization moments of 
rank K and KI  is possible if the rate constant ( v u y ' )  given 
by (26) is nonzero. For this condition to hold, at least one 
product of Clebsch-Gordan coefficients on the right side of 
this equation must be nonzero. We are thus led to condi- 
tion (28), which relates the ranks of the jointly relaxing 
polarization moments K and K, and which brings about this 
relaxation of the dynamic multipole moments In 
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TABLE I. Participation of the dynamic multipole moments of the distribution function of the relative 
velocities of the colliding particles in the relaxation and mutual conversion of the polarization moments 
of the excited atoms. 

Nue. The diagonal cells of this table (xl = x )  contain the dynamic multipole moments which 
determine the relaxation of the polarization moment of rank x ,  while the off-diagonal cells 
(x lr  x )  contain the multipole moments which determine the mutual conversion of the 
polarization moments of ranks x and x,. 

particular, the collisional mutual conversion of the align- 
ment ( K =  2) and orientation ( K ~  = 1 ), like the collisional 
creation of an alignment ( ~ = 2 )  from the populations of 
atomic levels (K~=O) ,  is determined by the sole quantity 
S $ ~ ) ( C , ~ ) ,  i.e., by the dynamic quadrupole moment of the 
velocity distribution function. The dynamic quadrupole 
moment of this function is thus the cause of the most char- 
acteristic anisotropic-relaxation processes. Higher-order 
even dynamic multipole moments ~ $ f )  with ranks 21=4, 
6, ... are manifested in the collisional mutual conversion of 
the polarization moments of higher ranks K, including the 
octupole orientation ( K  = 3), the hexadecupole alignment 
(K= 4), and even higher analogs of the orientation (with 
K = ~ ~ ' + I )  and the alignment (with K =  22'). 

These ideas are explained clearly by Table I. The cells 
of this table contain the dynamic multipole moments S2, 
which are responsible for the collisional relaxation and for 
the mutual conversion of the polarization moments of 
ranks K and K I .  This table covers atomic states with angu- 
lar momenta J= 1, 3/2, and 2, so the ranks of the polar- 
ization moments, K and K,, range from 0 to 4. 

Occupying an important place among the dynamic 
multipole moments of the velocity distribution is the dy- 
namic quadrupole moment. This moment completely de- 
termines the collisional creation of an alignment from the 
populations ( ~ = 2 ,  K ] = O )  and the conversion of an align- 

ment into an orientation (K= 1, ~ ~ = 2 ) .  HOW does this 
moment depend on the parameters c and 7 in (7 ) ,  which 
characterize the distribution function of the relative veloc- 
ities of the colliding particles? Figure 2 shows the results of 
a calculation of this dependence through a summation of 
the infinite series in (25), for the case in which excited 
atoms of species A collide with neutral atoms of the back- 
ground gas B (q=6,  5'=3/5). 

The abscissa ( q = 0 )  in this figure corresponds to a 
completely isotropic velocity distribution and to a zero 
value of S2 .  As we move from the origin of coordinates 
( c = ~ = 0 )  along the q axis, the quantity S2 goes negative, 
and at the point c=O, V =  1 it reaches the value -0.45. As 
the parameter { is raised (i.e., as the detuning of the laser 
frequency from the center of the Doppler profile in- 
creases), S2 increases, going from negative values to posi- 
tive. The boundary between the regions of its negative and 
positive values, found from the equation 

corresponds to a quasi-isotropic collisional relaxation, 
since the collisional conversion of an alignment into an 
orientation and the collisional creation of an alignment 
from populations disappear at this boundary. The absolute 
value of the dynamic quadrupole moment of the relative- 

FIG. 2. Dynamic quadrupole moment of the distri- 
bution function of the relative velocities of laser- 
excited atoms A and background-gas atoms B in the 
case of a dispersive A-B interaction of the I / R ~  type 
as a function of the dimensionless parameters 6 and 7 
[see (7)]. The dynamic quadrupole moment is zero at 
the abscissa (for J = 0 )  and also on the nearly vertical 
curved line separating the regions of its negative and 
positive values. 

0 0.2 0,4 0,6 0.8 1,0 1,2 1.4 1,6 1,s 2,O 

193 JETP 77 (2), August 1993 Petrashen' et a/. 193 



FIG. 3. Position of the point of the quasi- 
isotropy of the collisional relaxation of the 
polarization moments of the laser-excited 
atoms A in the plane of the dimensionless 
parameters J and 17 [see ( 7 ) ]  for an A-B 
interaction law of the l/Rn type, where 
n = 3  or 6. 

velocity distribution increases with distance from this 
boundary line and also with increasing distance from the 
abscissa. It reaches its maximum values at v=  1, i.e., in the 
limit M B / M j A  + a. This result emphasizes once more the 
benefit of using a background gas B as heavy as possible for 
the laser imposition of an anisotropy in the distribution of 
the relative velocities of colliding atoms A and B. 

The vanishing of the dynamic quadrupole moment of 
velocity distribution (30) is a necessary condition for a 
quasi-isotropic relaxation. This condition is not the same as 
the approximate condition for a quasi-isotropy based on 
the requirement that the mean square velocities of the col- 
liding particles along the three coordinate axes be identical 
[see (8)]. On the other hand, this approximate condition 
yields the value [=0.71 for the point of quasi-isotropy for 
all values of the parameter 7. The solution of Eq. (30) 
yields 7-dependent values of the parameter f which lead to 
quasi-isotropic relaxation. Figure 3 shows the results of a 
solution of this equation for two particle interaction laws 
( 13), with exponents n = 6 and 3. We see that the quasi- 
isotropy point lies at f=0.71 only in the limit of a vanish- 
ingly small mass of the B particles, i.e., only in the case 
7=0.  For nonzero masses of the particles of the impurity 
gas B, with 7#0, the quasi-isotropy point f ( 7 )  is signifi- 
cantly smaller than 0.71, and its position varies with the 
exponent n in the particle interaction law. This result 
means that the points of quasi-isotropic collisional relax- 
ation shift toward the center of the Doppler profile with 
increasing mass ratio M B / M A ;  this shift is greater for the 
case of collisions of excited A atoms with B ions (n=3)  
than for collisions of these atoms with neutral B particles 
(n=6).  

At the quasi-isotropy point, only the dynamic quadru- 
pole moment S2 of the velocity distribution vanishes; 
higher-order dynamic quadrupole moments may be non- 
zero. At this point there is accordingly partial conservation 
of the anisotropic nature of the collisional relaxation, due 
to the mutual conversion of the higher polarization mo- 
ments in which dynamic multipole moments S4, S6,  ss, 

etc., of the velocity distribution are involved. 
To summarize this and the preceding sections of the 

paper, we could say that the material presented here forms 
a closed theory for the anisotropic collisional relaxation of 
the polarization moments of an ensemble of atoms excited 
in a gaseous medium by monochromatic laser light. (This 
assertion is made at the level of accuracy of this discussion, 
which is determined by the impact-parameter method, by 
the rectilinear-trajectory approximation, and by the power- 
law interaction of the colliding particles.) All the diverse 
collisional relaxation processes are described by Eqs. (3) 
under these conditions. The rate constants (UO;') which 
appear in these equations are calculated from (21 ) and are 
determined by the characteristics of the extremely aniso- 
tropic collisional relaxation of the polarization moments in 
the oppositely directed monoenergetic particle beams-the 
coefficients a r l  [see ( 14)], which were calculated and tab- 
ulated in Ref. 5 1. They are also determined by the dynamic 
multipole moments of the velocity distribution [see (23)]. 
The latter depend on the dimensionless parameters [ and 
7, given by (7). By varying the detuning of the laser fre- 
quency from the center of the Doppler profile of the spec- 
tral line, one can smoothly vary the anisotropic nature of 
the relaxation (through the parameter f ) .  In turn, the an- 
isotropy of the relaxation becomes more pronounced with 
increasing value of the parameter 7, i.e., of the mass ratio 
M B / M A  of the atoms of the background gas B and the 
substance under study, A. 

In the following sections of this paper we look at some 
specific applications of this theory to various manifesta- 
tions of an anisotropic collisional relaxation of atomic po- 
larization moments during monochromatic laser excita- 
tion. 

6. COLLlSlONAL CONVERSION OF THE ALIGNMENT OF 
ATOMIC ANGULAR MOMENTA INTO AN ORIENTATION 
OF THESE MOMENTA DURING LASER EXCITATION 

One of the most characteristic features of anisotropic 
collisional relaxation of atomic polarization moments is the 
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appearance of an orientation from alignment, accompanied 
by the appearance of circular polarization of the light.9y10 
This effect is based on a joint collisional relaxation of the 
orientation components p', l, transverse with respect to the 
anisotropy axis, and the alignment components p: l, which 
make at an angle of 45" with this axis. The collisional cre- 
ation of an orientation thus requires that these tilted com- 
ponents of the alignment be set up beforehand. Since the 
light waves are transverse, only the longitudinal compo- 
nent p i  and the transverse components pL2 of the align- 
ment (with respect to the laser beam) arise during excita- 
tion of the atoms. To create the tilted components of the 
alignment, one should apply a magnetic field directed 
across the laser beam (along the x axis); this field will 
rotate the original alignment and give rise to the compo- 

2 nents p*l. 
Under these conditions the time evolution of the po- 

larization moments of the excited atoms is described by the 
equations 

where To is the radiative-decay constant, Ni is the intensity 
of the optical nucleation of the polarization moment pi, o~ 
is the Larmor precession frequency of the angular moment 
J in a magnetic field parallel to the x axis, and the elements 
of the matrix H are given by 

We solved Eqs. (31) in the steady state for various values 
of the angular momentum ( J =  1, 3/2, and 2) of the ex- 
cited state of atoms A for various detunings of the laser 
frequency, represented by the parameter 5 in (7 ) ,  and for 
various colliding-particle interaction laws ( 13), with n = 6 
or 3. 

The efficiency for orientation of angular momenta of 
the excited atoms to result from their alignment is charac- 
terized by the ratio 

The numerator contains that maximum difference between 
the intensities of the light of left-hand and right-hand cir- 
cular polarizations in the case of observation along the x 
axis which can be achieved by varying the magnetic field 
strength. The numerator contains the difference between 
the intensities of the light of linear polarizations measured 
in a zero magnetic field. The presence of this maximum 
corresponds to the particular magnetic field which leads to 
the maximum values of the alignment components p:l 
tilted from the z axis (for given rates of radiative decay and 
collisional relaxation). 

The results of our calculations are shown in Fig. 4. 
This figure shows P in (33) for collisions of excited atoms 
in states with angular momenta J= 1, 3/2, and 2 with neu- 
tral atoms (the solids lines) and with ions (dashed lines), 

FIG. 4. Calculated ratio of the signals of the circular and linear polar- 
izations of the light versus the laser-frequency detuning parameter J for 
the case in which excited A atoms in a state with angular momentum 
J= 1, 3/2, or 2 undergo anisotropic collisions with neutral (solid curves) 
or charged (dashed curves) particles of the background-gas atoms B. The 
calculations were carried out for identical masses of the A and B atoms. 

for various detunings of the laser frequency. These calcu- 
lations correspond to the case of identical masses of the A 
and B particles (q= 1/2) and to light which is emitted 
upon the transition of an atom from the given excited state 
J to a state with an angular momentum Jo=J- 1, under 
conditions such that the "dimensionless pressure" of the 
background gas, 

is unity. For transitions to states with other angular rno- 
menta, the corresponding efficiencies for initiation of cir- 
cular polarization of the light can be found from the pro- 
portions 
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We see from this figure that the circular-polarization 
signals (and the corresponding orientations of the atomic 
angular momenta) differ in sign for the cases in which the 
excited A atoms collide with neutral particles and with 
ions. This result is evidence that the collisional nucleation 
of orientation from alignment is sensitive to the particle 
interaction law. The orientation signals have (in absolute 
value) local maxima for zero detuning of the laser fre- 
quency (f =O) .  These local maxima reach 2% in the case 
of collisions with neutral B particles and 0.5% for colli- 
sions with ions. As the detuning of the laser frequency is 
increased from zero to the quasi-isotropy points (near 
f=0.7), the efficiency of the nucleation of orientation falls 
off to zero. As the parameter f is increased further (i.e., in 
the wings of the Doppler profile), this efficiency changes 
sign and begins to increase rapidly in absolute value. 

The efficiency of the collisional nucleation of orienta- 
tion also depends on the angular momentum of the excited 
atomic state. For collisions of excited atoms with neutral 
particles, this efficiency is at a maximum in the case J= 2; 
it decreases as we go to J= 1 and then to J=3/2. For 
collisions with B ions, it is at a maximum at J= 1, it is 
slightly smaller at J= 3/2, and it is essentially zero at J= 2, 
in which case the matrix element corresponding to the 
transition from alignment to orientation is two orders of 
magnitude smaller5' than for J= 1 or 3/2. 

The case M A  = MB , which we are discussing here, cor- 
responds to experimental conditions under which orienta- 
tion has been observed15 to arise from alignment for neon 
atoms in the 2p4(3p[3/2],), J = 2  state excited by a single- 
mode laser with a tunable frequency. These atoms were 
subjected to anisotropic collisions with unexcited neon at- 
oms in a magnetic field perpendicular to the laser beam. In 
accordance with the experimental conditions, our calcula- 
tions were carried out for the natural mixture of neon iso- 
topes (91% 2 0 ~ e  and 9% ,,Ne), for a temperature of 400 
K and a pressure of 1.3 torr. The overlap of the Doppler 
profiles of the isotopes  ON^ and 2 2 ~ e ,  which are shifted 
1.72 GHz from each other, was taken into account. For 
each given laser frequency, Eqs. (31) were solved for both 

FIG. 5. Calculated ratio of the signals of the circular and linear 
polarizations of the light for an anisotropic collisional creation of 
orientation from alignment for neon atoms in the 2p,3p[3/2]2)  state, 
J=2 in the natural isotope mixture, 91% 20Ne and 9% 2 2 ~ e .  The 
parameter J determines the detuning of the laser frequency from the 
center of the Doppler absorption line of the isotope   ON^. The 
crosses are experimental data.I5 

isotopes; the laser-frequency dependence of the efficiency 
of their optical excitation and of the relaxation rate con- 
stants was taken into account. The overall orientation ef- 
ficiency, (33), was calculated with allowance for the con- 
tributions of both isotopes (taken with weights of 0.91 and 
0.09) to the circular- and linear-polarization signals. The 
results of these calculations are shown in Fig. 5, where the 
laser-frequency detuning parameter c corresponds to a 
shift of the laser frequency with respect to the center of the 
Doppler profile of the isotope ,ONe. The crosses show ex- 
perimental data from Ref. 15, which were obtained at the 
optimum value of the static magnetic field (approximately 
5 G). 

The calculated orientation signal P crosses zero and 
changes sign at four points: f = - 0.66, c2 = 0.63, f,  = 2.0, 
and c4=2.3. The points c, and fz  are close to the points of 
a quasi-isotropy of the relaxation for the isotope 2 0 ~ e  by 
itself ( f =  k0.66). The other two zeros of the orientation 
signal (f3 and c4) lie a significant distance away from the 
quasi-isotropy points for the isotope 2 2 ~ e  by itself. These 
points are symmetric with respect to the center of the Dop- 
pler profile of its spectral line ( f =  1.78) and lie at the 
points f =  1.11 and f = 2.45. The reason for the shift of the 
zeros away from the quasi-isotropy points for the pure 
isotopes 2 0 ~ e  and 2 2 ~ e  on the plot in Fig. 5 is a superpo- 
sition of the Doppler profiles of the spectral lines of the two 
isotopes: It is negligible for the point f l ,  small for c2, and 
quite noticeable for f4  and f3.  

The oscillatory nature of the signal representing the 
orientation induced by anisotropic collisions as a function 
of the frequency of the monochromatic exciting light can 
thus be utilized to experimentally determine the positions 
of the points of a quasi-isotropic relaxation. The existence 
of more than two zeros for this function at a zero nuclear 
spin indicates that the gas under study contains two or 
more isotopes. For atoms with a nonzero nuclear spin the 
corresponding dependence is more complicated, having a 
number of zeros equal to twice the number of hyperfine- 
structure components even in the case of pure isotopes. 
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7. COLLlSlONAL INITIATION OF ALIGNMENT DURING 
MONOCHROMATIC LASER EXCITATION 

We assume that a monochromatic laser beam excites 
the atoms under study (of type A )  into a state with a total 
electron-nuclear angular momentum F= 1/2. There are no 
polarization moments of higher than the first rank in this 
state, so there is no alignment (second-rank polarization 
moment). The excited atoms, whose component of the ve- 
locity uo along the laser beam [see (4)] is selected by the 
monochromatic light, undergo anisotropic collisions with 
atoms of the surrounding gaseous medium. These colli- 
sions lead in particular to transitions of these atoms to 
states with F#1/2. In these states, along with the popu- 
lations p!, the anisotropic collisions cause longitudinal 
components of four higher-rank polarization moments, in- 
cluding an alignment component p! of the angular momen- 
tum F along the laser beam. As a result, the sensitized 
fluorescence emitted by atoms from levels filled by aniso- 
tropic collisions will be partially linearly polarized along 
the laser beam. 

This mechanism for the collisional initiation of align- 
ment and the appearance of a linear polarization of light in 
the course of anisotropic, collisional, intermultiplet mixing 
was studied experimentally in Ref. 23 in the case of a se- 
lective laser excitation of hyperfine levels of the (3p)2~l ,2 
state, with detection of the linear polarization of the sen- 
sitized fluorescence emitted from the ( ~ P ) ~ P ~ , ,  state of so- 
dium atoms in a xenon atmosphere. 

A theory of this process must incorporate the effect of 
collisions on both the electron angular momentum J and 
the resultant electronic-nuclear angular momentum of the 
atom, F=J+I,  where I is the nuclear spin. This can be 
done in a model of the disruption of both the fine and 
hyperfine coupling at the time of the collision: Such a 
model assumes that the splitting of levels with different 
projections of the electron orbital angular momentum L of 
the A atom onto the A-B direction is significantly larger 
than not only the hyperfine splitting but also the fine split- 
ting of levels. During the collision we thus have a sort of 
analog of the Paschen-Back effect: The electron orbital 
angular momentum J of the atom reacts to the collision 
and undergoes a change in projection, while neither the 
nuclear spin I nor the electron spin S "is fast enough" to 
react to the collision. Each retains the same projection. As 
a result, the collisional relaxation of the polarization mo- 
ments constructed for the electron orbital angular momen- 
tum L is determined by the corresponding rate constants in 
Eq. (3).  The relaxation of the electronic-nuclear polariza- 
tion moments p ; ( ~ )  corresponding to the resultant 
atomic angular momentum F can then be calculated with 
allowance for the relaxation law for the angular momen- 
tum L and the generalized scheme for combining angular 
momenta. '' 

The resultant electronic-nuclear polarization moments 
p$(F) of the hyperfine levels of the atom are related to the 

density matrix elements of these levels by the transforma- 
tion 

where M and M1 are the magnetic quantum numbers for 
the angular momentum F. Using a different representation 
of the electronic-nuclear density matrix, omP,ml,l, which 
corresponds to the values found for the magnetic quantum 
numbers of the electron angular momentum (m and ml)  
and the nuclear spin ( p  and p l  ), we can construct electron 
polarization moments of the atom for fixed projections of 
the nuclear spin p and pl onto the z axis: 

Substituting (37) into (36), we find the following expres- 
sion for the electron-nuclear polarization moments corre- 
sponding to definite hyperfine levels: 

Under the conditions for the applicability for the model of 
the disruption of the hyperfine coupling, the nuclear-spin 
part of the density matrix does not change in the course of 
collisions. The effect of collisions on the electronic-nuclear 
polarization moments is thus determined by their effect on 
the quantities pt,,,, on the right side of (38). These quan- 
tities relax under the influence of collisions in terms of their 
indices K and q in precisely the same way as the purely 
electron polarization moments p: do, i.e, in accordance 
with the equations for anisotropic relaxation in ( 3 ) .  The 
indices p and pl remain the same; this situation corre- 
sponds to a conservation of the orientation of the nuclear 
spin during the collision (the "principle of nuclear-spin 
inertia"53). We can thus use Eqs. (3) and the generalized 
technique for combining angular momenta to derive from 
(38) equations describing the time evolution of the 
electron-nuclear polarization moments of the hyperfine lev- 
els under laser-excitation conditions: 
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The first two terms on the right side describe the radiative 
decay and optical excitation of the electron-nuclear polar- 
ization moment p:(F); the third describes the collisional 
relaxation of this moment. The angle brackets denote the 
15j symbol as defined in Ref. 12. 

During laser excitation of 2 3 ~ a  sodium atoms, with a 
nuclear spin I= 3/2, optical transitions between hyperfine 
states occur: (3s) ' S ~ / ~ ( F ~ =  1 or 2) -. (3p) 'pII2(F= 1 or 
2). Correspondingly, there are four overlapping Doppler 
profiles of the hyperfine absorption line. During the ab- 
sorption of a photon of monochromatic laser light with a 
given frequency v, four groups of excited atoms thus arise 
in the 'pl12 state with different values of the projection of 
the velocity vo onto the axis of the laser beam [these pro- 
jections are determined by the detuning (Av) of the fre- 
quency from the center of the corresponding Doppler pro- 
file; see (4)]. It thus becomes necessary to solve Eqs. (39) 
separately for each of the four groups of atoms, corre- 
sponding to the four light absorption channels. 

Equations (39) constitute a system of relaxation equa- 
tions describing the collisional mixing of the hyperfine- 
structure multiplets and the nucleation of an alignment, in 
which we are interested. They relate the longitudinal 
electron-nuclear polarization moments of even ranks (K 
=0, 2, 4, and 6) in (38) to the Q=O components of the 
hyperfine structure of the 'pl12 and ' ~ 3 1 ,  excited electronic 
states, of which there are a total of 27. This system of 27 
equations was solved for each of the four groups of atoms 
for various deviations of the laser frequency from the cen- 
ters of the hyperfine components of the spectral line, for 
various background inert gases, and for various pressures. 
The cycle of optical pumping in the system of hyperfine 
levels of the (3s) 'sl12 and (3p) 'pl12 states participating 
in the absorption of light was taken into account. The re- 
sultant population and alignment of the hyperfine levels of 
the '~3,' electronic state were calculated as the sums of the 
contributions ,of all four groups of atoms (weighted in ac- 
cordance wit6 the light absorption intensities in the four 
channels for excitation of the sodium atoms). 

Figure 6 shows a calculated alignment signal, i.e., the 
intensity difference (I,- I,) of the sensitized fluorescence 
polarized along the laser beam and perpendicular to it, 
emitted by sodium atoms from the (3p) 'p312 state, filled 
by collisions, in a xenon atmosphere (at a pressure of 1 torr 
and a temperature of 383 K). The solid line is the resultant 
signal, while the dashed lines 1-4 are the contributions of 
the groups of atoms excited in transitions involving the 
absorption of a laser photon between the following hyper- 
fine levels of the (3s) 'sl12 and (3p) 'pII2 states, respec- 

tively: Fo=l-.F=l, Fo=l-F=2, Fo=2-F=1 and 
F,= 2 -. F= 2. The width of the calculated alignment sig- 
nal is 0.026 cm-', and its peak corresponds to a 2% linear 
polarization. These results agree well with the experimen- 
tal data of Ref. 23 (0.028 cm- ' and 1.6% ). We thus have 
evidence that not only the general equations of the theory 
of anisotropic collisional relaxation but also the model used 
here for the disruption of the hyperfine structure and the 
narrow fine structure can be applied to a detailed descrip- 
tion of the process of collisional nucleation of alignment 
during laser excitation of atoms. 

FIG. 6. Signal representing the linear polarization of the sensitized fluo- 
rescence light emitted by sodium atoms from the 3p 2 ~ 3 , ,  state, populated 
by anisotropic collisions with atoms of the background gas (xenon) ver- 
sus the detuning of the laser frequency, Av (solid curve). The dashed 
curves describe the contributions of the four groups of sodium atoms 
excited in transitions between the following pairs of hyperfine levels of the 
3s ' s , ,~  ground state: I-Fo= I -+ F= I ; 2-&= 1 - F=2; 3-Fa= 2 - F 
= l ;  4-Fo=2-F=2. 
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8. RATES OF COLLISION-INDUCED TRANSITIONS 
BETWEEN ATOMIC LEVELS AS FUNCTIONS OF THE 
FREQUENCY OF THE MONOCHROMATIC LASER LIGHT 

The collisional mixing of the longitudinal components 
of the even polarization moments of various ranks under 
anisotropic conditions leads to collisional nucleation of an 
alignment p: from the populations p; of the atomic states. 
There is, on the other hand, the further possibility of the 
inverse process: essentially an effect of an existing align- 
ment pi on the collisional transfer of populations p; be- 
tween atomic levels as a result of anisotropic  collision^.^^^ 
There is thus the possibility of controlling the rates of the 
collision-induced transitions between atomic states by 
varying the frequency of the exciting laser light. This ap- 
proach makes it possible to change the sign and magnitude 
of the dynamic quadrupole moment of the distribution 
function. 

According to the calculations of Ref. 37, the rate con- 
stant for the collisional transfer of populations between the 
J =  3 / 2  and J=  1 /2  levels of the narrow 'P fine-structure 
doublet in the course of extremely anisotropic collisions in 
oppositely directed particle beams associated with a change 
in the optical alignment of the 2 ~ 3 / 2  level increases by a 
factor of 4 in collisions with charged particles, and by a 
factor of 6  in collisions with neutral particles. It reaches a 
maximum in the case of excitation of the 2 ~ 3 / 2  state by 
light which is linearly polarized perpendicular to the com- 
mon axis of the particle beams; it reaches a minimum when 
the light is polarized along this axis. In the first case the 
light induces a positive alignment along the anisotropy axis 
(the z axis) in the 2 ~ 3 / 2  level, and the efficiency of the 
J= 3 / 2  - J= 1 /2  collisional transitions increases. In the 
second case, the light induces a negative alignment, and the 
efficiency of the collisional transitions between levels is 
suppressed. Corresponding results were later obtained for 
the collisional transfer of population between the 3 ~ 1  and 
3 ~ 2  states of the excited atoms of inert gases.44 The effi- 
ciency of this transfer in the case of extremely anisotropic 
collisions in oppositely directed beams changes by a factor 
up to ten, depending on the polarization of the exciting 
light, and for collisions of excited sodium atoms with he- 
lium atoms, in which case the calculations described a 
change by a factor up to 3  in the rate of collisional transfer 
of populations.w2 

This theoretically predicted dependence of the rates of 
collisional transfer of populations between atomic states on 
their alignment has yet to be studied experimentally. In 
this paper we present a theory for this effect, for collisional 
transition between hyperfine levels during monochromatic 
laser excitation, for the experimental conditions of Ref. 54. 
In that study, an experimental method was developed for 
investigating the collisional transfer of populations (in the 
absence of alignment) between the F = 3 / 2  and F =  1/2  
hyperfine levels of the (5s5p) 3 ~ 1  excited state of the ' 13cd 
cadmium atom. The resonance transition of a cadmium 
atom from the ground state to this excited state has a 
wavelength of 326.1 nm; the distance between the hyper- 
fine levels is 0.216 cm-', and the half-width of the Doppler 
line is 0.022 cm-' (at 455 K) .  

Since there is essentially no overlap of the Doppler 
profiles of the various components of the hyperfine struc- 
ture in this case, it is possible to optically excite each hy- 
perfine level separately. At the same time, the hyperfine 
structure is negligibly small in comparison with the fine 
splitting of the (5s5p) 3~ level ( 1713 cm- ' ) and also in 
comparison with the average thermal energy of the collid- 
ing particles (320  cm- ). Consequently, the model for the 
disruption of the hyperfine structure during a collision 
which was described in the preceding section of this paper 
is well justified. At the same time, the fact that the thermal 
energy is small in comparison with the fine level splitting 
means that the angular momentum J of the electron cloud 
is conserved in magnitude, while undergoing a change in 
orientation during the collision in accordance with the dif- 
ferential equations of the impact-parameter method. The 
equations for the relaxation of the populations nl12 and n3l2 
of the F =  1/2 and F = 3 / 2  hyperfine levels and for the 
alignment a312 of the F = 3 / 2  hyperfine level become 

The alignment in these equations is related to the popula- 
tion of the F = 3 / 2  level by 

where the angle brackets mean an average over the ensem- 
ble of excited atoms. Here N3l2 and A3/2 are the intensities 
of the optical filling of the F = 3 / 2  hyperfine level and the 
induction of an alignment involving this level, ro is the 
radiative-decay constant (which is 4.18. lo5  s-I for this 
excited state of the cadmium atom). The quantities W1, 
W2, and W3 are respectively the rate of the collision- 
induced transfer of populations between hyperfine levels, 
the rate of collisional conversion of the alignment of the 
F = 3 / 2  level into the populations of the F = 1 / 2  and 
F  = 3 / 2  levels, and the rate of collisional destruction of the 
alignment involving the F =  3 / 2  level. It can be seen from 
Eqs. (40) that the contributions of the alignment to 
the changes in the populations of the F =  1/2  and F = 3 / 2  
levels cancel out: The alignment affects the rate of the 
redistribution of population between the levels of the hy- 
perfine doublet, but not its total population nll2+n3I2. 

The quantities W1, W,, and W3 are expressed in terms 
of the rate constants of the anisotropic collisional relax- 
ation of the electron polarization moments p: of the J=  1 
state and the dynamic multipole moments of the velocity 
distribution in ( 2 2 ) .  Here relations (38) between the elec- 
tron and electron-nuclear polarization moments are taken 
into account. 

We constructed and solved system of equations (40) 
for both pulsed and cw excitation of the atoms by mono- 
chromatic laser light, for various detunings of the laser 
frequency from the center of the Doppler profile of the 
hyperfine line corresponding to excitation of the F = 3 / 2  
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FIG. 7. Effect of the degree of alignment of the F = 3 / 2  hyper- 
fine level of the 5s5p 'P, electronic state of the " ' ~ d  atoms and 
the detuning of the laser frequency on the collisional transport of 
population f i ~ m  this level to the hyperfine level F= 1/2. The 
quantity 11/,/1,/, is the ratio of the time-dependent intensities of 
the sensitized-fluorescence signals emitted from the F =  1/2 level 
in the presence and absence of an optical alignment of the 
F=3/2 level, respectively. The curves were found for the fol- 
lowing values of the detuning of the laser frequency: 1-Av=O; 
24 .005 ;  3 4 . 0 1 0 ;  44.0174;  54 .025 ;  6-0.035; 7 4 . 0 4 5  
cm-'. The calculations were carried out for 455 K and for a 
background-gas (xenon) pressure of 0.08 torr. 

hyperfine level of the (5s5p) 3 ~ ,  state of the '13cd atom, there is an alignment at the F=3/2 level (induced by the 
for various degrees of alignment a312 of the F=3/2 level. laser pulse) and for the case in which this alignment is 
The degree of alignment was found from suppressed by a magnetic field (this method for suppress- 

Using (41), we see that the values of this quantity which 
are theoretically possible for the F= 31'2 state are from - 1 
to + l .  

The curves in Fig. 7 reveal the effect of the alignment 
of the F = 3/2 level on the transfer of population from this 
laser-excited level to the F= 1/2 level for various detunings 
of the laser frequency. The abscissa here represents time, 
measured from the light pulse; the ordinate is the calcu- 
lated intensity ratio of the signals of the sensitized fluores- 
cence emitted from the F= 1/2 level in the case in which 

ing the alignment was used in Ref. 54). Comparison of the 
curves in Fig. 7 shows that in the region of small detunings, 
from the center of the Doppler profile to the quasi-isotropy 
point (O< I AYJ <Avo=0.0174 cm-'), the alignment slows 
the collisional transfer of population, while at large detun- 
ings ( ( AY I > Avo) it accelerates this process. 

In this case the alignment induced by the laser pulse is 
positive: A312=N312/2 > 0. The collisional transfer of pop- 
ulation is thus accelerated when the alignment of the initial 
level has the same sign as the dynamic quadrupole moment 
of the relative-velocity distribution; it slows down in the 
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TABLE 11. Rate constants of the collisional relaxation of the populations and alignment of the 
hypefine levels of the 5s5p 'P, electronic state of the " ' ~ d  atoms versus the detuning of the laser 
frequency from the center of the Doppler profile. 

opposite case. At the quasi-isotropy point ( AY = Avo) the 
dynamic quadrupole moment of the distribution function 
disappears, and the alignment has no effect on the colli- 
sional transfer of population. 

The effect of the alignment on the population transfer 
is most obvious shortly after the pulsed excitation, when 
the collisional relaxation is just beginning. At the point 
t=O the rate of population transfer in the case with an 
alignment is 95% (for excitation at the center of the Dop- 
pler profile) and 114% (for excitation in the wing of the 
profile, Av=0.045 cm-') of its velocity in the absence of 
alignment. 

All the collisional relaxation processes described here 
are governed by the coefficients W,, W2, and W3 in Eqs. 
(40). The latter are related to the rate constants for the 
collisional transfer of population, (vup), the collisional mu- 
tual conversion of alignment and populations, (vo,), and 
the collisional destruction of alignment (depolarization), 
(vud) 7 by 

Wl=nB(vop), W2=nB(vaa), W3=n~(vffd), (43) 

where nB is the density of background gas B. The rate 
constants which we calculated for the '13cd cadmium at- 
oms in the (541) 3 ~ 1  state, F =  3/2 and 1/2, in a xenon 
atmosphere at 455 K, are shown in the three rows in Table 
I1 for various detunings of the laser frequency from the 
center of the Doppler profile of the hyperfine components 
of the (5s2) 'S~(F= 1/2) -r (5s5p) 3 ~ 1  (F = 3/2) absorp- 
tion line. It can be seen from Table I1 that as we go from 
excitation at the center of the Doppler profile to excitation 
in its wing (to a detuning twice the half-width of the pro- 
file) the rate constant for the transfer of population in- 
creases by a third, and that for depolarization by a factor of 
1.5. The rate constant for the mutual conversion of align- 
ment and population, which is specific to anisotropic col- 
lisional relaxation, changes sign (at the quasi-isotropy 

point) as the detuning is increased; its absolute value in the 
wing of the profile is 3.7 times that at the center. 

The comparatively weak effect of the alignment on the 
rate of population transfer between hyperfine levels during 
laser excitation (weak in comparison with the case of an 
extremely anisotropic relaxation of the purely electronic 
angular momentum J= 1, discussed in Ref. 37) stems from 
three factors: First, the anisotropic nature of the relaxation 
is smoothed out when we switch from fine-structure levels 
to hyperfine levels as a result of the "principle of nuclear- 
spin inertia." The nuclear spin does not react immediately 
to collisions. Second, during laser excitation the velocity 
distribution is only partially anisotropic. Third, instead of 
the theoretically maximum possible positive or negative 
degree of alignment [see (42)] of the F=3/2  level 
(a3,,= * 1 ), the degree of alignment of this level induced 
by the laser light is only half the maximum possible 
(a3/,= 1/2). We thus immediately see ways to raise the 
effect of the detuning of the laser frequency on the rate of 
population transfer between atomic levels: Raise the an- 
isotropy of the velocity distribution through the use of 
excitation further out on the wing of the Doppler profile, 
use a background gas as heavy as possible, raise the degree 
of alignment of the atomic angular momenta, and, finally, 
switch from a hyperfine multiplet to a narrow fine- 
structure multiplet. For such multiplets the degree of 
alignment can be raised by applying a weak magnetic field 
parallel to the laser beam. Such a field does not suppress 
the alignment which arises during absorption of the light, 
but it does make it possible to separate the Zeeman levels 
with the maximum ( I mJI = J) and minimum ( I mJl =O or 
1/2) absolute values of the projection of the angular mo- 
mentum onto the direction of the laser beam. Selective 
laser excitation of these Zeeman levels makes it possible to 
easily reach the maximum negative degree of alignment 
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(with m,=O or 1/2) and maximum positive degree of 
alignment (with 1 mJI =J) of the electron angular mo- 
menta of the excited atoms along the laser beam. 

This method makes it completely feasible to adjust the 
rate constants for the collisional transfer of populations 
between fine-structure levels by a factor up to 2 or 3 by 
varying the laser frequency. 

9. LIGHT POLARIZATION BEATS DURING LASER 
EXCITATION 

Light polarization beats4u9 are a manifestation of a 
coupling of polarization moments of different ranks K in 
transient processes during an anisotropic collisional relax- 
ation. The simple one-exponential laws of the monotonic 
temporal decay of each of the polarization moments pt  
separately that are characteristic of random isotropic col- 
lisions are replaced by complicated multiexponential laws 
that describe the decay and mutual conversions of the po- 
larization moments. As a result, the polarization of the 
light emitted by the atoms after their pulsed excitation can 
decay in a nonmonotonic way in time, going through max- 
ima and minima and even damped oscillations of the na- 
ture of beats. 

We now consider polarization beats during laser exci- 
tation of the atoms. A characteristic feature of these beats 
is that the amplitudes and shape of the beat signals depend 
on the laser frequency, which determines the degree of 
anisotropy of the distribution of relative velocities of the 
colliding particles. 

The lowest angular momentum of an isolated atomic 
state for which polarization beats are possible is J= 3/2. In 
the coupling of polarization moments of different ranks K 

in the course of the anisotropic collisional relaxation, the 
projections q onto the laser beam are conserved. For lon- 
gitudinal components of the polarization moments (q=O), 
the parity of their ranks K is conserved. The orientation 
(K= 1 ) can thus exhibit beats only beginning at J= 3/2, at 
which point the quantities p; and pi,  i.e., the longitudinal 
components of the ordinary and octupole orientations, be- 
come coupled. A similar result is found for the transverse 
alignment pL2, which may become coupled with a compo- 
nent of the octupole orientation, p3,2, which in turn exists 
beginning at J=3/2. The longitudinal alignment of the 
angular moment p i  along the laser beam, on the other 
hand, is not coupled with p; for an isolated atomic level 
(because of the conservation of the total population during 
collisions), but it may become coupled with the hexadecu- 
pole alignment pi,  which exists beginning at J=2.  

To illustrate the situation we consider the example of 
the polarization beat signal corresponding to mutual con- 
version of the alignment and the octupole orientation of 
the angular momenta of the excited atoms. We assume that 
a laser pulse polarized along the y axis excites the elec- 
tronic transition Jo= 1/2-J=3/2 in the A atoms. At the 
time of excitation, the A atoms then acquire the following 
polarization moments: a population p:=2/ 6 and longi- 
tudinal and transverse (with respect to the laser beam) 
alignments p:= 1/6 and ~ 2 , ~ -  1/2. (The values of the po- 
larization moments are given in an arbitrary normaliza- 

tion, which depends on the intensity of the exciting light.) 
The polarization beat mechanism is governed in this case 

3 
by the coupling of the polarization moments ~ 2 , ~  and p , ~ ,  
whose time evolution is described by the following equa- 
tions, in which anisotropic collisions and radiative decay 
are taken into account: 

The quantities a, b, and c are real. They are related to the 
density of the background gas and to the rate constants of 
the anisotropic collisional relaxation of the polarization 
moments: 

33 
a=nB(ud2) ,  b=inB(ud3), c=ng(uo2 ). (45) 

The system of differential equations in (44) should be 
solved under the initial conditions ~ 2 , ~  = 1/2, pL2=0. AS a 
result we find the following two-exponentiai law for the 
transverse alignment as a function of time: 

The exponents yl and y2, which determine the effect of 
collisions on the transverse alignment, are given by 

The expression in the radical can be either positive or neg- 
ative. If it is positive, the quantities yl and y2 are purely 
real, and the time dependence (46) of the transverse align- 
ment is a linear combination of two exponentially damped 
functions. If it is instead negative, the quantities yl and y2 
are complex, and the time dependence of the alignment 
reduces to oscillations at the frequency 

which decay by the exponential law exp[ - ( y  + ro)t] ,  
where 

The quantities a, b, and c in (45) and, along with them, the 
quantities yl,, in (47), w in (48), and y in (49), are pro- 
portional to the density of the background gas B. The rate 
at which the polarization beats grow and decay in time is 
therefore proportional to the pressure of the background 
gas. In this regard, the polarization beats differ from the 
quantum which arise during excitation of a group 
of atomic levels whose frequencies are determined by the 
differences between the individual energy levels in this 
group. 

Calculations show that beat frequency (48) is usually 
small in comparison with the damping rate (49). In prac- 
tice, therefore, only the first half-wave of the damped po- 
larization oscillations will be seen, and the polarization 
signals will join smoothly as the expression in the radical in 
(47) crosses zero. The time evolution of transverse align- 
ment (46) will be nonmonotonic in this case for both signs 
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FIG. 8. Polarization beat signals for potassium atoms 
excited by a laser pulse into the 4p 'P~,, state in a xenon 
atmosphere for various values of the parameter giving the 
detuning of the laser frequency from the center of the 
Doppler absorption line, 4s 2~1,2-4p 2~,,2, :I-c=0; 
2 4 . 5 3 5 ;  3-1.M); 4-1.50; 5-1.75; 6 2 . 0 0 ;  7-2.50; 
G 3 . 0 0 .  

of the expression in the radical. This circumstance will be 
manifested in a corresponding time dependence for the in- 
tensity difference~ (I,-I,) between the light linearly po- 
larized perpendicular to the laser beam (and to the polar- 
ization of the exciting light) and the the light polarized 
along the beam. Constructing the ratio of this intensity 
difference to the total intensity of the emitted light, we find 

At the time of the pulsed excitation of the atoms 
(t=O) the numerator of the fraction on the right-hand side 
is zero, and there is no polarization beat signal. However, 
because of the simple one-exponential decay of the longi- 
tudinal alignment component p$(t) and the two- 
exponential law in (46) for the relaxation of the transverse 
alignment pi(t),  the "equilibrium" between the two terms 
in the numerator of the fraction will be disrupted at t > 0, 
and a nonzero signal (5) will appear. The nonmonotonic 
time evolution of this signal reflects the "polarization 
beats." 

We have calculated the polarization beat signal in (50) 
for potassium atoms (in the 4p 2 ~ 3 / 2  state) excited by a 
laser pulse in a xenon atmosphere for various values of the 

parameter f in (7 ) .  This parameter determined the detun- 
ing of the laser frequency from the center of the Doppler 
line. The polarization beams are determined in this case by 
the mutual conversion of the polarization moments of 
ranks ~ = 2  and ~ = 3 ,  i.e., by the rate constant (vd3),  
which depends on the dynamic multipole moments S2 and 
S4 of the velocity distribution (Table I). The numerical 
calculations showed that this rate constant and, along with 
it, the quantity b in (45) vanish at g=0.535. At this value 
of f there are no polarization beats. As f deviates from 
0.535, the beat signal is nonzero; it has opposite signs at the 
center of the Doppler line ( f  =0) and at its wing 
( f  > 0.535). With increasing value of the parameter (i.e., 
far out on the wing of the Doppler profile), the alternating 
nature of the polarization beat signal becomes progres- 
sively more obvious. This trend is accompanied by a de- 
crease in the area under its positive "half-wave" and an 
increase in its negative half-wave. The maximum calcu- 
lated value of the polarization beam signal in (50) reaches 
3 4 %  under these conditions. Figure 8 shows the results of 
these calculations in graphical form. The ratio of the dif- 
ference between the intensity of the light polarized linearly 
along the x and z axes to the total intensity of the emitted 
light is plotted along the ordinate. The dimensionless time 
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? = n B  1 AC/+i) 2/5[2(~A+~B)k~/~,~B]3/10t is plotted 
along the abscissa, where T is the temperature, n, is the 
number density of inert gas B, MA and M, are the masses 
of the atoms of the gas under study and of the background 
gas, A C  is the splitting of the excited 2 ~ 3 / 2  level of the K 
atom due to the dispersive K-Xe interaction, and t is the 
time. 

This calculation shows that the light polarization beats 
during laser excitation are quite accessible to experimental 
observation and that they could be used to measure the 
rate constants for the mutual conversion of the polariza- 
tion moments of various ranks under conditions of aniso- 
tropic collisions. 

10. CONCLUSION 

The results found here show that the laser-excitation 
method makes it possible to study all the characteristic 
features of the anisotropic collisional relaxation of the 
atomic polarization moments, including the mutual con- 
version of the alignment and orientation of atomic angular 
momenta, the creation of an alignment of angular mo- 
menta from the atomic level populations, the effect of the 
degree of alignment of the atomic states and the laser fre- 
quency on the rates of the collision-induced transitions be- 
tween atomic levels, and the polarization beat processes. 
While surpassed by the atomic-beam method in terms of 
the magnitude of the degree of anisotropy of the velocity 
distribution function, the laser-excitation method has the 
advantage of simplicity in practical implementation and 
the flexibility of being able to continuously adjust the de- 
gree of anisotropy of the relaxation by tuning the laser 
frequency. There are substantial opportunities for raising 
the degree of anisotropy of the relaxation by switching to 
excitation further out on the wing of the Doppler profile 
and by using background gases as heavy as possible (per- 
haps polyatomic gases). Some interesting possibilities are 
also raised by the technique of a composite excitation of 
the atoms by two or more lasers. This approach would 
permit even greater flexibility in manipulating the degree of 
anisotropy of the relaxation and the polarization charac- 
teristics of the light. The method of laser excitation of 
atoms in the gas phase is thus a promising method for 
studying the diverse processes of anisotropic collisional re- 
laxation of atomic polarization moments and the polariza- 
tion characteristics of the light which they determine. 
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