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We use a Ginzburg-Landau type of equation for the order parameter field to study the 
instability of the azimuthal form of two-dimensional islands of a new phase. We obtain 
instability diagrams of the angular perturbations and show that the instability occurs 
when the main growth mechanism is diffusional. We determine the parameter region in which 
the criteria obtained here are the same as the results of the phenomenological 
Zel'dovich-Folmer theory and of the DLA (diffusion limited aggregation) continuum model. 
We study the criteria for the growth of the angular perturbations in the case of a 
nonquasistationary growth regime. We consider the effect of the angular perturbations of the 
form on the value of the fractal cluster dimensionality. 

1. INTRODUCTION 

In experimental studies of nucleus formation processes 
and the further growth of a new phase on surfaces one 
observes azimuthally symmetric islands'-3 as well as for- 
mations with a more complex symmetry394 and also fractal 
clusters.5-" As a simple quantitative criterion for the bro- 
ken axial symmetry of a cluster one normally uses the 
value of the exponent 9 in the relation between the num- 
ber of particles in the cluster and its size R: N cx R". The 
quantity 9 is called the fractal dimension of the 
cluster.5-" The appearance of asymmetry in an island leads 
to the value of the index 9 deviating from the Euclidean 
dimensionality. In the case of the growth of fractal clusters 
one observes fractional and to a large degree universal val- 
ues of 9. For instance, 9 = 1.5 to 1.9 in the case of the 
growth of fractal clusters in a plane.5 

In an appreciable fraction of the experiments the 
growth of the clusters takes place predominantly in the 
plane of a surface. Such clusters are, for instance, formed 
during the precipitation of particle vapors from a gas phase 
onto a surface,12 during the electrodeposition of metals 
from a mixture or a melt onto a ~urface,""~ or during the 
crystallization of amorphous films which are deposited on 
a sub~ t ra te . '~~ '~  In what follows we shall consider just such 
clusters. 

For the theoretical description of the phenomena of 
the growth of a new phase the problem arises of how to 
describe the growth of islands with a form which is not 
circular (axially symmetric), including fractal growth. As 
a first step it is important to determine the criteria for the 
form instability of circularly shaped nuclei. These prob- 
lems have been studied in the framework of the 
Zel'dovich-Folmer theory1'-l9 of first-order phase transi- 
tions and in various approaches to the dynamics of clusters 
using computer  simulation^.^^^ In the theory of phase 
transitions14 attempts to describe azimuthally asymmetric 
structures were connected with the explicit introduction of 
anisotropic conditions for the growth of the nuclei con- 
nected with surface anisotropies of external 

fields,20921 symmetries of the ~ u b s t r a t e , ~ ~ - ~ ~  and so on. 
However, it was found that the effect of symmetry breaking 
for the shape of the nuclei occurred also in a symmetric 
(isotropic)  stern.^^-^* It has been shown that the axial 
form of islands growing due to the diffusion of the ad- 
sorbed atoms is unstable. The equations obtained for the 
growth of the angular perturbations of the boundary of an 
island, 

R(q,t) =Ro(t) + C R,(t)cos(mq) 
m>2 

have for Rm/Ro( 1 the form26 

where D is the diffusion coefficient, s is the area per particle 
in the new phase, R,,= poCd( c- Co) is the critical size of 
the new phase, c is the particle density far from the nu- 
cleus, Co is the equilibrium density near the linear bound- 
ary of the island, po=ys/T, y is the linear tension coeffi- 
cient, T is the temperature, L ~ =  D/a, a-' is the particle 
desorption time, and Ko(x) is a Macdonald function. The 
criterion for the instability of the growth, Am > 0, with 

the instability growth rate, leads to the condition 

Ro m(m2-1) 
-> R,, m-2 (2) 

and when this is satisfied the harmonics with the given m 
are not damped. It turns out that the instability is possible 
only for harmonics with m>3 for sufficiently large sizes of 
the growing islands. We note that ( 1 ) and (2) are obtained 
in the limit of large diffusion lengths for the particles on the 
surface. 
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In papers on the dynamics of the growth of clusters a 
collection of different models is used when applied to ac- 
tual physical systems. Historically the first and the most 
often used one is the DLA (Diffusion Limited Aggrega- 
tion) m ~ d e l . ~ - " ' ~ ~ - ~ '  In it the particles wandering ran- 
domly over the lattice (lattice DLA model) or in arbitrary 
directions (off-lattice DLA come in contact with 
a cluster and with a certain probability stick to it. The 
off-lattice model makes it possible to remove the possible 
effect of the lattice anisotropy on the properties of the clus- 
ter. A model has been developed in which not only parti- 
cles, but also simple clusters can move and in which the 
latter subsequently stick together (Cluster-Cluster 
~ ~ ~ r e ~ a t i o n ~ - ~ ) .  Apart from models with diffusive trajec- 
tories of the particles moving to the cluster, models like the 
Eden ballistic have been formulated in which the 
particle trajectories are along straight lines which also de- 
scribe fractal growth. Computer experiments indicate that 
the phenomenon of the growth of fractal clusters is univer- 
sal and is determined by the general properties of the 
growth process and appears in initially isotropic symmetric 
models such as the off-lattice DLA model. Nonetheless in 
some stages of the growth the anisotropic properties of the 
system (lattice symmetry, anisotropy of the particles them- 
selves, conditions at the cluster boundary simulating elastic 
tensions, and so on394,2s25) may show an appreciable effect 
leading, for instance, to a change in the fractal dimension- 
ality. 

In Refs. 27 and 28 an analytical study was carried out 
of the conditions for the appearance of an instability of the 
axial form in the framework of the DLA model. The cri- 
terion for the growth of angular perturbations of the shape 
of the cluster boundary obtained using the analytical DLA 

is the same, apart from a different notation, as the 
criterion (2)  in the diffusive limit Ro$ L. 

The studies have shown thus that for the appearance of 
an instability of the axially symmetric form of islands it is 
not necessary that the system has anisotropic properties. 
However, the used to study the conditions 
for the shape instability of islands use, notwithstanding 
their physical simplicity, a number of phenomenological 
parameters which cannot be evaluated in the Zel'dovich- 
Folmer theory as well as unjustified assumptions. For in- 
stance, in the Zel'dovich-Folmer theory are introduced a 
surface tension coefficient, the molecular volume of the 
new phase, the equilibrium density of a saturated solution, 
and also conditions on the boundary of the island. Similar 
conditions and assumptions occur also in the DLA model. 
In essence this approach is based upon a stationary diffu- 
sion model with given boundary conditions that determine 
the rate of growth of the island boundary. As a result it 
remains unclear in how far the description of the appear- 
ance of structures with a complicated shape is determined 
by any particular phenomenological condition or parame- 
ter. Moreover, there are other mechanisms for the growth 
of clusters on a surface: diffusion of particles along the 
surface of the island itself, and also direct incidence of 
atoms from the phase above the surface onto the cluster 
perimeter (nondiffusive m e ~ h a n i s m ~ ~ ) .  In this connection 

it remains unclear in how far the mechanism of the cluster 
growth affects their shape instability. Treatment of the 
shape instability effect in the framework of a more general 
approach would make it possible to answer those ques- 
tions. 

Apart from the above-mentioned Zel'dovich-Folmer 
theory and numerical simulation methods one also uses for 
the description of phase transitions an approach based 
upon an expansion of the free energy of the system in a 
series in the order parameter,35 in which the relaxation is 
studied using a Ginzburg-Landau type equation for the 
order parameter.35-37 Such an approach to the kinetics of a 
phase transition does not require additional parameters or 
assumptions. For second-order phase transitions in a vol- 
ume or on a surface this approach made it possible to 
describe the growth of domains and a number of nontrivial 
features of the kinetics of structural transitions (see, e.g., 
Refs. 38 to 43). 

A study of the nucleus forming process in two- and 
three-dimensional systems undertaken in Refs. 35 to 37 
and 44 has shown that all phenomenological parameters of 
the Zel'dovich-Folmer theory can be expressed in terms of 
the expansion coefficients of the free energy and the kinetic 
coefficients of the order parameter equation and that all 
results of the Zel'dovich-Folmer theory are obtained as 
special cases of solutions of that equation. The order- 
parameter equation can be reduced to a dimensionless 
form. As a result the kinetics of the growth of the new 
phase is determined by solely two parameters: the degree of 
metastability h of the system and the magnitude I of the 
ratio of the contributions from the processes which do not 
and which do conserve the order parameter (when the 
clusters grow as the result of the adsorption of atoms by 
the surface these are the processes of the desorption of 
adatoms and their diffusive motion along the surface). All 
this makes it possible to assume that such an approach 
enables us in a natural manner (without introducing addi- 
tional assumptions or parameters) to study the occurrence 
of a shape instability of the islands which is caused by the 
universal properties of the growth process. 

2. ORDER-PARAMETER EQUATION 

The equation describing the relaxation of the order 
parameter field c(r,t)  in the new, energetically more favor- 
able state has the form35-37 

Here F[{(r,t)] is the free energy functional corresponding 
to the field c(r,t), r is the coordinate, t is the time, and ji 
is the kinetic operator which in the long-wavelength ap- 
proximation has the form ji= -pc~2+pn  where pc and pn 
are the kinetic coefficients in the case of a conserving and a 
nonconserving order parameter field, respectively. In the 
phase transitions on a surface considered here the field ( is 
the deviation of the density C(r,t) of adsorbed atoms in the 
new phase state from the average (quasistationary ) density 
C of adatoms on the surface: c(r,t)  = C(r,t) -c. 
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The values of the kinetic coefficients p, and p, and of 
the free energy F in the vicinity of a phase transition point 
determine completely the parameters of Eq. (3), and for a 
description of the phase transition kinetics one does not 
need any free parameters or additional a s ~ u m ~ t i o n s . ' ~ - ~ ~  
We write down the expression for the free energy in the 
vicinity of the phase transition point which follows from 
the Landau theory: 

Here A, fl, B, and are coefficients which, in general, 
depend on external parameters such as the temperature 
and the adatom density. 

When the coefficient B is different from zero the free 
energy (4)  describes a first-order phase transition. One 
checks easily that the phase transition occurs for 
/ 1 < 2 ~ ~ / 9 r  and is a transition from a state with zero order 
parameter, g=0, to a state with g=go= 2B/3r. 

The order-parameter equation (3) for the free energy 
(4) takes the form 

This is a Ginzburg-Landau type equation which can be 
used to describe various phase  transition^.'^-^' 

The kinetic coefficients p, and p, in Eq. (3) are con- 
nected with observable quantities. Indeed, we can write Eq. 
(5) in the linear approximation in { ( r , t )  describing the 
relaxation of small perturbations on the surface: 

In the theory of the adsorption of atoms one uses an 
equation which is the same as Eq. (6),26,34,45946 and the 
quantities D and a-' are the adatom diffusion coefficient 
(D) and the characteristic adatom lifetime due to their 
desorption from the surface or to their leaving the volume 
of the material (a-'). Hence it follows that the coefficient 
p,, is connected with atomic adsorption and desorption 
processes (p,, = a / A  ) while p, is connected with adatom 
diffusion on the surface (p,= D/A). 

We rewrite Eq. (5) using dimensionless variables 
4 = 2g/go - 1, p = r/x, and r = t/rO : 

Here go=2B/3r is the order parameter of the new phase 
at the phase transition point, 

and the quantity h=4(1 -A/A,) has the meaning of the 
degree of metastability. The dimensionless order parameter 
4 is equal in the old phase to - 1 and in the new phase to 
4 = 4,,--(l + ,/1+2h)/2 (~nzl+h/2forsmalldegrees 
of metastability, h( 1 ) . 

Equation (7) contains altogether only two dimension- 
less parameters: h and I. The degree of metastability h 
determines how close one is to the phase transition point, 
the difference between the new and the old energy states. 
Near the phase transition point one may assume that the 

parameter h is small: I h 141. The parameter I in (7) de- 
termines in fact the ratio of the contributions of two dif- 
ferent mechanisms for the growth of the islands of the new 
phase: direct capture and diffusive The parame- 
ter I varies over a broad range in different physical systems. 
It is just this parameter which determines the possible re- 
laxation regimes of a system. 

We note that the case of diffusive growth of the new 
phase is realized most often in experiments. In the 
Zel'dovich-Folmer theory26 and in the DLA 
was discovered an instability of the shape of the islands 
also in the diffusive limit. This case, corresponding to val- 
ues I( 1, is just the one which in what follows will be of the 
greatest interest. 

3. SOLUTIONS OF THE ORDER-PARAMETER EQUATION 

The order-parameter field corresponding to a critical 
nucleus minimizes the free-energy functional and is ac- 
cording to (3) a stationary solution of the order-parameter 
equation. For small degrees of metastability h this field can 
with fair accuracy be written in the form36344 

The quantity a,, is the critical size of an island and is 
determined by the degree of metastability h. It follows 
from the nucleus-like solution (8) that the width of the 
transition layer between the phases is of the order of unity 
in dimensionless variables and, hence, of the order of x in 
dimensional variables. 

We now look for nonstationary solutions of the order 
parameter equation (7). Using the Green function 
G(p) =Ko(pI)/2.rr of the equation 

we can rewrite (7): 

We look for solutions of Eqs. (7) and ( 10) describing the 
formation of axially symmetric islands of the new phase, 
with a size R which is large as compared to the width x of 
the transition layer (a-R/x, 1 ) in the form of a nucleus 
with some  correction^:'^'^^ 

Here &(p-a(r))  is the solution of Eq. (7) for the crit- 
ical nucleus but with a difference through the substitution 
a,,-a(r). To study the instability of the axial form of 
islands we introduce into our discussion the dependence of 
the size a on the azimuthal angle g, in the form 

The term with m= 1 describes the shift of the nucleus as a 
whole and we have thus a, zO. In looking for the instabil- 
ity conditions we restrict ourselves to small angular per- 
turbations, i.e., a,/a,( I. 
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It will become clear in what follows that the correction 
w(p,r) determines the diffusion flow to the nucleus and 
that in the case, considered in what follows, of small I and 
weak degrees of metastability it is a small quantity and a 
slowly changing function of the coordinates: 

Near the phase transition point ( I h 1 (1 ) the change in 
the size of the nucleus is usually a very slow pro~ess,34~36~47 
i.e., we may assume that the characteristic time 7, for the 
establishment of a distribution of the quantity w is short 
compared to the characteristic time ra for changes in the 
size of the nucleus: 

We note that in two-dimensional systems the condition for 
quasistationarity can nevertheless be violated for small I . "~  
We shall consider this case further for I=0. 

At any finite time r there is at large distances from the 
nucleus only the old phase ($(p+ co , r )  -. - 1 ). Since 
bcr(p - t~ , r )  + - 1, w ( p,r) must satisfy the condition 

Substituting the solution ( 11 ) into ( 10) and using the con- 
ditions ( 13) and ( 14) we get as a result an equation for the 
two functions w(p,r) and a($,r), namely: 

where 

We can show that, indeed, (16) is an equation for the 
function w since there is a unique relation between w and a 
which follows from Eq. ( 16) itself. Indeed, the terms in the 
square brackets on the right-hand side of (16) are multi- 
plied by a function ~ o s h - ~  (a - p) which varies rapidly 
near the boundary of the island so that outside the bound- 
ary it drops out of the equation because it is exponentially 
small. We now show that in the diffusive limit, 1-41, the 
quantity P ( ~ , T )  is a function which varies smoothly on 
scales of the order of 1/1 which are larger than the scale of 
the transition layer of the nucleus (at least in the initial 
stages of the growth of the angular harmonics). One can 
verify this by rewriting the expression for P(p,r) in the 
form 

where we have for am4ao 

Pm(p) = I G(p-p1 )cos ( rn~ ' )ch~2 (ao -p ' )dp ' .  

We shall prove the smoothness of the function Po(p). The 
integrand of Po(p) in (17) contains for I(1 a product of a 
rapidly changing function c o ~ h - ~ ( a ~ - p ' ) ,  which is non- 
vanishing in the vicinity of the boundary pl=ao of the 
nucleus, and the function G(p,p1)p' which varies 
smoothly in that neighborhood [here G(p,pl) is the func- 
tion G(p-p') of (17) integrated over the angles of the 
vector p']. This circumstance makes it possible to expand 
the function G(p,pl)p' in the variable p' near the maxi- 
mum value pl=pm of the function c o ~ h - ~ ( a ~ - ~ ' )  (we 
have here pmzao) .  Restricting ourselves in (16) to the 
zeroth approximation for the function G(p,p1)p' 
zG(p,pm)pm we get for Po(p) in (17) 

where lo is a modified Bessel function. Hence it follows 
that the characteristic scale for changes in the function 
Po(p) is the quantity 1/I. The function Po(p) thus changes 
smoothly over scales of the order of the transition layer of 
the nucleus in the diffusive limit, when 141. 

Thus, outside the boundary of the island Eq. ( 16) con- 
nects the two smoothly varying functions: 

and therefore this relation must also be valid on the bound- 
ary of the nucleus for p z a .  The terms in the square brack- 
ets on the right-hand side of Eq. (16) then give us the 
required relation between a (p , r )  and w(p =a(q,r) ) : 

1 [ 1 

1 ] 1 al'(p,r) 
w(p=a(rp,r) ) =- -- 

6 a ( ~ )  a,, 6 a2(q,7) 
. (20) 

To find the equations for the growth of the angular 
perturbations we apply the operator ( p - v2)  to Eq. ( 19). 
As a result we get 

Outside the boundary of the nucleus this equation is the 
ordinary diffusion equation for the fluxes of atoms to the 
growing nucleus. We integrate (2 1 ) over the transition 
layer where the function ~ o s h - ~ [ a ( ~ , r ) - p ]  is non- 
vanishing. We use the fact that in the initial stages of the 
growth of the angular perturbations we have am/ao(l and 
that the angles between the normal to the perturbed sur- 
face and the normal to the cylindrical surface at the same 
point are small: y-41. This enables us to write 

As a result the growth rate a(q , r )  of the size of the nucleus 
is basically given by the fluxes aw/ap of adatoms through 
the boundary of the island (141). We note that, for non- 
vanishing values of I, desorption and adsorption processes 
occur not only outside the island, but also on its surface. 
This leads to the appearance of adatom fluxes not only 
along the unshaded surface of the material, but also over 
the surface of the island itself. 
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To find explicit expressions for the fluxes we shall look 
for a solution of Eq. (21 ) outside the boundary 

in the form of an expansion in harmonics: 

where Ki and Zo are ith order Macdonald and modified 
Bessel functions. The asymptotic condition ( 15) has been 
taken into account in the expansion (24). To study the 
stability of small perturbations of the shape of the island 
am( r )  we write down the boundary condition (20) for the 
function w(p,r) in the approximation which is linear in 
am/ao : 

Matching the coefficients wo and wi s2 )  in (24) with the 
coefficients of the corresponding harmonics in the bound- 
ary condition (25) we get the explicit form of the fluxes: 
aw/ap for p = a ( p , ~ )  *0. As a result the equations for the 
growth of azimuthal perturbations (and of the mean radius 
of the island) have in the diffusive limit 141 which we are 
studying the form 

Equation (26) has been studied before, using the order 
parameter equation,44 in an analysis of the growth of azi- 
muthally symmetric islands. It is also well known in the 
phenomenological theory34,45-47 and describes circular is- 
lands which are growing (for a,> ac,=2/3h) due to fluxes 
of particles onto their boundary from the outside and from 
the inside (the first two terms, respectively) and also due 
to the adsorption of particles directly on the boundary of 
the island (last term) : 

where lo is the width of the layer in which direct capture by 
the perimeter of the nucleus takes place (lo=2x where x is 
the width of the transition layer of the island). 

Equation (27) describes the relaxation of the angular 
harmonics. For an analysis of the conditions for the ap- 
pearance of a growth instability of the angular perturba- 
tions we find the instability growth rates: 

We have obtained Eqs. (27) and (29) for arbitrary 
ratios of the parameters a. and I-' in the case of large 
islands (ao) 1 ) which are growing basically via adatom 
diffusion (14 1 ). Let us consider the case when the diffusion 
length L is large compared with the radius R of the nu- 
cleus: ao141. We use the asymptotic relations for the func- 
tions Km(x) and Zm(x) (x= aol) .48 In that case (27) and 
(29) take the form 

In dimensional variables these equations correspond to 
Eqs. (1)  and (2) obtained in the phenomenological 
theory.26 We note that in this limit (sol( 1 ) the growth of 
the shape perturbations (the condition Am=O) can be ob- 
served only for harmonics with numbers m>3, whereas 
this is not possible for m=2 whatever the values of the 
parameters. 

We show in Fig. 1 the conditions for the occurrence of 
an instability for an arbitrary ratio of the parameters a. 
and I at a,,= lo2. The solid lines show here the relations 
Am=O of (29). The instability regions (Am>O) for har- 
monics with numbers m=3, ..., 6 lie to the left of the Am=O 
curves enclosing them for each corresponding harmonic. It 
is clear from the figure that instability is possible only for 
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FIG. 1.  Instability diagram (29),  /1,=0, for angular 
perturbations with the size a,, and the parameter I pa- 
rameter as variables, for harmonics with m = 3, ..., 6 
(numbers given at each curve) and a critical size 
a,,=100. The curves with the short dashes give the 
solution (30) for the corresponding harmonics (in the 
a,l<l case). The curve with the long dashes gives the 
condition (31) for the violation of the quasistationary 
diffusive growth. 

sufficiently small values of the parameter 1 (1~5 .6 .  10W5), 
i.e., for diffusion lengths L which are appreciable as com- 
pared to the width x of the transition layer. It is necessary 
in that case that the nucleus have a rather large radius: 
a. > a,* =: lo4. The growing islands thus have initially at a. 
< a,* an axially symmetric shape. When the size a,* is 
reached the unstable harmonic for which the condition 
A m = O  is realized starts to grow. In the 1 ~ 3  . lop5 range the 
harmonic with m = 3 is the first to start its growth [with 
increasing ao(r)]. However, in the range 
3 .  10W5<1<5.6 there is a region in which with in- 
creasing ao(r) initially either the harmonic with m=4 or 
the one with m = 5 becomes unstable, passing respectively 
the third or the third and fourth harmonics. In the isotro- 
pic system considered, the growth of only one harmonic 
with a number m)6 is not possible whatever the value of 
the parameter I. These harmonics (m26) can grow in this 
entire instability region together with other harmonics 
(m=3 to 5). By choosing the physical conditions which 
realize the appropriate values of I one could thus observe, 
in a well defined range of island sizes ao, the growth of 
perturbations with symmetries of order m= 3, m=4, or 
m = 5, whereas other harmonics of the perturbation would 
be damped in time. After the instability of one of these 
harmonics has set in, the criteria for the instability of the 
other harmonics may, in general, change. One can thus 
determine from Fig. 1 the boundaries of the instability 
region and the number of the unstable harmonics on a 
boundary of this region. 

We show in Fig. 1 also the solutions A m = O  for the case 

aol(l of (30) (short-dashed lines for each of the corre- 
sponding harmonics) corresponding to the phenomenolog- 
ical growth equations ( I )  and (2). It is clear from the 
figure that the phenomenological approach corresponds to 
values of the parameter I in the I< lop4 range. The quali- 
tative difference of the instability for I>  3 lo-' from the 
results of Ref. 26 is connected with the fact that in that 
parameter range for clusters which are unstable (ao 
>, a,*) the flux over the surface of the island becomes im- 
portant as I increases. This flux leads to vanishing of the 
instability, first for the harmonic with m = 3, next for those 
with m=4 and 5, and finally for the other harmonics. 

When a,, decreases the obtained instability diagram 
shifts towards smaller sizes a and larger values of the pa- 
rameter I (Fig. 2).  For instance, for a,,= l the instability 
occurs already for sizes a-  lo2. A further formal decrease 
in a,, in Eq. (29) shifts the instability region to a- 1, i.e., 
it is possible to realize instability in the initial stages of the 
cluster growth. However, the critical sizes a,,- 1 are lim- 
iting cases for the analytical studies of the order parameter 
equation given here since the degree of metastability h be- 
comes a quantity of the order of unity. 

The physical causes for the decrease of a,, are, for 
instance, a change in the boundary conditions, or in the 
linear tension coefficient, or in the sticking coefficient. A 
change in those quantities for clusters of one size can thus 
lead to a different set of unstable harmonics, i.e., to differ- 
ent structures. This, in turn, leads to a change in the fractal 
dimensionality (as will be shown below). 
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4. NONSTATIONARY GROWTH IN THE 1-0 LIMIT 

In the foregoing we assumed that the condition for 
quasistationarity of the function w(p,r) of (14) was satis- 
fied, which made it possible to drop the term w(p,r) in Eq. 
( 16). Substituting the explicit form of the function w(p,r) 
of (24) into that condition and also using Eq. (26) for the 
growth of an island we can determine more precisely the 
criterion for the violation of the quasistationarity of the 
correction to w(p,r) : 

It is clear that the quasistationarity is violated at short 
times, i.e., in the initial stages of the growth of the islands 
when their size is small. In the diffusive limit (1<1) con- 
sidered here the range of sizes and times for which the 
criterion (32) is satisfied is considerably broadened (Figs. 
1 and 2: the dashed line in the left-hand part of the figure). 
One can see clearly that as 1-0 the curves hm=O enter the 
region to the left of the dashed line in which the quasista- 
tionarity condition is violated. 

The case of diffusive growth of the islands (when there 
are no processes which do not conserve the number of 
particles) raises a number of problems connected with the 
absence of stationary solutions of the two-dimensional dif- 
fusion equation. The violation of condition (14) means 
that one must take into account in Eq. (21) the term 
w(p,r). We do this in the limiting case I=0 when the 
quasistationarity condition is certainly not realized. We 
then have for w(p,r) the equation 

FIG. 2. Instability diagram for values of the critical size 
of a nucleus a,,= 10 (a)  and a,,= 1 (b).  

Outside the boundary it is the usual nonstationary two- 
dimensional diffusion equation. Inside the island this equa- 
tion has a stationary solution which is independent of the 
coordinates. There is thus no flow inside the island, as is 
physically obvious since for I=0 there are no desorption or 
adsorption processes. The nonstationary solution of the 
two-dimensional diffusion equation can be written outside 
the island ( p > a ( 9 , ~ )  ) in the form49,50 

The second term is the well-known nonstationary axially 
symmetric solution, valid in the limit of large values of the 
time (T( &/a0) 1 ). Here A,(a(r) ) is an unknown quan- 
tity determining the function w(p,r) on the boundary 
p =; a (p , r )  of the nucleus. For small times ( &/a,< 1 ) one 
must take into account the derivative w(p,r) in the whole 
spatial region, including the boundary. The boundary con- 
dition for the function w(p,r) therefore differs from the 
one for the case (20) of quasistationary diffusion. How- 
ever, asymptotically one may assume for fi/ao)l, when 
(33) is valid, the function w(p,r) to be quasistationary 
near the boundary of the island and neglect w there. Using 
(20) we find the coefficients in the solution (33): 
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where we have introduced the notation ~ ,=J , (ara , )  -'. 
We note that the asymptotic value of Ao(a(r) ) tends to wo 
of (26) as aO(r)  -I-' - a, i.e., 

To find the growth equations for the angular perturbations 
we integrate (32) over the transition layer (where we can 
already neglect w). We use the conditions that the devia- 
tion of the shape of the island from the cylindrical one is 
small, similarly to what we did in the diffusive limit. The 
asymptotic expressions (in the limit of large time values 
&/ao> 1) for the growth rates of the harmonics in a sys- 
tem with a conserved order parameter (1-0) have the 
form 

FIG. 3. Instability diagram ( 3 7 ) ,  A,=O, for angular 
perturbations in the case of a nonquasistationary diffu- 
sive growth regime in the I=0 limit for the harmonics 
with m=3,  ..., 7 .  

Equation (35) for the growth of a cylindrical island is 
known from the phenomenological theory. It is asymptotic 
in the long-time limit &/ao> 1 .49350 

For an analysis of the instability region of the growth 
of the harmonics we find the growth rates of the perturba- 
tions in systems where the particle number is conserved: 

Neglecting the feeble dependence of the function 
ln(4 &/ao) on the mean radius and the time we can write 
down the condition for instability of the mth harmonic 
(Arn>O) : 

The difference between island radii corresponding to con- 
dition (38) for the (m+ 1)st and the mth harmonic in- 
creases for large values of m approximately as ma,, 
X ln(4 &/ao). As a, increases instability sets in succes- 
sively for all numbers m)3. 

In the ao)ac, limit and in the approximation of a weak 
dependence of the logarithm on its argument we can inte- 
grate the equation for the growth of the radius of an island, 
and the quantity a, is proportional to fi. Condition (38) 
takes then the form 
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The weak time dependence drops out and there remains Dm 
only a dependence on the critical size of a nucleus. It is 
clear that for small a,, (acr> 1) the sizes for which the 
harmonics become unstable are also rather small (see 
Fig. 3). 

5. COMPARISON WITH THE DLA CONTINUUM MODEL IN 
THE DIFFUSIVE LIMIT. FRACTAL DIMENSIONALITY 1.90 I \ 

Let us compare the approach based upon the order 
parameter equation and the DLA model. In an analytical 
formulation of the DLA model the equations of that model 
are usually written in the form5-11927928 1.80 

The subscript i indicates here that a quantity is taken at the 
boundary of a cluster, x (p )  is interpreted as the curvature 
of the cluster boundary, and v, is the normal rate of growth 
of a cluster. One checks easily that the function u of the 
DLA model is the analog of the field w of (11). Indeed, 
Eq. (ma) for the function u and condition (40c) at large 
distances are the same as the corresponding Eq. (23) in the 
diffusive limit I -  0 and condition ( 15) for the field w. The 
growth rate ( 4 0 ~ )  is, apart from a numerical coefficient, 
the same as the rate a of (22) (for 1-0). To compare the 
conditions (40b) and (25) at the cluster boundary we ex- 
press (25) in terms of the curvature. In the case of small 
perturbations of the axial shape of an island, we have for 
the curvature 

a2+2a'2-aa" a-a" 
k ( ~ , r ) =  (a2+a12)3n 17. (41 

Using this relation we can write condition (25) for the field 
w at the boundary in the form 

It is clear that conditions (40b) and (42) are identical 
and for the quantities occurring in the DLA model and in 
the order parameter equation there are the relations 

Hence it follows that for a,,- 1 the parameters of the 
order-parameter equation are essentially the same as the 
parameters of the DLA model. 

In the course of solving the order-parameter equation 
we have thus studied the growth of the angular perturba- 
tions of the cluster boundary. Moreover, the main criterion 
in fractal growth models5-11p27-31 is the fractal dimension- 
ality 9. Let us study the effect of angular perturbations of 
the boundary on the magnitude of 9. Consider the growth 
of a two-dimensional cluster with one unstable harmonic 
m: 

FIG. 4. The fractal dimensionality (45) as function of the amplitude 

(40d) (6,=am/a0) of the growing mth harmonic. 

From the definition of the fractal dimensionality (see the 
Introduction) it follows that the area of the cluster is pro- 
portional to R~ [where R is the maximum size, which in 
the case (44) is equal to R =ao+am]. As a result we get for 
B=D, :  

We note that a cluster with a surface shape (44) or ( 12) is 
not a fractal object. Nonetheless, it is convenient to retain 
for the quantity (45) the term "fractal dimensionality," 
bearing in mind that the result of the development of the 
instability of similar types of cluster is a fractal. The fractal 
dimensionality of the cluster (45) is independent of the 
number m of the harmonic and determined only by the 
amplitudes a, and a,. It is clear from Fig. 4 that the 
appearance of a nonspherical harmonic causes the quantity 
9 to deviate from the Euclidean dimensionality n =2. As 
the ratio am/ao increases, the value of 9 decreases mono- 
tonically. The increase in the number of unstable harmon- 
ics leads to a yet larger decrease in the fractal dimension- 
ality. One checks easily that in the case of the growth of a 
cluster with two unstable harmonics m and I the fractal 
dimensionality is Dm,[ < Dm, Dl. For instance, in the initial 
stage of the growth the relation 

is satisfied. 
A change in the structure of the unstable mode leads 

thus to a change in the fractal dimensionality. Moreover, 
we have already noted earlier that a change in the structure 
of an unstable mode is made possible by a change in the 
conditions at the cluster boundary. This agrees with the 
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results of a simulation of fractal clusters in which a change 
in the boundary conditions leads to a change in the fractal 
dimensionality. 

6. CONCLUSION 

We have studied in the present paper the stability of 
the axial shape of two-dimensional clusters, starting from a 
Ginzburg-Landau type equation for the order parameter 
field. We have obtained criteria for the instability of har- 
monics and determined the size R (ao in dimensionless 
variables) of a cluster and the quantity I which is the ratio 
of the contributions from growth mechanisms which con- 
serve and which do not conserve the order parameter. We 
have shown that shape instability occurs when the main 
cluster growth mechanism is diffusive (diffusion of ada- 
toms along the surface of the material). As the processes 
which do not conserve the order parameter (adsorption 
and desorption) get stronger, the fraction of the flow along 
the surface of the cluster increases and this suppresses the 
instability. In the aol<l limit the instability criteria ob- 
tained are the same as the results of the studies of Ref. 26 
which were carried out using the phenomenological 
Zel'dovich-Folmer theory. In the diffusive limit 1-0 the 
approach based on the order parameter equation is for 
a,,- 1 analogous to the DLA model for fractal clusters. 
We have shown that the growth of the angular harmonics 
and the increase in their number leads to a lowering of the 
fractal dimensionality. 

It follows from the results obtained that the phenom- 
enon of an instability of a symmetric shape of a nucleus of 
a new phase has a universal nature in the case of a diffusive 
growth mechanism and does not require an additional an- 
isotropy of the system. Such an anisotropy makes the oc- 
currence of an asymmetry in the shape easier. We note that 
anisotropy may arise as the result of a phase transition 
when a nucleus leads to an appreciable deformation of the 
surrounding 

'Ya. E. Geguzin and Yu. S. Kaganovskii, Usp. Fiz. Nauk 125, 489 
(1978) [Sov. Phys. Usp. 21, 61 1 ( 1978)]. 

2 ~ 1 .  S. Zhdanov, Fiz. Tverd. Tela (Leningrad) 26, 2937 (1984) [Sov. 
Phys. Solid State 26, 1775 (1984)l. 

3R. A. Sigsbe, J. Appl. Phys. 42, 3904 (1971). 
4 ~ .  Langer, Rev. Mod. Phys. 52, 1 (1980). 
B. M. Smirnov, Physics of Fractal Clusters, [in Russian] Nauka, Mos- 
cow (1991). 

60n  Growth and Form (Eds. H. Stanley and N. Ostrowsky), Martinus 
Nijhoff, The Hague (1985). 

7~ggregation and Gelation (Eds F. Family and D. P. Landau), North- 
Holland, Amsterdam ( 1984). 

'phase Transitions and Critical Phenomena (Eds. C. Domb and J. L. 
Lebowitz), Academic Press, New York (1987). 

9 ~ .  Meakin, Phys. Rev. A27, 2616 (1983). 
lop. Meakin, Phys. Rev. B30, 4207 (1984). 
"Computer Simulation Studies in Condensed Matter Physics (Eds. D. 

Landau, K. Mon, and H. Schuttler), Springer Verlag, Berlin ( 1988). 

1 2 ~ .  A. Niclasson and C. G. Granquist, Phys. Rev. Lett. 56, 256 (1986). 
I3M. Matsushita, M. Sano, Y. Hayakawa et al., Phys. Rev. Lett. 53, 286 

( 1984). 
1 4 ~ .  M. Brady and R. C. Ball, Nature 309, 225 (1984). 
I5Gy. Radnoczi, T. Viscek, L. M. Sander, and D. Grier, Phys. Rev. A35, 

4012 (1987). 
I6w. T. Elam, Phys. Rev. Lett. 54, 701 (1985). 
I7ya. B. Zel'dovich, Zh. Eksp. Teor. Fiz. No 12, 525 (1942). 
18v. P. Skripov, Metastable Liquids [in Russian], Nauka, Moscow 

(1972). 
1 9 ~ .  Binder and D. Stauffer, Adv. Phys. 25, 343 (1976). 
2 0 ~ .  Family and P. Meakin, Phys. Rev. Lett. 61, 428 (1988). 
"A. B. Eriksson and M. Johnson, Phys. Rev. Lett. 62, 1698 (1989). 
22R. C. Ball and R. M. Bready, J. Phys. A18, L809 (1985). 
2 3 ~ .  Meakin, Phys. Rev. A36, 332 (1987). 
2 4 ~ .  Ben-Jacob, G. Deutscher, P. Garic et al., Phys. Rev. Lett. 57, 1903 

(1987). 
2 5 ~ .  Meakin and T. Vicsek, J. Phys. 1420, L171 ( 1987). 
2 6 ~ ~ .  A. Bychkov, S. V. Iordanskii, and E. I. Rashba, Fiz. Tverd. Tela 

(Leningrad) 23, 1166 (1981) [Sov. Phys. Solid State 23, 678 (1981)l. 
2 7 ~ .  A. Kessler, J. Koplik, and H. Levine, Phys. Rev. A30, 2820 (1984). 
28~ractals in Physics (Eds. L. Pietronero and E. Tozatti), North Holland 

(1986) [Russ. transl., Mir, Moscow (1988) p. 3361. 
2 9 ~ .  Meakin, Phys. Rev. A27, 604 (1983). 
3 0 ~ .  Meakin, Phys. Rev. A27, 1495 (1983). 
31T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981); Phys. 

Rev. B27, 5686 (1983). 
3 2 ~ .  N. Sutherland, J. Colloid Interface Sci. 22, 300 (1985). 
33Ya. N. Frenkel', Kinetic Theory of Liquids, Izd. AN SSSR, Moscow 

(1945) [English translation published by Oxford University Press]. 
3 4 ~ .  D. Borman, E. P. Gusev, Yu. N. Devyatko et al., Poverkhnost' No 

8, 22 ( 1990). 
3 5 ~ .  D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Nauka, 

Moscow ( 1976) [English translation published by Pergamon Press]. 
3 6 ~ .  Z. Patashinskii and B. I. Shumilo, Zh. Eksp. Teor. Fiz. 77, 1418 

(1979) [Sov. Phys. JETP 50, 712 (1979)l. 
3 7 ~ .  Z. Patashinskii and V. A. Pokrovskii, Fluctuation Theory of Phase 

Transitions, Nauka, Moscow ( 1980) [English translation published by 
Pergamon Press]. 

3 8 ~ .  M. Alen and 3. W. Cahn, Acta Metall. 27, 1085 (1979). 
3 9 ~ .  Grant and J. D. Gunton, Phys. Rev. B29, 6266 (1984). 
4 0 ~ .  E. Dzyaloshinskii and I. M. Krivecher, Zh. Eksp. Teor. Fiz. 83, 1576 

(1982) [Sov. Phys. JETP 56, 908 (1982)l. 
41Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crys- 

tal Symmetries, [in Russian] Nauka, Moscow (1984). 
4 2 ~ .  R. Tilley and B. Zeks, Solid State Commun. 49, 823 (1984). 
43M. Zannetti and T. Schneider, J. Phys. A22, L597 (1989). 
"Yu. N. Devyatko, S, V, Rogozhkin, R. N. Musin, and B. A. Fedotov, 

Zh. Eksp. Teor. Fiz. 103, 285 (1993) [JETP 76, 155 (1993)]. 
4 5 ~ .  P. Zhdanov, Elementary Physic-Chemical Processes on a Surface, 

Nauka, Novosibirsk ( 1988). 
4 6 Y ~ .  K. Tovbin, Theory of Physico-Chemical Processes on a Gas-Solid 

Boundary, Nauka, Moscow ( 1990). 
47 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Nauka, Moscow 

( 1979) [English translation published by Pergamon Press]. 
481. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and 

Products, Nauka, Moscow (1971) [English translation published by 
Academic Press]. 

4 9 ~ .  P. Zhdanov, Surf. Sci. 215, L332 (1989). 
'OV. Gosele and F. A. Hantley, Phys. Lett. A55, 291 (1975). 
5 1 ~ .  M. Lifshitz and L. S. Gulida, Dokl. Akad. Nauk SSSR 87, 377 

(1952). 
5 2 ~ .  A. Brener and V. I. Marchenko, Pis'ma Zh. Eksp. Teor. Fiz. 56,381 

(1992) [JETP Lett. 56, 368 (1992)l. 

Translated by D. ter Haar 

168 JETP 77 (I), July 1993 

\ 

Devyatko et a/. 168 


