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This paper presents the first consistent analysis of the tensor form, numerical value, and 
temperature dependence of the exchange-relativistic double-ion anisotropy in pairs of 3d-ions 
of the S-type. In addition to the well-known quasidipole contribution, the anisotropy 
contains a number of new nondipole contributions of the same order of magnitude but with a 
characteristic temperature dependence. Microscopic calculations show that the 
contribution of the exchange-bound pair of ~ e ~ +  ions to the effective anisotropy constant is 
on the order of 1 cm-', which exceeds the respective magnetodipole contribution. In 
contrast to established ideas, exchange-relativistic anisotropy has proved to be one of the most 
important sources of magnetic anisotropy and magnetoelastic coupling in 
magnetodielectrics based on 3d-ions of the S-type, such as Fe3+, ~ n ~ + ,  cr3+,  and ~ i ~ + .  A 
four-parameter formula for the temperature dependence of the magnetic-anisotropy 
and magnetoelastic-coupling constants is derived in the molecular field approximation. Finally, 
an explanation is given of the specific temperature behavior of the anisotropy constants 
in a-Fe203 and Cr203. 

1. INTRODUCTION 

Studying the nature and special features of spin anisot- 
ropy in systems with 3d-ions is one of the classical prob- 
lems of magnetism (the magnetic anisotropy problem) and 
microwave spectroscopy (the problem of the spin Hamil- 
tonian ) . 

The most complicated for analysis and, hence, the least 
studied is the double-ion spin anisotropy of the exchange- 
relativistic origin, an effect of third-order perturbation- 
theory terms linear in the exchange interaction of ions 1 
and 2 and quadratic in the spin-orbit coupling for ions 
1 (2). Schematically, 

plus terms that are Hermitian conjugate to the above terms 
and in which ion 1 is interchanged with ion 2. 

Below we speak of contributions of four types I-IV 
corresponding to the terms in Eq. ( 1). For ions 1 and 2 
with spins S1=S2= 1/2 and orbit-nondegenerate ground 
states, the effective spin Hamiltonian (1)  has the simple 
form 

with a traceless symmetric tensor Kij of the anisotropy 
constants. The spin anisotropy of the form (2) considered 
as early as 1937 by Van ~ l e c k '  became known as quasidi- 
pole, or exchange anisotropy (anisotropic exchange). For 
the simplest case of S1=S2= 1/2 this type of anisotropy 
was studied by ~ o r i ~ a ~  and ~ o s i d a . ~  

Historically a situation emerged in which the operator 
(2) was used without rigorous substantiation in the gen- 
eral case for any ions and spin values. The fairly simple 
temperature dependence of the corresponding contribution 
to the effective anisotropy constant, 
AK( T )  - B;( T) - m2( T) (for equal spins) was consid- 
ered in many papers, including the fundamental work on 
the widely known systems of the Cr203 and a-Fe203 

as "representative" of the double-ion anisotropy of 
dipole and exchange-relativistic origin and was widely used 
for separation and quantitative estimate of the contribu- 
tions of various anisotropy mechanisms. 

The situation changed little after publication of the 
paper of Nikiforov, Mitrofanov, and   en,^ who obtained 
the general tensor form of the spin Hamiltonian Van for 
any ions and spins. Because of elaborate calculations and 
the absence of analysis in Ref. 6 the paper has not influ- 
enced the standard practice of the simplified approach to 
exchange-relativistic anisotropy. 

The numerical values of the exchange-relativistic an- 
isotropy parameters strongly depend on the nature of the 
ground orbital state of the exchange-bound 3d-ions. For 
instance, for ions with the ground states T1 and T2 the 
energy denominators in ( 1) are usually determined by the 
small splitting of the T, and T2 states in a low-symmetry 
crystalline field (CF), which leads to larger effects than for 
ions with the ground states A , ,  A,, and E. In all cases, we 
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believe, the relation most suitable for semiquantitative es- 
timates is 

where is the one-electron spin-orbit coupling constant, 
I the exchange integral, and A E  the energy of the lowest 
energy levels in the 3d-ion that are mixed with the ground 
state via spin-orbit coupling. The factor 7, which among 
other things allows for many contributions from third- 
order perturbation terms, may, as we shortly show, reach 
values of order ten. The approximate relation 

with Ag the deviation of the g-factor from the purely spin 
value, introduced by ~ o r i ~ a , ~  has a greatly restricted 
sphere of application. Its unjustified use has led, among 
other things, to the conclusion about the insignificance of 
the exchange-relativistic contribution to the anisotropy of 
pairs of 3d-ions of the S-type (ions with an orbit- 
nondegenerate ground state Al or A,, for instance, cr3+,  
~ n ~ + ,  ~ e ~ + ,  and N?+), that is, ions of the greatest inter- 
est in studying magnetodielectrics. 

The present paper is devoted mainly to S-ions. We 
show that rigorous analysis of Van leads to a radical re- 
evaluation of many established ideas about the spin-orbit 
structure of exchange-relativistic anisotropy and the nu- 
merical value and temperature dependence of the respec- 
tive contribution to the anisotropy constants. 

2. THE EFFECTIVE SPIN HAMlLTONlAN OF EXCHANGE- 
RELATIVISTIC ANISOTROPY. NONDIPOLE 
CONTRIBUTIONS 

In establishing, analyzing, and numerically estimating 
the Hamiltonian of exchange-relativistic anisotropy we fol- 
low the method developed in Ref. 7, which considers one 
of the main exchange-relativistic effects of second-order 
perturbation theory, the Dzyaloshinskii-Moriya antisym- 
metric exchange. The most convenient way to describe 
spin-orbit and especially exchange interactions in com- 
pounds based on 3d-elements, which are characterized by a 
strong CF with a symmetry close to cubic (octahedral and 
tetrahedral), is to employ the method of double irreducible 
tensor operators8 acting both in spin and orbit spaces. 

According to ~udd,' such operators have the form 

X(-1) 1 / 2 + ~ ~ + j ( r ~ ) + p ~  *t afTp@fr'p'u' , ( 3 ) 

where [I: :] are the Clebsch-Gordan coefficients of the ro- 
tation group and the point group Oh (see Refs. 9-1 I ) ,  and 
it and 2 are the electron creation and annihilation opera- 
tors. In the space of the I t ~ k ~ S M s r p )  functions, which 

describe the multielectron configurations of 3d-ions in a 
strong cubic CF, the operators of the form (3) act accord- 
ing to the Wigner-Eckart theorem:'' 

where ( 1 : : )  and (:::) are the Wigner coefficients of the 
rotation group and the Oh group, respectively (see Ref. 
9-11), and the w("~) are the reduced matrix elements 
(spectroscopic coefficients). Here in the single-particle 
case we have 

with [a] = 2a + 1 and [ r ]  the degree of the representation. 
In terms of double irreducible tensor operators the 

Hamiltonian of spin-orbit coupling is 

where c3d is the one-electron spin-orbit coupling constant. 
The Hamiltonian of the exchange interaction of two 

ions with electron configurations of the t:pF type has a 
more complicated form:' 

with 

the scalar product of double tensors in the spin space and 
the tensor product (of rank y) of the same tensors in the 
orbital space. The exchange parameters I that allow for 
potential and kinetic exchange, according to ~ n d e r s o n , ' ~  
have the form 
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b(flrlp1 If2r;ll;)b(f2r$2Ifir;~;) IV. 
U 

where we have employed the standard notation for Heisen- 
berg exchange integrals F, the transport integral b, and the 
average transport energy U. 

(12) 

Without writing the cumbersome general expressions 
for the effective operator of exchange-relativistic anisot- ... 
ropy, which emerges in third-order perturbation theory, we where C: : :) is a 6j-symbol, {. . .) a 9j-symbol,10 and the 
analyze the spin-operator structure and consider combina- 
tions of spin-operator products corresponding to four dis- operators Q~(s) act accordingto the wigner-~ckart the- 

tinctly different perturbation-theory contributions I-IV. Orem, 

Via the well-known1' relations of the theory of angular 
momentum these products can be transformed to tensor 
products of the following form: (SM( v~(s)  ( S ' M ' ) = ( - I ) ~ - ~  
I. 

with the values of S and S' determined in accordance with 
perturbation theory. The spin-operator products on the 
left- and right-hand sides of Eqs. (9)-(12) are projected 
on the space of spin functions of the ground state of the 
ions. The absence on the right-hand side of these equations 
of summation over Sit2 and S;:2, the spins of the interme- 
diate (excited) states of ions in a pair, is an indication that 
in calculating the operator-product matrix on the left-hand 
side there emerges summation only over the projections of 
the intermediate spins. 

Equations (9)-(12) form the basis for introducing the 
effective spin operator of second-order exchange- 
relativistic double-ion anisotropy (the term with k= 2). 

For ions 1 and 2 with orbit-nondegenerate ground 
states (such ions as I7e3+, ~ n ~ + ,  cr3+, and ~ i ~ + )  the 
effective spin operator Van has the general form 

where the e ( lk1 ,2k2)  are tensor constants.') In addition 
to the well-known standard quasidipole terms 
(kl = k2= 1 ), Van contains a number of new "nondipole" 
terms with klk2=20(02),22 (mechanisms I and 11) and 

(the difference from (9) is only in the phase with klk2= 13(31) (mechanisms I11 and IV). In the gen- 
( - 1) k2+a+1 under the summation sign), 
111. 

era1 case purely orbital exchange (a=O) yields a contribu- 
tion to the term with k1=k2= 1 (mechanisms I and 11) 
and the term with kl=2, k2=0 or kl=O, k2=2 (mecha- 

P;,(sl) ( P c s l )  P ( s 2 ) )  P;2(s2)) 
nisms I11 and IV). An important consequence of Eqs. (9)- 
(12) is the presence of the well-known dependence of the 
parameters p ( k l k 2 )  on the values of k, and k2 at certain 
values of the intermediate spins for each of the four types 

= C (-1)S;-Sl+a+I of perturbation-theory contributions. This enables the ratio 
k1k2 S1 S; 1 of the values of the p (k1k2)  parameters for the quasidi- 

pole and nondipole contributions to be found for each type 
x [ Pkl(sl)  x P(s2) I:, ( 1 1 ) of ion pairs. 
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3. THE ENERGY OF THE EXCHANGE-RELATIVISTIC 
DOUBLE-ION ANISOTROPY, ALLOWING FOR NONDIPOLE 
CONTRIBUTIONS 

With magnetic substances the molecular fiel; approx- 
imation provides a simple way of going from Van to the 
anisotropy energy.  ere'^ 

(C(s ) )T .=(  @(s) ) T ~ ( s ) ,  (c) = ( c ) O p k ( ~ ) ,  
(14) 

where is a spherical tensor harmonic, ( P$) the thermo- 
dynamic average, with 

and pk( T)  the characteristic temperature factor determin- 
ing the temperature dependence of averages for tensors of 
rank k (Ref. 13): 

Allowing for (13) and (14), we can write 

The nontrivial tensor products of harmonics at 
k1 = k2= 2 or kl = 3 and k2 = 1 can be simplified by employ- 
ing, for instance, the following relations: 

By going from spins S1 and S2 to the base vectors of 
the magnetic structure, isolating the principal vector (for 
instance, the antiferromagnetism vector in two-sublattice 
antiferromagnets ) , and substituting 

(the "minus" is chosen if the ions 1 and 2 belong to dif- 
ferent sublattices for odd kl(k2), and the "plus" in other 

cases), for collinear or weakly collinear magnetic sub- 
stances instead of ( 16) we can obtain the following expres- 
sion for the effective anisotropy energy: 

For the tensor of the effective magnetic anisotropy con- 
stants we have 

An important factor that makes it possible to substan- 
tially lower the number of various parameters in the ex- 
pression for the constant $ is the known dependence of 
the e ( k l k 2 )  on the spin quantum numbers in the ground 
and excited states of an ion pair and the indices kl and k2. 
For instance, at a=  1, for type-I contributions we have 

with klk2 values equal to 11, 22, 20, and 02. 
For type-I1 contributions we have 

with the same values of k, and k2 [the difference from (22) 
k is only in the phase ( - 1 ) k2 = ( - 1 ) 11. 

For type-I11 contributions that allow for Vs0(1) we 
have 

with klk2 values equal to 11 and 31 [allowing for V,(2) 
yields a similar result, in which, however, kl and k2 change 
places, as do S1 and S2]. 

Finally, for type-IV contributions that allow for 
Vso( 1 ) we have 

1 kl 
<(klk2) = [kll [ S1 S;' S1 2 ] < ( 1 ~ ) 6 k 2 1  (25) 

with klk2 values equal to 11 and 31 (allowing for Vs,(2) 
yields a similar result, in which, however, kl and k2 change 
places, as do S1 and S2). 

Naturally, $(I), $(II), ~ ( I I I ) ,  and $(Iv) depend 
on S, ,  S; ,  S2, and S;. Equations (22)-(25) make it pos- 
sible in each case of a definite ion pair to establish the 
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relative value of the standard quasidipole contribution 
(kl = k2 = 1 ) and nontrivial tensor contributions 
(klk2 = 20,02,22,13,3 1 ) to the constant of second-order ef- 
fective magnetic anisotropy. 

In all cases of magnetic substances with equivalent 
spins, the temperature dependence of the effective constant 
(or constants) of second-order exchange-relativistic an- 
isotropy may generally, according to Eq. (21), be repre- 
sented in the following form: 

K(T)=K(o)P:+Kzo(P~-P:) +~22(p:-p:) 

FIG. 1. The temperature dependence of the 
second-order magnetic anisotropy constant in 
hematite a-Fe203: the stand for the experi- 
mental data of Ref. 17, curve I represents the 
result of processing the experimental data by 
the four-parameter formula (26) with allow- 
ance for exchange-relativistic contributions, 
and curve I1 the result of processing the ex- 
perimental curve without allowing for 
exchange-relativistic anisotropy. Curves a, b, 
c, and d represent the temperature dependence 
of the factors determining the temperature be- 
havior of the dipole or "quasidipole" anisot- 
ropy (curve a: pi), and also the deviation from 
this behavior for the nondipole 20-(02)- 
contribution (curve b: p2-p:), the 22- 
contribution (curve c: and the 13- 
(31 )-contribution (curve d: p2p3- p:). 

where for convenience we have introduced the differences 
2 2 p - pl ,  etc., which vanish at T=O K and at T =  TN(T,) 

(see Figs. 1 and 2). The constant KI1 of ordinary quasidi- 
pole anisotropy is determined in this case via the relation 
Kll=K(0) -K20-K22-K13. 

The subscripts m and n on the constants K,, indicate 
the rank of spin operators in the effective spin Hamiltonian 
of anisotropy, with K2,= KO, and K3i =K13 for equal spins. 
Allowing for second-order magnetodipole and single-ion 
anisotropy only leads to the renormalization of constants 
K(0) and Kz0, respectively, so that Eq. (26) serves as a 
universal four-parameter formula for the temperature de- 
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FIG. 2. The temperature dependence of the 
second-order magnetic anisotropy constant in 
the ferromagnet Cr20,: the stand for the 
experimental data of Ref. 4, and curve I rep- 
resents the result of processing the experimen- 
tal data by formula (26) with allowance for 
exchange-relativistic contributions. Curves a, 
b, c, and d are the same as in Fig. 1 for 
S, =S2= 3/2. 
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pendence of the effective second-order magnetic anisotropy contributions balance each other exactly in both 
constant. intrasublattice and intersublattice interactions. All these 

compensation effects are related to the property of ex- 
change interaction to conserve the projection of the total 

4. EXCHANGE-RELATIVISTIC IN A OF spin angular momentum of a pair. The contribution of the S-TYPE 3d-IONS 
t v~e - I  (tvve-11) mechanism for intersublattice (intra- - - . - 

4.1. Exchange-relativistic anisotropy in a pair of 3dions. sublattice) exchange is small for finite temperatures, too: 
The temperature dependence of the effective 
anisotropy constants -p:(T) +$ p2(T)  -4 p;(T) <0.02. 

For 3d5-ions, such as Fe3+ and Mn2+, the ground Hence, the contribution of the type-I (type-11) mechanism 
Hund state corresponds to the maximum spin value of for intrasublattice (intersublattice) exchange is practically 
S= 5/2, while in processes I-IV only excited quartic states twice the quasidipole contribution: 
with S' =S" = 3/2 participate. 

Allowing for Eqs. (30)-(33) in a pair of 3d-ions, we P:(T) +$ p 2 ( ~ )  -4 p ; ( ~ )  - -2p: (~) .  - 
can easily obtain the following formula for the exchange- Thus, for weakly anisotropic magnetic substances 
relativistic contribution to the constant of effective second- based on 3d5-ions, the temperature dependence of the ef- 
order magnetic anisotropy in Fe3+- and Mn2+-based anti- fective anisotropy constant can be represented fairly accu- 
ferromagnets: rately by the following three-parameter formula: 

where KZ0 actually determines only the contribution of the 
ordinary single-ion anisotropy and the 20-(02-) contribu- 
tion of spinless exchange, and KTl = K(0)  - K20 - K13 re- 

1 3 flects the total contribution of magnetodipole and quasidi- 
pole exchange-relativistic anisotropy and also the 
nondipole 20,02,22 contributions determined by the ordi- 
nary spin-dependent part of exchange. 

(27) 4.2. Microscopic calculation of exchange-relativistic 
anisotropy in a pair of 3d-ions 

where the upper signs are chosen for the contribution of 
intrasublattice exchange, the lower signs for the contribu- 
tion of intersublattice exchange, and summation is over 
lattices. The parameter x determines the relative value of 
the unique contribution to of the purely orbital (a=O) 

3+ # exchange Fe;+ ( 4 ~ 1 ) - ~ e 2  ( A ' ) ,  which appears only in 
the type-I11 mechanism. 

In the contributions of all four processes I-IV only the 
first term corresponds to the known quasidipole exchange- 
relativistic anisotropy (k, = k2= 1 ). The other terms de- 
scribe the contributions of nondipole exchange-relativistic 
anisotropy not allowed for in standard approaches to the 
analysis of Van. The values not only prove to be of the 
same order of magnitude as the quasidipole contribution 
but may even exceed it. Naturally this leads to a radical 
transformation of the nature of the temperature depen- 
dence of the total exchange-relativistic contribution to the 
magnetic anisotropy constant. 

A remark is in order. At T=O K the nondipole 20-, 
02-, and 22-contributions to the magnetic anisotropy con- 
stant for type-I and type-I1 processes coincide in absolute 
value with the quasidipole 1 1-contribution, which results 
in compensation of the total contribution of type-I (type- 
11) processes for intersublattice (intrasublattice) exchange 
or in doubling of the quasidipole contribution in the oppo- 
site case. For the type-IV mechanism, at T=O K the qua- 
sidipole 1 1-contribution and the nondipole 13- and 31- 

A quantitative calculation of the parameters of 
exchange-relativistic anisotropy is extremely lengthy and 
complicated even in the fairly simple case of 3d5-ion pairs. 
For its practical realization we chose a model with the 
following approximations: 

1. The local CF's for both ions in a pair are assumed 
cubic and equivalent, with the C4(Oz) axis directed along 
the pair's symmetry axis. This automatically leads to a 
collinear geometry of exchange (superexchange) in the 
Fe3+-Fe3+ pair. Moreover, in the selected system of co- 
ordinates, of all the anisotropy parameters only the param- 
eter 6 ( k 1  k2) remains nonzero. 

2. The wave functions of the three quartic states 4 ~ 1 ,  

acting as intermediate states in processes I-IV are found 
with allowance for configuration mixing, the values of the 
parameters being 10Dq= 12 200 cm-', B=700 cm- ', and 
C= 2600 cm-' (Ref. 7),  which is characteristic of octahe- 
dral Fe0;- complexes in ferrite-type compounds. 

3. Approximation (6)  is used to calculate one-electron 
spin-orbit coupling constants. 

4. The exchange interaction of ions takes into account 
the greatest kinetic-exchange contribution. 

Below we give the explicit expressions obtained from 
calculations for the parameters 
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which represent the klk2-contribution of the pair of 
3d5-ions considered to the anisotropy constant e( T =0) 
on the assumption that both ions belong to the same sub- 
lattice of the antiferromagnet. 

Type-I mechanism: 

Type-I1 mechanism: 

K ~ ~ = K ~ ~ =  -tKll, K ~ ~ = ~ K ~ ~ ,  K13=K31=0. (31) 

Type-I11 mechanism: 

Type-IV mechanism: 

The parameters b, and b, in Eqs. (30)-(33) are 
integrals of the transfer of a 3d-electron between 
Fe3+-Fe3+ centers with allowance for u- and .rr-bonds, re- 
spectively. These parameters determine the contribution of 
kinetic exchange to the superexchange integral for the 
180"-geometry of the Fe3+-intermediate anion-Fe3+ 
bond:7 

Analyses of the experimental and calculated data on 
systems of the orthoferrite RFe03 type done in Refs. 7 and 
14 put for the 180"-superexchange F ~ ~ + - - O ~ - - F ~ ~ +  
bond in ferrite systems the value of the integral 
r(Fe3+Fe3+) at approximately 20 cm-I, with the predom- 
inant contribution of the u-bond, b$,- (2-3)bz, which 
in turn yields b ~ ~ - ' - 3 0 0 4 0 0  cm-' and 
b;,~-' - 150-200 cm-'. 

The parameters kl , k2, k3, k,, and k, in Eqs. (30)- 
(33) are determined by the coefficients of mixing of states 
with the same symmetry and the energies of the excited 4 ~ 1  

and 4~ states: 

Here the a! are the interconfiguration-mixing coefficients 
for the 4 ~ 1  states, 

1 1 ~ ~ 1 )  =a: 1 ti8;T1) +a:l 2 8 : ~ ~ )  +a: I &e?T1), 

and the are the mixing coefficients for two 4~ states of 
the &ei configuration of different origin, 

For the chosen CF parameters and the Racah parameters 
for Fe3+ ionsY7 

kl=  - 1 . 0 ~  lop4 cm, k2=0.2x cm, 

k3 -- -0.4X cm, 

Thus, Eqs. (30)-(33) make possible a fairly accurate 
estimate of Kl1. For instance, at ( ~ 4 0 0  cm-', which is 
characteristic of a Fe3+ ion with allowance for approxi- 
mately a ten percent drop in the spin-orbit coupling con- 
stant in the crystal, 

For the total contribution of the pair of Fe3+ ions to 
the effective anisotropy constant 8 at T=O K in our 
model we obtained the following: 
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I (identical sublattices) , e(d = < 

~ K ~ ~ ( I I )  -; K ~ ~ ( I I I )  z -0.1 em-' 

(distinct sublattices) . 
Allowing only for the quasidipole contribution, we get 

Kll (total) z -0.3 cm- ' (identical sublattices), =I -Kl 1 (total) z +0.3 cm-I (distinct sublattices). 

The ordinary magnetodipole contribution of the pair of 
Fe3+ ions considered to I$ is 

at R z 4 A. Thus, the exchange-relativistic contribution of 
the pair of Fe3+ ions to the magnetic anisotropy constant 
can exceed the respective magnetodipole contribution. 

In contrast to the magnetodipole interaction, 
exchange-relativistic anisotropy in the event of noncollin- 
ear superexchange geometry is not an axisymmetric inter- 
action. For a pair of 3d-ions of the S-type the principal 
axes of the tensor of the effective spin anisotropy constants 
lie in the superexchange-bond plane, and the symmetry of 
Van is generally higher than the crystal symmetry of the 
respective bond. In the simplest case where only the 
Fe3+-02-  a-bond is taken into account, the direction of 
the radius vector R12 of the Fe:+-Fe;+ bond serves as the 
principal axis of the tensor of the anisotropy constants e, 
with 

1-3 cos 8 
& e l =  e ( 4 ,  

where 8 is the angle of the superexchange bond 
Fe;+-O2--Fe;+. Note that if we allow only for the 
F~~+--o~-  o-bond, only type-I11 and type-IV mecha- 
nisms contribute to exchange-relativistic anisotropy. 

Equations (38) serve as a good illustration of the de- 
pendence of effective anisotropy constants on the angle of 
the superexchange bond. 

The total contribution to the effective anisotropy con- 
stant is in some cases a result of competition between sev- 
eral terms with different signs. For instance, in the case of 
the given pair of ions belonging to different sublattices, 

The microscopic model calculation conducted is of 
only semiquantitative, but it provides a reliable means for 
establishing the order of magnitude (0.1-1 cm-') both of 
separate quasidipole or nondipole contributions of the 

exchange-bound pair of Fe3+ ions to the anisotropy con- 
stant and of the total contribution of one or another 
perturbation-theory mechanism. Note the unexpectedly 
large 20-(02-) contribution of the purely orbital spinless 
exchange (type-111) mechanism), equivalent to single-ion 
anisotropy in both the spin-orbit structure and the temper- 
ature dependence. 

The total contribution of the type-IV mechanism, "fro- 
zen" at T=O K, may reach a sizable value (of the order of 
0.1 cm-') at relative temperatures T= T/TN-0.W.7, al- 
though at the same time the contributions of the other 
mechanisms drop by a factor of two. 

In conclusion we note the exceptionally strong depen- 
dence of the resulting exchange-relativistic contribution to 
the anisotropy on the type of exchange (intrasublattice or 
intersublattice), which is primarily a consequence of allow- 
ing for nondipole (20)-(02-) contributions. 

4.3. The exchange-relativistic contribution to 
magnetoelastic coupling 

The large value of the exchange-relativistic anisotropy 
in the pair of Fe3+ ions and the strong dependence of 6 on 
the distance between the cation and the intermediate anion 
and on the superexchange-bond angles indicate that the 
exchange-relativistic contribution to magnetoelastic cou- 
pling is large even when the total exchange-relativistic 
contribution to the effective magnetic anisotropy constant 
is negligible. 

For numerical estimates we consider a model antifer- 
romagnet of the orthoferrite RFe03 type with an ideal 
perovskite structure. Assuming that the dependence on the 
cation-anion separation of 6 coincides with that of the 
exchange integral in the pair of Fe3+ ions and employing 
the Bloch empirical law16 

we arrive at the following expressions for the magnetostric- 
tion constants dloo and ill of the model perovskite and for 
the magnetoelastic coupling constants: 

where No is the number of Fe3+ ions per unit volume, and 
Cll,  C12, and C14 are elastic constants. Assuming that No, 
Cll ,  C12, and C14 are characteristic of orthoferrites of the 
YFe03 type and allowing for the intersublattice nature of 
the nearest neighbor exchange and the estimates of 6 ( 0 ) ,  
we find 

hal  =: -6X 1 0 6 a e  erg ~ m - ~ ,  

A d l l l ( T = O ) = 3 ~ 1 0 - 6 a ~ ;  h a 2 z 1 0 7 e  erg cmP3 
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(here 8 is measured in units of cm-'), which at 6- 1 
cm-I is of the same order of magnitude as the experimen- 
tal data on orthoferrites.16 This fact suggests that 
exchange-relativistic anisotropy, like single-ion anisotropy, 
is one of the most important mechanisms of the magne- 
toelasticity of orthoferrites. 

Note that the magnetoelastic constants of weakly an- 
isotropic magnetic materials based on 3d-ions of the 
S-type, and also the anisotropy constants, follow a four- 
parameter temperature dependence of the type (26). 

4.4. The features of exchange-relativistic anisotropy in a 
pair of 3 8 -  or &+-ions 

For 3d3-ions, such as cr3+,  ~ n ~ + ,  and v2+, the situ- 
ation with parametrization of exchange-relativistic anisot- 
ropy is somewhat worse than in the case of pairs of 
3d-ions, since spin S= 3/2 is characteristic not only of the 
ground Hund term but also of a number of excited states. 
Thus, the values of the intermediate spin in perturbation- 
theory sums can be both S= 3/2 and S= 1/2. For instance, 
for type-I perturbation-theory processes one must intro- 
duce several terms in accordance with the values of the 
intermediate spin of ions 1 and 2. Here calculations by 
formulas (21) and (22) yield for the contribution of the 
spin-dependent part of the exchange to the effective mag- 
netic anisotropy constant the following 

where the values S;S; in the parameters 6 point directly 
to the relation between the respective term and the contri- 
bution of one or another excited states. 

Clearly, in some terms the nondipole contributions 
may considerably exceed the ordinary quasidipole contri- 
bution. Without going into a detailed analysis of type-I1 to 
type-IV contributions, we can nevertheless draw a general 
conclusion that the situation with pairs of 3d3-ions is on 
the whole similar to that with pairs of 3d5-ions. 

Note that in contrast to pairs of 3d5-ions, the spinless 
(a = 1 ) and, therefore, purely orbital part of the exchange 
interaction for pairs of 3d3-ions yields an exchange- 
relativistic contribution not only to terms with klk2=20 02 
(of the single-ion anisotropy type) but to terms with 
klk2= 1 1 of the quasidipole type. 

For S-type ions with a 3d8 configuration ( ~ i ~ +  and 
cu3+)  the principal difference lies in the absence in the 
spin Hamiltonian ( 13), and hence in formula (26) for the 
effective magnetic anisotropy constants, of nondipole 13- 
(31-) contributions. This is related to the magnitude of the 

spin in the ground state of 38-ions (S= 1) and to the 
restrictions imposed on kl and k2, namely, k1<2S and 
k2<2S (the triangle rule). 

4.5. Contribution of states with charge transfer to 
exchange-relativistic anisotropy 

Above we estimated the contribution to exchange- 
relativistic anisotropy of the excited states of Fe3+ ions 
(more precisely, complexes of the Fe0;- type) within the 
3d5-configuration. However, complexes of the Fe0;- type 
contain low-energy excited states with anion-cation charge 

4 2 1  transfer, say, states of the configuration t28gt- (here t- lg 

is an "oxygen hole") with an energy of approximately 2.5 
eV (Ref. 14). Among the states of this configuration there 
are 4 ~ 1 g  and 6 ~ l p  which are mixed, via spin-orbit coupling 
and exchange, with the 6 ~ l g  term of the ti8: configuration, 
the ground state of the complex. Generally, allowing for 
quartic states leads, as before, to the same expression (27) 
for the contribution to the anisotropy constant. 

6 ~ 1 g  states with the same spin multiplicity as the 
ground Hund state 6 ~ 1 g  can also be treated via Eqs. (30)- 
(33). This yields an expression similar to (27) for the 
contribution of spin-dependent exchange to the effective 
anisotropy constant: 

(summation is over lattices). 
Note the unusually high relative value of the nondipole 

20-, 02-, and 22-contributions of the type-I and type-I1 
mechanisms. Their total contribution at T = O  K exceeds 
the ordinary quasidipole 11-contribution by a factor of 22! 
The purely orbital spinless exchange (a=O) in a pair of 
complexes, with allowance for states with charge transfer, 
yields a nondipole 20-, 02-contribution (of the single-ion 
type) and an ordinary quasidipole 1 1-contribution. 

To estimate the numerical value of the exchange- 
relativistic contribution of states with charge transfer to 
the anisotropy constants a fairly difficult problem. The ma- 
trix elements of V,, sandwiched between states of the 3d5 
and 3 d 6 ~  (here L is an "oxygen" hole), - - 

(3dl vs012p)-S3d-2p(3dl VsoI3d) 

(with the overlap integral S3d-2p(0. 1 ), are smaller by a 
factor of approximately 10 than the matrix elements of V,, 
used earlier in our microscopic calculations. If we allow for 
states with charge transfer, various exchange parameters 
may increase, for one thing, because of the appearance in 
them of integrals of cation-anion transfer instead of inte- 
grals of cation4ation transfer. 
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Thus, we may conclude that excited states with charge 
transfer in Fe0;- complexes can noticeably participate in 
forming exchange-relativistic anisotropy. Most likely the 
20-, 02-contributions, which renormalize the contribution 
of single-ion anisotropy, will have the largest value. 

4.6. Exchange-relativistic anisotropy in a-Fe,O, and Cr,O, 
antiferrornagnets 

The above estimates point to the possibility of a large 
exchange-relativistic contribution to magnetic anisotropy. 
The real magnitude of this contribution in any magnetic 
substance of the form of various 3d-oxides, fluorides, etc., 
is determined chiefly by two factors: (a) the spatial geom- 
etry of superexchange bonds and the number of such 
bonds, and (b) the type of exchange (intrasublattice or 
intersublattice). Incidentally, in the case of magnetodipole 
anisotropy the main factor determining the size of the con- 
tribution to the magnetic anisotropy is the extent to which 
the sublattice of local magnetic moments (the 3d- 
sublattice) is noncubic. For single-ion anisotropy the basic 
factor is usually the extent to which the immediate anion 
environment is noncubic. 

The numerical value of the constants of effective mag- 
netic anisotropy of exchange-relativistic origin is largely 
determined by the nature of the exchange (superexchange) 
interaction of ions from different magnetic sublattices, the 
superexchange geometry and the magnitude of various ex- 
change parameters, reaching in favorable situations values 
exceeding 1 cm-' per ion. 

Strong noncubic distortions of Fe0;- clusters and the 
Fe3+ sublattice proper and the existence of a large number 
of nonequivalent and noncollinear superexchange 
Fe3+--02--Fe3+ bonds make hematite a-Fe203 a system 
with a potentially large exchange-relativistic contribution 
to the anisotropy constant. A similar situation is realized in 
the antiferromagnet Cr203. Total neglect of the exchange- 
relativistic contribution to the anisotropy of these systems 
has led to difficulties in describing their magnetic 

First of all, in both cases we are forced to 
assume a great change (with sign reversal) in the value of 
the single-ion contribution to anisotropy in comparison to 
the respective contribution in isomorphic systems A1203: 
cr3+,  Fe3+ (Ref. 18). For cr3+ all attempts to describe 
the special features of the temperature dependence of the 
effective anisotropy constant4 proved futile (see Fig. 2), for 
a-Fe203 a strong discrepancy was also observed between 
theoretical and experimental data. '' 

It is easy, however, to describe the results of 
e~~er imen t s~ '~" '  using the general formula (26). Figures 1 
and 2 depict the results of processing the data on the tem- 
perature dependence of second-order anisotropy constants 
K(T)  for, respectively, hematite a-Fe203 and Cr203 by 
employing the four-parameter formula (26). In contrast to 
the authors of Ref. 17, in hematite we allowed for the 
renormalization of the second-order anisotropy constant 
caused by the contribution of fourth-order anisotropy, as a 
result of which I K(0) I was found to increase by approx- 
imately one-third. The calculated curves were obtained for 
the following parameter values: 

Comparing these values with the calculated magnetodipole 
c~ntribution,~.~ 

and the value of the single-ion contribution known for the 
impurity ions Fe3+ and cr3+ in A1203 (Ref. 18), 

we can deduce that in both cases the quasidipole and non- 
dipole contributions of the exchange-relativistic origin to 
the anisotropy constant are considerable. 

The fairly small value of the K,, parameters for Cr203 
in comparison to that for a-Fe203 is the result of the fol- 
lowing three factors: 

(a)  the smaller value of the cr3+-ion spin: 
s,,/s,,= 3/5; 

(b) the smaller value of the spin-orbit coupling con- 
stant: c 3 d ( ~ r 3 + )  = 1/2c3d(~e3+ ); and 

(c) the absence in cr3+ ions and the presence in Fe3+ 
ions of e,-electrons, which participate in the strongest 
cation-anion a-bond. 

5. CONCLUSION 

Exchange-relativistic double-ion anisotropy consists, 
in addition to the standard quasidipole contribution, of a 
number of new "nondipole" contributions with a different 
temperature but a comparable numerical value. Within the 
molecular field approximation we derived a universal four- 
parameter formula for the temperature dependence of the 
constant of second-order anisotropy in weakly anisotropic 
magnetic substances. Numerical estimates show that in fa- 
vorable circumstances the contribution of an exchange- 
bound pair of 3d-ions of the S-type to the anisotropy con- 
stant can reach values of order 1 cm-'. 

Our results can find application not only in explaining 
the numerical values and temperature dependence of 
magnetic-anisotropy and magnetoelastic-coupling con- 
stants. For instance, lately there has been a new surge of 
interest in magnetic anisotropy mechanisms in connection 
with the appearance of a number of papers investigating 
the magnetoelectric effect, including studies of this effect in 
the antiferromagnet Cr203 (Refs. 19 and 20). As with the 
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magnetic anisotropy constant, the separation of the contri- 
butions in the magnetoelectric susceptibility is in many 
respects based on the different nature of the temperature 
dependence of single-ion, double-ion, and other mecha- 
nisms of the magnetoelectric e f ~ e c t . ~ l - ~ ~  Here instead of the 
total spin Hamiltonian of the exchange-relativistic magne- 
toelectric interaction of type ( 13) a simplified form of type 
(2) is employed, which generally leads to incorrect con- 
clusions concerning the relative role of various mecha- 
nisms of the magnetoelectric effect. 

We would like to thank A. M. Kadomtseva for her 
interest in our work and A. E. Nikiforov and V. Ya. Mi- 
trofanov for fruitful discussions. 
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