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We propose a group-theoretical method of analyzing the dynamics of N-neutrino oscillations 
that makes it possible to calculate analytically the probability of flavor transformation 
and survival in media with some variable density p(x) .  The evolution of two flavors can be 
described by a simple equation of motion for the SU(2 )  group parameter, which then 
admits of exact solutions for a family of profiles p (x )  with no further constraints on the 
neutrino parameters. For the three-flavor case, we use perturbation theory to calculate 
the nonadiabatic evolution of state vectors near resonance, in which the SU(2)  evolution 
matrix is the unperturbed solution. 

1. INTRODUCTION 

Neutrino mixing and  oscillation^"^ lead to far-reaching 
consequences in weak-interaction theory, neutrino astro- 
physics, and cosmology. The medium influences neutrino 
oscillations3 in a manner reminiscent of resonance 
phenomena.4 The abrupt increase in the depth of oscilla- 
tions for certain densities of the medium or neutrino ener- 
gies E provides a natural explanation for the observed 
long-term deficit of solar  neutrino^,^ even for the small 
vacuum mixing angle 0, found in nature. 

The properties of neutrino oscillations are dictated by 
the way in which the density of matter varies. On its way 
from the sun to the earth, a neutrino flux with a broad 
energy spectrum will pass through a number of stages of 
o~cillation:~ adiabatic (dp/dx small), nonadiabatic (near 
resonances and density discontinuities), and oscillatory in 
a medium at constant density. If the neutrino equation of 
motion in the latter case admits of an exact s ~ l u t i o n , ~  then 
various approximate will be available for ana- 
lyzing oscillations of two flavors even in a variable-density 
medium; those methods will apply over a variety of neu- 
trino parameter ranges. 

In the present paper, we propose a new method for 
analyzing the dynamics of neutrino oscillations in variable- 
density media, based on a group-theoretical solution of the 
evolution equation (Sec. 2). The method is a universal one, 
in the sense that it provides a unified description of various 
oscillation regimes for both two and three flavors. In two- 
flavor systems, we are able to find solutions for a number of 
functions p(x)  modeling the density of matter along the 
neutrino propagation path. The explicit expressions ob- 
tained for flavor survival hold for all values of hm2, a,, 
and E, and all oscillation regimes (Sec. 3). A combination 
of the group-theoretical approach with perturbation theory 
enables us to describe nonadiabatic oscillations of three 
flavors near resonance analytically, to any desired accuracy 
in a particular small parameter (Sec. 4). 

2. GENERAL FORMALISM 

Ultrarelativistic neutrino motion in a medium of arbi- 
trary composition and with an arbitrary density distribu- 
tion is governed by the Schrodinger equation, 

When there are N flavors, I v(x)  ) is an N-component state 
vector for the neutrino system at a point x, and is an 
N x N  matrix that takes mixing and neutrino interaction 
with the medium into account. We single out a particular 
point xo and define the coordinate translation matrix via 
I v(x)  ) = U(x,xO) I v(xO) ) . We then expand the matrix .k 
in the basis M I  ,..., M ,  for an N-dimensional representation 
of some n-dimensional Lie algebra L, 

n 

.k= hj(x)M,, 
j= I 

where some of the coefficients hj(x) may vanish. U then 
belongs to the N-dimensional Lie group matrix represen- 
tation of the Lie algebra L; it translates a solution of Eq. 
(1)  from the point x, to the point x, and it satisfies the 
equation 

where IN is the NX N unit matrix. 
For a finite-dimensional L, the solution of Eq. (2) can 

be represented as a product of exponentials,' 

The g here satisfy a set of n ordinary first-order differential 
equations 

where the akl are analytic functions of the g, and can be 
found by substituting (3)  into (2) .  The form taken by Eqs. 
(4)  depends on the parametrization of the dynamic sym- 
metry group, and not on the representation of L. There are 
various ways9 to parametrize U; among these, a multipli- 
cative approach is the most convenient for calculating tran- 
sition probabilities. In general, a solution of Eq. (2)  in the 
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form (3) will hold only locally, but for the SU(2) dynamic 
symmetry that we consider here, it also holds gl~bally.~ 
Having solved Eqs. (4), one can easily find an explicit 
form for the matrix (3), which then completely determines 
the quantum-mechanical evolution of the system, and in 
particular, the evolution of the flavor survival and trans- 
formation probability 

where subscripts f and q specify the flavors e, p, 7, ... . 

3. EXACT SOLUTIONS FOR TWO-NEUTRINO 
OSCILLATIONS IN INHOMOGENEOUS MEDIA 

In the two-flavor case, the matrix A in the basis of 
weak-interaction eigenstates is a linear combination of the 
Pauli spin matrices, 

d [ p ( x ) ]  =4 ho(x)uo+h(a-+a+), 

with  coefficient^^,^ 

77 dYGP(x) 2.rr 
h=- sin 20,, ho(x) = -- cos 20", 

1, m 1, 

where I,, is the oscillation length in vacuum, Y is the num- 
ber of electrons in the medium per nucleon of mass m, and 
G is the Fermi constant. The dynamic symmetry group of 
the 2v system is SU(2), which we parametrize in the form 

U=exp[(g~-is)a~)Iexp (g-a-)expg+o+, ( 5 )  

where ds/dx= ho(x)/2. By virtue of Eq. ( 5 ) ,  the equations 
for the three parameters of SU(2) can lead to a single 
relatively simple second-order differential equation for 
g=exp go, 

The functions g, can be expressed in terms of g.9 In 
terms of these parameters, the evolution matrix of the two- 
neutrino system takes the form 

The flavor survival or transformation probability is given 
by the absolute square of the corresponding matrix 
e~ement.~ Thus, the flavor survival probability is simply 

The evolution of flavors in a medium with arbitrary 
density distribution, according to (7) and (8), is thus com- 
pletely and accurately determined by (6). The evolution 
equation is simpler than the exact equations for the wave 
functions or transition probabilities given by (6). Note that 
when the latter are solved in the adiabatic approximation, 

off-diagonal elements of the matrix are neglected. Cor- 
rections to the adiabatic approximation are given by the 
Landau-Zener equation, which holds for a linearly varying 

It follows directly from the form of Eq. (6) that 
the solution for linear and exponential density profiles can 
be expressed in terms of Whittaker functions. 

In order to extend the class of functions p(x) that 
admit of exact solutions of (6), we introduce the new in- 
dependent variable 

and rewrite (6): 

Here f is an arbitrary function that is integrable over the 
interval (xO,x), and the prime denotes differentiation with 
respect to z. Although Eq. (10) is more complicated than 
the original Eq. (6), we now have the possibility-having 
specified a density distribution function ho[p(x)]--of se- 
lecting the function f so as to transform Eq. ( 10) into a 
standard second-order equation with known solutions. 

We now give two examples of the formalism, applying 
it to the analytic description of the dynamics of two- 
neutrino oscillations in matter with a nontrivial density 
distribution p(x) along the neutrino propagation path in a 
natural medium. 

We first consider the symmetric profile 

which approximately describes the density of terrestrial 
matter along the path of proposed "geophysical" experi- 
ments using neutrino beams from high-energy acceler- 
ators. lo The coefficients a and b in ( 1 1 ) are best-fit param- 
eters. Comparing the ansatz 

with Eq. ( lo), we obtain the substitutions z=sech(x- b )  
and 2y= 1 -iz, which enable us to transform Eq. (6) into 
a hypergeometric equation of the form 

If the accelerator generates a beam of v, that propa- 
gates along a chord through the earth with the density 
profile ( 11 ), then according to (8) and ( 12), the proba- 
bility of detecting a muon neutrino at distance x from the 
accelerator can be written exactly in terms of hypergeo- 
metric functions: 

wherearih,  2 y ~ l - a ,  2y=1-isech(x-b), and Cl,,are 
constants of integration. Calculating the zeroes of P(x), we 
find the points along the path where muon neutrinos are 
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completely transformed into electron neutrinos. The prob- 
ability of detecting a v, will be greatest at those points. 

If we begin with a different ansatz, 

it is not difficult to show that the density distribution 

admits of exact solutions of Eq. (6) if we make the substi- 
tution z=cosh(x-b) for S= - 1 and z=sech(x- b) for 
6 = 1. The replacement y =  1 + 6x2 then transforms Eq. 
(14) into the standard Gauss form of the hypergeometric 
equation, 

where 2y= 1 -ia, 4a - - i(a * dm), and 4aP= h2. 
In media with the density profile (15), the probability of 
neutrino flavor survival can thus be expressed in terms of 
the solution of Eq. (16) with no approximations whatso- 
ever, and for all values of the neutrino parameters. The 
function (15) has been used as an improvement upon an 
exponential radial density distribution for electrons in the 
sun.7"' It is well known12 that the earth can resonantly 
enhance the oscillations of neutrinos traversing it. Certain 
portions of the density variation-at the core-mantle tran- 
sition, for e x a m p l w a n  be modeled by the function 
atanh(x-b) with appropriate values of a and b. 

Choosing various forms of the replacement (9) will 
produce a set of different functions p(x)  that admit exact 
solutions of the equation of motion (6) in terms of stan- 
dard special functions. 

4. NONADIABATIC THREE-NEUTRINO OSCILLATIONS IN 
INHOMOGENEOUS MEDIA 

We now present the equation of motion of a three- 
neutrino system in a medium with arbitrary density distri- 
bution. The basis consists of states of definite mass, and we 
write the equation with Planck's constant appearing explic- 
itly: 

where dd= ( 1/2E)diag(Al ,A2 ,A3), and the nonvanishing 
elements of the hermitian matrix dnd are 
di:= -d:;=i(dw/dx), d::= -d:;=i(dV/dx) 
X cos w, and &ti= -d:;= i(dcp/dx)sin w. The mass 
hierarchy and the parametrization of the mixing matrix are 
normally chosen so that the effect of the medium on the 
oscillations can be described solely in terms of the two 
mixing angles w and q ,  which depend on p.7 The eigenval- 
ues A; of the mass matrix13 also depend on p, and are the 
energy levels in the 3v system; for mi > m: > mi and small 
o and cp, crossing those levels defines two resonances. 

In general, it is extremely difficult to solve Eq. (17) 
with variable coefficients. When the density of the medium 
varies slowly enough (more specific criteria for the three- 

flavor case can be found, for example, in Ref. 6) ,  the adi- 
abatic approximation will suffice.677 In that approximation, 
we neglect the matrix dnd in (17), thereby ignoring tran- 
sitions between states of definite mass in the medium. The 
adiabaticity conditions are primarily violated near reso- 
nances, where the most significant changes in the dynamics 
of the neutrino system take place. 

In this section, we propose a way to find analytic so- 
lutions of the equation of motion ( 17) for a 3v system in a 
medium with arbitrary density distribution when the evo- 
lution near one of those resonances is not adiabatic. Essen- 
tially, we employ perturbation theory, with the unper- 
turbed solution being the SU(2) evolution matrix. 

We can find a solution of Eq. ( 17), 

using an evolution matrix that satisfies 

Expressing the solution in the form 

where 

we obtain 

where 

2= u$dndud. ( I9)  

The evolution of the state vector of the 3v system can now 
be represented in the form 

I v > = u d I 9 ,  

where in the interaction picture, IT) in turn evolves ac- 
cording to 

I 9 = 61 yo), 

and 

We restrict our attention to the resonance range be- 
tween I,-SI and 1,+61; for definiteness, we take the lower 
resonance to be at A1=A2=A, and we introduce the pa- 
rameter 

1 r,+sr 
E=- I IA-A31dx. 

2E rr-s1 

The analogous parameter of a 2v system near resonance is 
of order 27~S1/1,,~ where I,,, is the oscillation length at 
resonance, and SI is the spatial halfwidth of the resonant 
layer. The condition S lg  I, signals a large departure from 
the adiabatic oscillation regime. 
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We write the solution of Eq. (20) as an infinite series 
in the small parameter E: 

At the lower resonance, the matrix (19) is given by 

m (iE)2k+l 
2'dnd+da zo (2k+ l ) !  

I The nonvanishing elements of the antihermitian matrix 
d and the hermitian matrix dh are 
di3=dA3 = - i(dp/dx)cos w and A;3 =.Mi3 =i(dq/  
dx)sin w, with d y  =A',' and dfhl= -A{, i f j .  Substi- 
tuting (21) and (22) into Eq. (20), we obtain a set of 
linear differential equations for the terms in the series rep- 
resentation of ( 19), in which the ( k  + 1 ) th equation takes 
the form 

with initial conditions (??(O)(O) ) = (yo), (~;(J)(o)  ) =0, 
j = 1,2, ... . The recursion relations for the I with even 
and odd k are 

The proposed series expansion in E makes an iterative 
solution of the equation of motion of the 3v system possi- 
ble. To (k+  1) th order in E, the state vector I G ( ~ ) )  in the 
interaction picture (18) can be calculated with the aid of 
the matrix Uo for the first term of the series (21), 

where Uo satisfies the evolution equation 

We expand the matrix And using as a basis the three- 
dimensional representation of the SU(2)  algebra, 

with basis matrices satisfying the standard commutation 
relations [M+ ,M-] = 2M0, [Mo,M,] = + M, , and having 

nonvanishing elements Mi1 = -MA2=i, MY = - M?=.I, 
23 M ~ ~ - - M ~ ~ - ~  M:=-M?=~, MY= -M-=i, Writ- +-  + - '  

ing Uo in product form, 

we obtain the evolution equation for the matrix Go, which 
belongs to the three-dimensional representation of SU(2):  

Using a parametrization similar to the one in Sec. 3, 
- 
Uo=exp(go-2iw)Mo e x p k M -  exp L M + ,  (25) 

the evolution problem (23) can be fully dealt with after 
solving the differential equation for the parameter 
E= exp (Ed2 1, 

where F(0) = 1 and dg/dx 1 x=o=O. An explicit form for 
the matrix Uo can be found in terms of g and & by sub- 
stituting Mo and M, into Eqs. (24) and (25). 

In a medium with variable density, dp/dx and dw/dx 
are proportional to dp/dx. Assuming the density variation 
to be given approximately by kx, we obtain 

analogous to Eq. (6),  which was considered in detail in 
Sec. 3. For nonlinear functions p(x) ,  Eq. (26) can be 
solved by invoking results obtained for other physical sys- 
tems with SU(2)  or SU(1 , l )  dynamic symmetries. Such 
systems have been studied in the theory of modulated 
laser-beam interaction with two- and three-level atoms,14 
and in the quantum theory of a phase-modulated and 
amplitude-pumped parametric amplifier and frequency 
converter.I5 

We conclude by pointing out the possibility of dealing 
with other interactions via the group-theoretical approach, 
such as the interaction of the neutrino magnetic moment 
with solar fields.I6 
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