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This paper discusses the potential usefulness of double optical three-wave mixing as a 
mechanism for dynamic holography with a signal wave that is incoherent with the reference 
wave. It is shown that double optical three-wave mixing can lead to an effective third- 
order nonlinearity that not only exceeds the orientational Kerr nonlinearity of condensed 
matter, but also has a relaxation time of 10-l5 s. Double optical three-wave mixing 
also has the unique capability of measuring dielectric permittivity in the microwave and far- 
IR regions by purely optical methods. 

An important difficulty with using the method of dy- 
namic holography1 for phase-conjugation is the require- 
ment that coherence be maintained between the conjugated 
wave and at least one of the high-power reference waves. 
As is well-known, the problem here is that the relaxation 
time 7 associated with the basic mechanisms for the third- 
order nonlinearity X(3), including electronic processes, 
considerably exceeds2 the period of the optical oscillations, 
so that when the relative phase between the conjugated and 
reference wave contains irregular jumps, the dynamic ho- 
logram written by these two waves cannot track the cor- 
responding sudden changes in the interference pattern. Be- 
cause of this, these phase changes are averaged away into a 
spatially uniform background. 

On the other hand, phase conjugation via four-wave 
mixing allows the conjugation of weak signals from distant 
objects with a reflection coefficient that is practically inde- 
pendent of the energy of the signal pulse, an extremely 
attractive feature for various applications. Therefore, ef- 
forts to overcome these problems with coherence are cur- 
rently of great interest. 

The simplest and most natural escape from this pre- 
dicament is to look for nonlinear mechanisms and specific 
materials for which X(3) has a suitably short relaxation 
time. 

We have already noted that even the "fastest" mecha- 
nisms for X(3), i.e., nonlinearities due to anharmonicity of 
electronic oscillations in molecules and atoms, are as a rule 
very weak (X(3) =: 10-l5 cgs), and even these are quite slow 
(T=: 10- l~  s). 

On the other hand, the second-order nonlinearities 
X(2), which are responsible for processes like frequency 
(three-wave) mixing and second harmonic generation, 
possess a priori relaxation times that are smaller or on the 
order of the optical period. 

Therefore, it is not surprising that attempts have been 
made3-6 to use these nonlinearities for phase conjugation. 
However, the structure of the correction to the displace- 
ment D~~ due to X(2) is such that it is impossible to obtain 
a term with the "correct" space-time dependence from the 
point of view of phase conjugation, i.e., ET exp( - ik3r 
- iw3t), for simple three-wave mixing with an arbitrary 
wave El (in this paper the amplitudes E, frequencies w, 

and wave vectors k are labeled in the way that is standard 
for four-wave mixing: 1, 2 are reference waves, 3 is the 
signal and 4 is the conjugated wave). In fact, the corre- 
sponding terms in the displacement have the form 
X(2)q~1 exp[i(kl - k3)r - i(wl - m3)t], from which it is 
clear that phase conjugation requires that w1 =2w along 
with k1 =0, which is impossible. For this reason, the au- 
thors of Refs. 3-6 considered pseudo-phase conjugation, in 
which a wave with the phase-conjugated E3 wave front 
propagates in a direction which is not - k3, but which is 
subsequently corrected by a linear mirror. Because the 
quality of phase conjugation was correspondingly poor, 
further development of this method was not pursued. 

However, there is one other possibility for using X(2'  

for phase conjugation, in an interaction geometry which is 
practically identical to four-wave mixing: double three- 
wave mixing with the participation of an intermediate 
wave E, - E:E1, which is generated by the original waves. 
The task of this paper will be to investigate the possibility 
of realizing such a process and to establish how competi- 
tive it is with traditional four-wave mixing caused by X(3'. 

POSTULATED INTERACTION PHENOMENOLOGY 

Let us consider the wave interaction geometry shown 
in Fig. 1, bearing in mind that the interaction is via a 
quadratic nonlinearity X(2). Outwardly, the interaction ge- 
ometry is practically identical to nondegenerate four-wave 
mixing: there are two reference waves E t 2  exp(ik1,,r 
- i ~ ~ , ~ t ) ,  a signal wave ET exp(ik3r - iw3t), and a conju- 
gate wave Ez exp(1k4r - iw4t). It  is assumed that the 
interaction actually takes place in two stages. First of all, 
the waves E1,3 give rise to a field E, 
- X ( 2 ) G ~ l  e x p ( ~ k j  - iw,t) via the process of difference 
frequency generation, where ks= k1 - k3, w,= wl - w3. 
Next, the field E, participates in the process of sum fre- 
quency generation with the wave E2 to give a polarization 
P, -- X ( 2 ) ~ 2 ~ s  - E$EIE2 exp[iq4r - if14t]. For thispolariza- 
tion to give rise to a wave E4 that is conjugate to E,, it is 
necessary that q4=k4= -k3, Ct4=w3=w. 

In order to fulfill these conditions it is necessary to 
impose the following restrictions on the frequency and 
wave vectors of the reference waves: 
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FIG. 1. 

Here A is a free parameter equal to the frequency dif- 
ference of waves El  and E3. A reasonable choice of A can 
be made by starting from the following considerations. 
First of all, when El  and E3 are incoherent, which is the 
case of primary interest, the quantity A has incoherence on 
the order of the r-linewidth of the signal E3. Therefore, it 
is necessary to choose A>(2-3)I' in order to avoid the 
strong dispersion of X(2) near zero frequency A, which can 
lead to instability of the E, oscillation. On the other hand, 
we need to fulfill the condition kl (w +A) = k2(w -A). A 
natural possibility is to use waves with different polar- 
izations, in which case the maximum constant shift that is 
admissible for a given crystal is A = (wAn)/(2n) (where 

nll = ,1 )'I2 are the principal values of the indices of 
refraction of the crystal, and An is its anisotropy). This 
implies r < A  <oAn/2nl . Among real crystals that pos- 
sess rather large X(2)z10-8-10-7 cgs, the maximum 
An/n, ~ 0 . 0 5  is observed in lithium niobate and perovs- 
kites similar to it. 

When a Nd-YAG laser is used as the light signal to be 
conjugated (r=6 cm-I) these restrictions lead to the fol- 
lowing condition: 1.1 1012 s - ' (~(4 .7 .  1013 s-', which 
corresponds to generation of an intermediate wave E, in 
the far-IR and submillimeter region (with wavelength 
/2,z50-100 pm). 

Conditions ( 1 ) ensure phase-synchronous generation 
of the wave E4 conjugate to E, in the interaction region. 
However, there is one other "internal" condition for syn- 
chronism for this two-stage process, whose fulfillment rig- 
orously determines the efficiency of the process. Specifi- 
cally, if the first stage of the process, i.e., generation of E,, 
is itself synchronous, an additional enhancement factor ap- 
pears in the efficiency for double optical three-wave mix- 
ing, of order compared to the nonsynchronous 
generation of E,, where a is the size of the interaction 
region in the direction of propagation of the latter. Bearing 
in mind the need to take this synchronism into account, let 
us turn to quantitative consideration of the various types of 
double optical three-wave mixing. 

DOUBLE OPTICAL THREE-WAVE MIXING WITH A 
NONSYNCHRONOUS FIRST STAGE 

Let us therefore consider the interaction shown in Fig. 
1, assuming that the difference frequency generation is 
nonsynchronous, i.e., I Ak I = I kl - k3 I # I k, I =E:/~A/c. 
Here E, is the dielectric permittivity of the crystal at the 
frequency A. For the moment we will ignore the polariza- 
tion structure of the wave E,, which is determined by the 
properties of the tensor i?), as it is unimportant for this 
case. 

The Helmholtz equation for the wave E has the form 

So as to not encumber the discussion, we limit our- 
selves to the Born approximation, for which E3=const. 
The problem becomes two-dimensional when this restric- 
tion is lifted, since Ak has y and z components in the 
geometry of Fig. 1. Furthermore, as we will see below, it 
becomes very onerous, without leading to any qualitatively 
new conclusions for the nonsynchronous case. If we con- 
sider only the particular solution to the inhomogeneous 
equation, which dominates within the interaction region, 
we have 

Substituting this expression into the truncated Helm- 
hotz equation for the wave E, gives 

E4 im2 im2 a-=- 
dz 2kdc2 cos a xy)EF'=2kAc2 cos a K E , E ~ ~  , 

The boundary condition corresponds to the usual state- 
ment that there is no conjugate wave at the input to the 
medium. 
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Equation (4) clearly implies that, formally, nonsyn- 
chronous double three-wave mixing in the Born approxi- 
mation is completely equivalent to an effective four-wave 
mixing in a medium with a cubic nonlinearity x ( ~ ) = K .  Let 
us estimate the achievable magnitude of this effective non- 
linearity K. For the maximum achievable A, angles of in- 
tersection of waves in the crystal a > 1 0 - ~  rad, and 
Xy,)- ~ 5 .  lop8 cgs (the values are taken for lithium nio- 
bate from Ref. 7),  it is easy to obtain KZ~TJ+X-/  

[(2n: a/An) -E,] z 3 . 10- l5 cgs. Thus, the effective cubic 
nonlinearity of nonsynchronous double optical three-wave 
mixing is quite comparable in size with electronic cubic 
nonlinearities of condensed matter2 and has roughly the 
same relaxation time. 

We have not established why double optical three- 
wave mixing with a nonsynchronous first stage is of any 
interest; we could easily interpret it as an additional mech- 
anism for rapid electronic X(3) taking place in a noncen- 
trosymmetric medium. Let us now discuss the possibility 
of implementing double optical three-wave mixing with a 
synchronous first stage. 

DOUBLE OPTICAL THREE-WAVE MIXING WlTH A 
SYNCHRONOUS FIRST STAGE 

Let us first consider the criterion for synchronous gen- 
eration of the intermediate wave E,, i.e., equality of Ak and 
k,, in more detail. If the medium were dispersionless 
[E,=E(w) = t (w  - A )], then because of the way the wave 
frequencies for E1,2,3 are related, synchronism would be 
possible only for strictly collinear propagation of all three 
waves. Accordingly, in a medium with normal dispersion 
[E, < E( w - A) < & ( a ) ]  synchronism is impossible in gen- 
eral for three waves of the same polarization type. Starting 
from the requirement k l  = - k,, for a crystal with E, < 0 
(this includes practically all crystals with large X(2 ) )  the 
wave El  should be e-type while wave E2 should be o-type. 
Accordingly, if wave E3 is o-type, then synchronism in a 
medium with normal dispersion is once more impossible 
( I k, 1 + I k1 1 < I k, 1 ). The only remaining possibility is for 
waves to be e-type and to generate a wave E, of o-type. 
However, in order to implement double optical three-wave 
mixing in the geometry of Fig. 1 with this combination of 
polarizations for the waves, we require nonzero values of 
the components XJ;L and simultaneously, which is pos- 
sible only for crystals of triclinic syngony and monoclinic 
syngony of class m (see Ref. 7). Unfortunately, media with 
these crystal structures usually do not have refractive in- 
dices with sufficiently large anisotropy and quadratic non- 
linearity; therefore, this type of synchronism is not very 
promising. 

Nevertheless, there is one remaining possibility for 
achieving synchronous double optical three-wave mixing. 
The method, which is quite realistic, is in principle identi- 
cal with synchronous third harmonic generation in gases. 
That is, suppose that all three waves E1,2,3 are e-polarized 
but that there are one or several absorption lines (bands) 
between the frequencies w and A. In view of the large 
difference between w and A (2,250 ym, while A E 1.06 
ym),  this situation is not at all unusual. When it does 

occur, the relation E, > & ( a )  =E(W - A) often holds, and 
synchronism is entirely possible. On the other hand, in this 
geometry the requirement that certain components of X(2) 

be nonzero is considerably weakened [it is enough for any 
of the following components to be "nonzero": (X;:j or 
X & ) )  + or X$l)], and the class of admissible symme- 
try types is considerably enlarged: in addition to the two 
classes mentioned above, the trigonal (class 3 or 3 m), 
tetragonal (4 or 4 mm), and hexagonal classes (6  or 6 
mm) are also admissible, so that the class of crystals with 
suitable symmetry and satisfying the additional condition 
E,> E(W) now includes such well-known nonlinear crystals 
as proustite, KDP, and lithium niobate and iodate. There- 
fore, we will pause to discuss this situation in more detail. 

Synchronism is observed for very specific angles a 
(and the angles /3 that corresponding to them; see Fig. 2) 
between the waves E, and E l  ( / 3 z a ~ ~ ~  W/E,~~ A). In explicit 
form, the conditions for synchronism have the following 
form: 

. ,  
sin a = 61/2v sin P. 

Here v=A/w, 6 = ~ , ~ ~  , and the small difference be- 
tween ~11(w) and E ~ ~ ( ~ - A )  has been neglected. Solving 
system (5) gives 

s i n ( a / 2 ) = v ( ~ - l ) ~ / ~ ( l - v ) - ~ / ~ / 2  for 1141, 
( 6 )  

As we should expect, for 6= 1 (the dispersionless case) 
we have a=p=O. That is, the intermediate wave E, can 
propagate both "along" the direction of the primary waves 
and "transverse" to them. The difference between these 
two cases is quite important: in view of the real geometry 
of the interaction region (i.e., the length L transverse to 
the dimension I) the problem is one-dimensional for 
L tan P41, and the boundary condition on E, is imposed at 
the boundary of the nonlinear medium, while for 
L tan /3% I the problem is two-dimensional and this bound- 
ary condition is imposed along one of the "lateral" bound- 
aries of the interaction region. Therefore we will consider 
these two limiting cases separately. 

SYNCHRONOUS DOUBLE OPTICAL THREE-WAVE MIXING 
WlTH "LONGITUDINAL" INTERMEDIATE WAVES 

The system of truncated Helmholtz equations for wave 
amplitudes E4, E, in the Born approximation (E3=const) 
has the form 

a E J z = -  (2 '  E* 
C E ~  COS /3 X- El 3 .  
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The boundary conditions correspond to absence of the 
waves E 4 ,  at the input of the interaction region. From ( 7 ) ,  
by repeated differentiation of the first equation it is easy to 
obtain 

so that for the amplitude of the wave E4 at the output of 
the medium we finally have 

- 
irw2 L 

- 
2koc2 cos a ~lElE2-q 9 

Here K~ has the sense of an equivalent effective cubic 
nonlinearity for the synchronous double optical three-wave 
mixing. A comparison of Eqs. (3)  and (4) for nonsynchro- 
nous double optical three-wave mixing under the assump- 
tion (~k )~ -k :>k :  reveals an enhancement factor for the 
synchronous case -- (ksL) -- 1200 for L =  1 cm, so that the 
effective X(3)  for synchronous double optical three-wave 
mixing xdi)=: lo-" cgs, which is quite comparable to the 
strain-induced Kerr nonlinearity (stimulated Raman scat- 
tering) with three orders of magnitude better relaxation 
time. 

These orders of magnitude indicate that rather large 
values of RNL= I E4(L)/E3(L) I are possible in principle 
for, say, picosecond pumping; therefore it is expedient to 
discuss this case as well. 

The equations and boundary conditions for waves E4,3,s 
have the form 

Here the pump waves El,, are assumed to be traveling 
waves as= cos P; a = 7 ~ ~ ~ ~ y ) / ~ ~ k ~  cos a ,  and 
the boundary conditions correspond to absence of the 
waves E 4 ,  and a fixed amplitude of the waves E3 at the 
input to the medium. 

The system (10) is easily reduced to the following 
equation for the wave E4 we are interested in: 

The solution to this system has the form: 

FIG. 2. 

and for L =z  for the wave E4(z= L )  : 

For small bL, Eq. ( 13) corresponds exactly to the 
Born asymptotic form (9) .  For sufficiently large bL it is 
clear that ( 13) differs qualitatively from the corresponding 
expression for four-wave mixing (see, e.g., Ref. 8).  For 
example, for real b (i.e., X(:l- the same sign) there is no 
threshold for parametric oscillation; for large bL 
R ~ ~ - + R / ( ~ + R ) ~ ,  where R =  I E ~ ~ ~ / I E ~ ~ ~  is the ratio of 
intensities of the reference waves. Note especially the ex- 
tremely steep dependence of the intensity of the wave E4 on 
the interaction length L (fourth power in the Born approx- 
imation). 

SYNCHRONOUS DOUBLE OPTICAL THREE-WAVE MIXING 
WITH "TRANSVERSE" INTERMEDIATE WAVES 

We now consider the case L tan PSI ,  i.e., a "trans- 
versely" propagating intermediate wave E,. In this case, 
the geometry of the interaction region becomes extremely 
important, i.e., the boundary conditions on the wave E, are 
imposed at the "lateral" boundaries of the region under 
discussion. For simplicity we consider the bounded two- 
dimensional interaction region (see Fig. 2) O<z< L, 
O(y(1. The system of equations that describes double op- 
tical three-wave mixing in this case is the following: 
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In contrast to ( lo) ,  here it is not cos fl but rather 
cos(r/2-P) that appears in the definition of a,. In the 
Born approximation (i.e., neglecting the second term on 
the right hand side of the first equation of ( 14) and setting 
@=const) the solution for E4 has the form 

Naturally, by virtue of the explicit dependence on y a 
field of this form is not strictly conjugate to E3. However, 
the corresponding change in the divergence is rather weak 
(-A/l), and we will not discuss it here. In this case the 
nonlinear reflection coefficient for double optical three- 
wave mixing is not uniform in the transverse cross section 
of the primary beams (El,,,,,,); its average value is given 
by 

For comparison with the previous results it is conve- 
nient to use (16) to calculate the quantity 
(RNL) 'I2. 1 E3 1 = ( I E4 1 ) (by this we understand the 
mean-square value of the absolute value): 

2 ( 2 )  ( 2 )  
"A X+ X- 

K2 = 
3c2k,2 cos fl (ksl) 

It is clear that this effective cubic susceptibility K~ for 
four-wave mixing, which is energetically equivalent to the 
double optical three-wave mixing under discussion, ex- 
ceeds that for "nonsynchronous" double optical three- 
wave mixing by a factor of - (k,1)/3. Although in a typ- 
ical experimental situation (I  < L)  this enhancement factor 
is smaller than for the case tan fl<I/L, it nevertheless al- 
lows us to achieve an effective X(3) -- 3 . 10-l2 cgs, which 
also merits attention. 

The dependence of ( I E4 I ) on L is the usual one for 
four-wave mixing in this case; however, the dependence on 
the width of the beam I should differ from the ordinary 
case, where it is due to the power density of the unchang- 
ing pulse energy. 

As for the case RNL- 1 [Eqs. ( 14)], it can be reduced 
by a Laplace transform with respect t o y  and the substitu- 
tions E4= E2S, = El V to the following equation for S: 

Heres= L ( S ) , p  is the argument of the Laplace transform, 
and b2=aa,( 1 El 1 2 +  1 E2 1 ,), as previously. The system 
(18) is solved by standard methods, and we have for the 
Laplace transform e,= L(E4) at the output of the interac- 
tion region the expression 

The inverse transform of this expression is extremely 
cumbersome and uninformative (it is the sum of a slowly 
converging series in ~ ~ ( { i n b ~ ~ ) " ~ ) ,  where Zo is the mod- 
ified Bessel function and n labels the term). Therefore, we 
will give no results for (numerical) calculations of RNL 
here, because they add nothing qualitatively new to the 
results of the Born approximation. 

DOUBLE OPTICAL THREE-WAVE MIXING AS A WAY TO 
MEASURE i., 

Up to now we have considered double optical three- 
wave mixing in terms of its possible usefulness for phase 
conjugation of the wave E3. However, there is still another 
rather attractive application for this phenomenon. Specifi- 
cally, E, is unambiguously specified by the angle a at which 
synchronism is observed for the first stage of double optical 
three-wave mixing, and in the geometry discussed above 
(Fig. 1) E I ~  ( a )  is likewise a function only of a and the 
known ratio A/w from Eq. (6) .  Thus, double optical three- 
wave mixing provides a way to measure E, in the far-IR 
and submillimeter regions without the necessity of measur- 
ing radiation at the frequency A. The possibility of a purely 
optical measurement of E, is very attractive in view of the 
absence of reliable sources and detectors of radiation in 
these frequency regions; therefore, we will pause to discuss 
it in more detail. 

First of all, let us specify the range of A within which 
it is possible to measure E,. In our earlier discussion, when 
the waves El,, were mutually incoherent and the condition 
k1 = - k2 was required for synchronism of the second stage 
of double optical three-wave mixing, this region was 
r < A (oAn/2nl ) . 

However, there is no need to work with incoherent 
waves El,, in order to measure E,; therefore, the lower 
bound of the range of A that allows such measurements is 
determined by the requirement kJ> 1, which is necessary 
for the appearance of a synchronous peak in the angular 
dependence IE4I2(a).  Thus, a sufficient requirement is 
A,< I (for "transverse" synchronism of the first stage of 
double optical three-wave mixing, which is the more likely 
case). 

Furthermore, if the goal is to measure E,, we can drop 
the requirement for synchronism of the second stage of 
double optical three-wave mixing; therefore, the limitation 
A,> (2n1 /An)A becomes superfluous. 

Actually, if I k1 1 f 1 k, 1 the signal amplitude will be 
weaker by a factor of sin(AkL/2)/(AkL/2), where 

I Ak 1 = I k l  1 - I k, 1 in the geometry of Fig. 1. However, 
this weakening is independent of a ;  therefore, the peak 
corresponding to synchronism of the first stage of double 
optical three-wave mixing will be quite easy to observe 
when the attenuation of E4 is not too large, so that this 
signal is detectable. 
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In particular, lifting of the requirement k2= -k l  im- 
plies that, in addition to the polarization combination of 
waves discussed above, interactions E l g  - Es of the type 
oo- o, oo - e, and EJ2 - E4 with arbitrary polarization 
combinations of the waves can be realized. This greatly 
enlarges the class of admissible crystal symmetries and al- 
lows us to separately measure tzsll and E~~ in the region of 
As from millimeter wavelengths out to ~ 2 0  pm. 

Thus, double optical three-wave mixing has real poten- 
tial for realizing dynamic holography using signal waves 
that are incoherent with the reference wave. On the other 
hand, double optical three-wave mixing can be effectively 
used as a purely optical instrument for spectroscopy of the 
dielectric permittivity tensor of noncentrosymmetric crys- 
tals in the difficult-to-study submillimeter and far-IR re- 
gions. 

Therefore, an experimental demonstration of these 
phenomena would undoubtedly be interesting. 

*1n this paper X(") is everywhere defined as a quantity that connects the 
real polarization and the field corresponding to the complex amplitudes 
p(n)=2(l-n) ( n )  X E". 
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