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The energy spectrum of moving one- and many-electron ferrons is investigated (the ferron is 
a carrier self-trapped in a ferromagnetic microregion of an antiferromagnetic 
semiconductor). The ferron band width decreases exponentially with increase of the ferron 
radius. On increase of number of electrons in a many-electron ferron, its effective 
mass reduces at first, and then, after passing through a minimum, sharply increases. In 
imperfect crystals the ferron motion occurs via phonon-assisted random walks of which the 
probability decreases exponentially on increase in the ferron radius. Experimental 
data8 on the high-field conductivity are analyzed for heavily-doped EuTe in the state when it 
is separated into the insulating antiferromagnetic and high-conductivity ferromagnetic 
phases, the latter consisting of many-electron-ferrons forming an almost periodical structure. 
Electric fields high enough cause depinning of ferrons and current pulsations arise. 

INTRODUCTION 

The concept of ferrons in an antiferromagnetic semi- 
conductor was advanced by the author of the present pub- 
lication as far back as 25 years ago:' it was proved that the 
conduction electron (or a hole) may create a ferromag- 
netic region inside the antiferromagnetic structure and sta- 
bilize this region by localization of this charge carrier in it. 
Thereafter a very large literature was devoted to the ferron 
(some authors call it magnetic polaron or spin-polaron, see 
the mohograph2 and the latest review article3). Experimen- 
tally, ferrons were first discovered in EuTe and E U S ~ . ~  

The one-electron ferrons mentioned above are typical 
of nondegenerate semiconductors. In degenerate antiferro- 
magnetic semiconductors many-electron ferrons may arise 
when there are several conduction electrons in the same 
ferromagnetic region. Sometimes the number of these elec- 
trons may be very large. The crystal turns then, out to be 
separated into antiferromagnetic and ferromagnetic 
phases, with all the conduction electrons concentrated in 
the latter and with the former being insulating. Phase sep- 
aration in degenerate antiferromagnetic semiconductors, 
the idea of which was advanced and a detailed investiga- 
tion was carried out in the present author's papers5 20 
years ago, has become very popular with investigators 
quite recently because it is supposed to be related to the 
high-temperature superconductivity. Unfortunately, my 
results5 remained unknown to authors of subsequent pa- 
pers on the phase separation, and they were unable even to 
reproduce results. Experimentally, the antiferromagnetic- 
ferromagnetic two-phase state was observed in degenerate 
antiferromagnetic crystals EuTe and EUS~.~. '  

Practically in all the papers on ferrons it was assumed 
that their effective mass was infinitely large, so that they 
cannot take part in the charge transport. Such an approach 
is quite satisfactory in many cases. For example, transition 
of the photoelectrons, generated by illumination, into fer- 
ron states sharply reduces the photoconductivity of EuTe 

and EuSe crystals. This means that the ferron contribution 
to the electrical current is negligibly small compared with 
photoelectrons. As to degenerate antiferromagnetic semi- 
conductors, according to Ref. 5, at not too high carrier 
densities, the high-conductivity regions of the ferromag- 
netic phase form a periodic structure inside the insulating 
antiferromagnetic host. Each conduction electron is locked 
inside its ferromagnetic droplet and cannot move through- 
out the entire crystal. For this reason, if the ferromagnetic 
high-conductivity droplets are stationary the degenerate 
semiconductor should display insulating properties. Tran- 
sition of degenerate antiferromagnetic semiconductors into 
an insulating state, accompanied by appearance of magne- 
tized regions inside them, was observed experimentally on 
decrease in 

It should be noted that, nevertheless, experimental 
data just described do not exclude the possibility of situa- 
tions in which the charge transport by the ferrons may play 
a basically important role though their mobiliu is ex- 
tremely low. Strictly speaking, if the crystals had been 
ideal, the ferrons in degenerate semiconductors would have 
moved under an arbitrarily small electric field. Their im- 
movability may be explained by their pinning due to the 
electrostatic-potential fluctuations of the impurity, intro- 
duced into the crystal to produce free charge carriers. This 
phenomenon strongly resembles pinning of the charge den- 
sity waves in systems where they realize. As well known, in 
strong external electric fields depinning of CDWs occurs, 
and charge transport by them begins which leads to a non- 
linear current-voltage characteristic (IVC) of such sys- 
tems. It seems natural to believe that a strong electric field 
applied to antiferromagnetic semiconductors may cause 
depinning of ferrons. 

Though the ferronic charge transport, like the CDW 
transport, is of cooperative type, response of the ferron 
system to the external electric field should be quite differ- 
ent than that of the CDW system. As was already men- 
tioned, in the zeroth approximation in the impurity- 
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potential fluctuations, the ferromagnetic droplets form a 
periodic structure. Hence, when the ferromagnetic droplets 
move in an external electric field, their layers reach the 
cathode simultaneously, and at that moment the current 
flash occurs. After this the current vanishes, and it reap- 
pears when the next layer of ferromagnetic droplets 
reaches the cathode, and so on. Obviously, the pulse spac- 
ing is the less, the more rapidly the droplets move, i.e., the 
larger the external field. Thus, in the case under consider- 
ation, a strong constant field should cause a pulsed current 
of which the frequency increases with the field strength. 

This theoretical prediction agrees with recent experi- 
mental data obtained for heavily doped EuTe which be- 
haves above 170 K like a conventional degenerate semicon- 
ductor and below 170 K goes over into a state of very low 
conductivity. If one applies a rectangular potential pulse, 
then at not very high field strengths the response of the 
system duplicates the shape of the pulse. This can be nat- 
urally related to the charge transport by free carriers, a 
relatively small number of which is always present in the 
sample. But, beginning with a certain threshold potential, 
narrow current peaks appear on the background of the 
rectangular current pulse. Their height is several factors of 
ten larger than the height of the rectangular current pulse. 
The peak spacing decreases with increasing field strength. 

Before we conclude that the current pulsations in Ref. 
8 are due to the motion of the ferromagnetic droplet layers, 
we must assess other possible explanations of this effect. As 
is well known, current pulsations may be caused by high- 
and low-field domains formed in nondegenerate semicon- 
ductors with N-shaped IVC.~ As applied to the situation 
considered, it should mean that the ferromagnetic droplets 
remain stationary in the external field, but the field causes 
separation of the free charge carrier heated by it, into mov- 
ing domains of the high- and low field. A current pulse 
arises when a domain with enhanced density of free carri- 
ers passes through the cathode. But the current drops 
sharply when this domain becomes replaced by a domain 
with a reduced carrier density. 

But the fact that the rectangular current pulse retains 
its height unchanged in Ref. 8, and the current spikes do 
not alternate with its dips is evidence that the domains of 
hot free carriers are absent from EuTe. Consequently, the 
current spikes may be explained by superposition of the 
current due to the free conduction electrons and the cur- 
rent due to the many-electron ferrons. The explanation of 
the effect, proposed by the authors of Ref. 8 themselves, 
according to which the hot electrons destroy ferrons and 
liberate electrons previously localized inside them, which 
then cool down and form the ferrons again, is more readily 
heuristic. In fact, they regarded the current spike as a re- 
sult of the Auger process which, as well known, leads not 
to an N-shaped but to an S-shaped IVC.~ 

It should, nevertheless, be noted that, in principle, an 
N-shaped IVC can be realized in degenerate semiconduc- 
tors in a two-phase antiferromagnetic-ferromagnetic state. 
Though there is no evidence that the Gunn effect related to 
the additional minimum in the conduction band is possible 
in them, an N-shaped IVC may result from the Coulomb 

barrier for the recombination processes.9 In fact, from the 
point of view of semiconductor physics, each ferromagnetic 
droplet plays the part of a multiply-ionized impurity cen- 
ter. Being occupied by several electrons simultaneouly, the 
ferromagnetic region repels the electron that had left it for 
the conduction band. To return to this region by recombi- 
nation, the electron must overcome this repulsion, and 
heating by the electric field favors it. N-shaped IVC are 
well known for nonmagnetic semiconductors with impu- 
rity centers. 

Beside transport phenomena in strong electric fields, 
there is another reason which makes the problem of ferron 
motion vital: their possible role in the high-temperature 
superconductivity (HTSC). Attention to it was first drawn 
in Ref. 10, where it was proposed that ferron pairing can 
lead to HTSC. According to Ref. 10, ferron pairing leads 
to formation of Bose quasiparticles (biferrons) which may 
play the part of the Cooper pairs. Although such an HTSC 
mechanism, is certainly hypothetical, there are no reasons 
to declare it impossible at all. The fact that the Hubbard 
model in which the ferron is unstable2"' is used in Ref. 10 
does not cast any doubts on the basic idea of Ref. 10, 
though one should deal with expressions presented there 
with care, the more since they are given without deriva- 
tion. 

Since for reasons mentioned above the problem of the 
moving ferron is timely now, this paper is devoted to in- 
vestigation of the ferron dispersion law in ideally periodical 
crystal at T =O. The ferron effective mass will be found as 
a function of the ferron size, number of electrons in it, and 
magnitude of the magnetic atom spins. Knowledge of the 
ferron effective mass makes it possible to draw important 
conclusions concerning its kinetics. In imperfect crystal the 
ferron moves not according to the band mechanism but via 
random walks. It will be investigated, too, but at finite 
temperatures. 

It should be indicated that the problem of the ferron 
effective mass is much more complicated than the same 
problem for the Pekar polaron, which like the ferron is a 
self-trapped state of the charge carrier. The reason for it is 
the fact that the interaction of the conduction electron with 
optical phonons is linear whereas its interaction with the 
magnetic subsystem in an antiferromagnetic crystal is es- 
sentially nonlinear. Thus, the elegant Pekar's approach to 
the problem of the polaron effective mass cannot be used 
here. 

In view of its complexity of the problem, the analysis is 
confined on a one-dimensional model. It is shown that the 
ferron motion throughout the crystal is mainly caused by a 
specific indirect exchange interaction between magnetic at- 
oms via the electron (or electrons) localized inside the 
ferron. On increase in the ferron radius, the width of its 
energy band decreases exponentially. On increase in the 
number of electrons in a many-electron ferron, the width of 
its band increases at first, and then, after passing through a 
maximum, falls off very sharply. A rather unexpected con- 
clusion follows from these results: increase in the number 
of charge carriers in the crystal may not only increase but 
also decrease the ferron conductivity. The origin is the fact 
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that both the ferron radius and number of electrons in it 
increase with the charge-carrier density. 

The estimates for the ferron effective mass obtained 
here correspond to values of the order of the ion mass. The 
width of the ferron band is so small that in real imperfect 
crystals the Anderson localization of ferrons should take 
place, i.e., their spontaneous motion throughout the crystal 
is impossible. But strong electric fields liberating ferrons 
from their potential wells make it possible for them to 
move. Their movement is the more rapid, the less is their 
effective mass. At temperatures high enough even in an 
ideal crystal the ferron motion occurs via random walks 
accompanied with ferron shape fluctuations. 

MODEL 

To clarify the qualitative peculiarities of ferron motion 
and obtain the necessary estimates, we consider below the 
geometrically simplest one-dimensional crystal model. The 
calculation will be carried out within the framework of s- f 
(or, equivalently, s-d) model, of which a particular case is 
in fact the now very popular t-I model. The system Hamil- 
tonian is written in the form 

where Sg is the operator of the f-spin of the atom g, 
a:,, and a,,, are the operators of creation and annihilation 
of an s-electron with spin projection o on the atom g, and 
s,~ are Pauli matrices. According to the physical meaning 
of the problem, the integral I of the direct f - f -exchange is 
assumed to be negative. The signs of other parameters are 
inessential. For the sake of definiteness, the Bloch integral 
B  will be assumed negative and the s- f-exchange integral 
A positive. 

As is known, in one-dimensional Heisenberg systems 
the role of zero-point spin fluctuations is so large, that the 
classical picture of the antiferromagnetic ordering becomes 
generally speaking inadequate. To justify, as in many- 
dimensional cases, the use of the classical picture of an 
antiferromagnet as the zeroth approximation of the true 
state of the magnetic subsystem, the direct f - f - exchange 
is assumed to be anisotropic with the anisotropy parameter 
il exceeding unity. 

To model the rare-earth compounds, we assume that 
the ratio AS/W is the small parameter of the problem. 
Here W=4 1 B (  is the conduction-band width and S the 
magnitude of the f-spin.' In addition, the obvious inequal- 
ity AS)IS~ is assumed met. 

At first the case S= 1/2 will be discussed. Then the 
zeroth-approximation Hamiltonian Ho can be diagonalized 
exactly, making it possible to find the ground-state energy 

for the system "conduction electron+antiferromagnetic 
crystal." With favorable parameter relations this state cor- 
responds to a stationary ferron, when in a portion of the 
one-dimensional crystal of length 2R the antiferromagnetic 
ordering is replaced by the ferromagnetic. This portion is 
the potential well of depth U=AS/2 for the conduction 
electron. According to the condition W$-AS, bound states 
exist in it only if R is large enough. Since the electron levels 
in a shallow potential well are also shallow, the effective- 
mass approximation is valid for their description. The ra- 
dius R should be found from the condition that the total 
energy of the system is a minimum. 

At very large sizes of the ferromagnetic region, the 
ferron energy is given by the expression 

l/m=21  la^ ( f i= l ) ,  

where a is the lattice constant. As follows from (2), the 
equilibrium value of the radius R is given by the expression 

and the ferron can exist if 

(the last condition can be obtained also by a more rigorous 
analysis). 

The motion of the ferron throughout the crystal is the 
result of action of the transverse components of the Hamil- 
tonians H1 and HZ, describing the the s-f and f-f ex- 
change. The Hamiltonian H2 directly changes the f-spin 
configuration, and the conduction electron follows the 
magnetic subsystem adiabatically. The Hamiltonian Hl 
does the same by means of indirect exchange between the 
f-spins via the s-electron localized in the ferromagnetic 
region. In this case the ferron motion over the crystal is 
initiated by the electron localized inside the ferron. But one 
cannot use the continuum approximation to describe the 
ferron motion, since the problem is nonlinear. For this 
reason our treatment will be microscopic. -r- 

First of all, it should be pointed out that, strictly speak- 
ing, two types of the ferron states are possible, and are both 
eigenstates of the Hamiltonian Ho: 1) the central atom of 
the ferron belongs to the antiferromagnet sublattice in 
which the directions of the f-spins remain unchanged by 
ferron formation; 2) the central atom belongs to the other 
sublattice whose f-spins are reversed inside the ferromag- 
netic region. 

Though for large radii R the energies of these two 
states are close to each other, different projections of the 
total spin of the system correspond to them, since in the 
first case an even number off -spins is reversed upon ferron 
formation, whereas in the second case this number is odd. 
Since the Hamiltonian H (1) conserves the total spin pro- 
jection of the system, it cannot transform a ferron of the 
first kind into a ferron of the second type. Hence, the trans- 
lation of the ferron over the crystal cannot amount to one 
lattice constant. The minimum translation should amount 
to two lattice constants, so that the center of the ferron 
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belongs to the one and the same sublattice despite the 
translational motion of the ferron. This means that the 
ferron is characterized not by the crystallographic but by 
the magnetic translational symmetry. 

In what follows, the first case will be considered for 
definiteness. The treatment that follows can be easily gen- 
eralized for the second case. The number of the atom co- 
inciding with the ferron center is denoted by 21, and the 
boundary atoms of the ferromagnetic region have the num- 
bers 21&r (r=R/a where a is the lattice constant). Obvi- 
ously, they belong to the same sublattice as the central 
atom, i.e., their spins are not reversed. 

The wave function of the magnetic subsystem for such 
a configuration may be presented in the form 

where the quantity M2g+ 1-21 is equal to 1/2 inside the 
interval )2g+ 1 - 21 1 < R and to - 1 2  outside this inter- 
val, 6(n,m) is a delta-function of a discrete argument. 

The electron part of the Hamiltonian Ho, correspond- 
ing to the spin configuration (5), is diagonalized by the 
canonical transformation of the electron operators 

yielding the electron spectrum EiPll2, where the quantum 
number i denotes the number of the discrete level inside the 
potential well or the electron momentum outside it. Thus, 
if the one-electron ferron is energywise favored, the eigen- 
functions of the ground state for the Hamiltonian Ho are 
given by the expressions 

where 1 0) is the vacuum s-electron wave function. 

ONE-ELECTRON FERRON MOTION CAUSED BY THE 
DIRECT EXCHANGE 

Qualitatively, the ferron motion, caused by the direct- 
excharage Hamiltonian H2 taken in the first-nearest- 
neighbor approximation occurs in the following manner. 
According to (5) the ferron moment is directed upwards. 
In the first stage, reversal from up to down of the spin of a 
boundary atom (e.g., with the number 21+r) takes place 
with simultaneous reversal, in the opposite direction, of the 
spin of its nearest neighbor outside the ferromagnetic re- 
gion with the number 21+r+ 1 which becomes directed 
upward. With allowance for the fact that the spin of the 
atom 21+ r+  2 is also directed upwards, i.e., parallel to the 
magnetic moment of the ferron, the right-hand boundary 
of the ferromagnetic region reaches this atom but, on the 
other hand, inside this region the spin 21+r appears with 
the direction opposite to its moment. This irregular spin 
goes over from the atom 21+r to its left neighbor 21+ r- 1, 
from it to the atom 21+ r- 2, and so on, until it reaches the 
atom 21-r+ 1. It turns out at that instant that the com- 
pletely ferromagnetic region is enclosed between the atoms 
21- r+  2 and 21+ r+2  without down spins inside it. This 
means that the ferron is displaced two lattice constants to 

the right and its center is located at the atom 21+2. The 
picture described reveals that the ferron motion can be 
regarded as a result of motion of a magnon inside the 
ferron in a direction opposite to the direction of the ferron 
motion. 

To describe the spin-wave motion to which the elec- 
tron of the ferron adjusts itself, the wave functions Pzl+ 
are introduced. Being the eigenfunctions of the Hamil- 
tonian Ho, they correspond to excited states of the mag- 
netic subsystem. Namely, they describe the ground state of 
the s-electron when the ferromagnetic region is bounded by 
the atoms 21-r and 21+r-2, but at the distance n from 
the central atom 21+ 1 the spin of the atom is antiparallel 
to the ferron moment. The state of the ferron is described 
in this case by the wave function 

With allowance for equalities 

one obtains formally: - - - - 
$21+1,-r=$21-1,r=$21+2; $2l+l,r=$21-1,-r=$21* 

The wave function of the moving ferron is sought in the 
form 

Then in the first order in A/ W the spectrum of the moving 
ferron is found from the set of equations that follows from 
( 1 ), (7), (8), and (9) (the energy is reckoned from the 
energy of the stationary ferron) : 

[ E -  (~/4)&1+ l,n-AlI~21+ 1,n 

In what follows, in the leading order in Ia/AR, one 
may put all the scalar products of the electron wave func- 
tions in (10) equal to unity. To obtain a semiqualitative 
solution of the set of equations (10) one may set all the 
diagonal matrix elements equal to their average values: 

121 JETP 77 (I), July 1993 E. L. Nagaev 121 



- (A/4)&+ l,n-AI+ -A/8R -AI=xI. (1 1) 

Then with allowance for the translational symmetry of the 
system the coefficients of the expansion (9) may be sought 
in the form 

Xexp[i(2l+ l)p]. 

Substitution of Eqs (1 1) and (12) in (10) leads to the 
following dispersion relation for the ferron: 

X cos2 p/ch rq + sh q(r- 1 )sin2 p/sh qr. 

The wave function (16) makes it possible to describe 
both the direct transfer of a spin projection from one 
boundary atom to the other and the indirect transfer via a 
magnon propagating through the ferromagnetic region. 
The latter mechanism resembles the mechanism discussed 
in the preceding section but here the spin can jump over 
several lattice constants. 

A system corresponding to (10) should be supple- 
mented in this case with equations with respect to z,I+,,~. 

In the set of equations obtained in such a way, one may 
omit the direct-exchange integral at small I since the mean 
indirect-exchange energy A/R is according to (3) of the 
order of A I I/ W I 'I3 and therefore certainly exceeds the 
direct-exchange energy I. 

Its solution putting q=i?r+x yields an expression for the After eliminating the coefficients z21+ from this set of 
ferron dispersion law (its quasimomentum p is assumed to equations, it acquires the indirect-exchange integrals 
be dimensionless) : 

As follows from (14) the direct exchange leads to = ( m a ~ ~ / 4 x ) e x ~ {  - x 1 n -nf 1 a), 
broadening of the ferron level into a band whose width is 
exponentially small compared to the magnon bandwidth 
-I, and decreases sharply with increasing radius R. x =  (mA/2) 'I2. (17) 

FERRON MOTION DUE TO INDIRECT EXCHANGE 

If the direct exchange is weak, a much more powerful 
mechanism causing motion of the ferron is indirect ex- 
change via the electron of the ferron. Unlike the indirect 
exchange in rare-earth metals, one cannot describe this 
kind of interaction between f -spins in terms of an effective 
Hamiltonian, since the magnetic properties of the system 
are nonanalytic in the s-f exchange integral, as a conse- 
quence of the complete spin polarization of the s-ele~tron.~ 
For this reason, as before, the variational procedure will be 
used, but additional account will be taken here of the vir- 
tual states with the reversed spin of the s-electron, states 
that arise as a result of the f -spin reversal of the magnetic 
atom adjacent to the ferron boundary. Such virtual states 
are described by the wave functions 

Attention should be called to the fact that the indirect- 
exchange integral ( 17) diminishes with increasing inter- 
atomic distance according to an exponential law and not in 
the oscillatory fashion as in the RKKY theory. Neverthe- 
less, with allowance for the condition W%A the decay 
length for the indirect exchange l /x should considerably 
exceed the lattice constant. This is a direct consequence of 
the fact that the minimum energy of an electron with the 
spin 1/2 is lower by -A/2 than the energy band of an 
electron with spin ( - 1/2). Correspondingly, the indirect- 
exchange integral turns out to be nonanalytic in A, as man- 
ifested by the parameter x. It is worth mentioning that the 
indirect-exchange integral in degenerate ferromagnetic 
semiconductors possesses a structure similar to (17) and 
related to the complete spin-polarization of the conduction 
electrons. It is just by this structure that the symmetry 
property of an isotropic ferromagnetic structure, the gap- 
less magnon spectrum, is manife~ted.~ 

A set of equations similar to ( lo) ,  obtained in the 
manner just mentioned, takes the form 

where k is the index of the electron state. In the zeroth [E+2a2(r+ 1 )J(O) ] X ~ I =  -a2(r+ 1) J(2r) 
approximation in AS/ W the electron wave function is sim- 
ply a plane wave, and the index k is its wave number. x ( x ~ I + ~ + x ~ I - ~ )  - a ( r +  1) 

Correspondingly, the trial wave function of the ferron 
is sought in the form that allows spin reversals for pairs of x 2 P(n,n) [~(r-n)yz,+l,n 
atoms, both at the opposite boundaries of the ferromag- n 

netic region and at one of boundaries and inside the region: +J(r+n)~z1-1,~1; (18) 
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(the nonorthogonality integrals for the electron wave func- 
tions in the main approximation in a/R are put equal to 1 ) . 

To obtain an approximate solution of the set of equa- 
tions (18), (19) it should be noted that the typical length 
over which the coefficient y 2 ~ +  changes as a function of n 
should be the same as for the exchange integral J (n) .  This 
makes it possible to put y2/+ zyzl+ in the last term in 
(19) under the summation sign. Then the approximate 
solution of the integral equation (19) may be approxi- 
mated by 

To obtain (20) the fact was used that in the main approx- 
imation in A /  W the wave function P(n,n) is of the form 

The expression for the wave function a ( n )  differs from 
(21 ) in that (r+ 1 ) is replaced by r. 

Substitution of Eq. (20) in (18) and the use of (12) 
leads to the dispersion law 

where 

X J ( r+n)  [E(O)-K@(n,n)]-' cos 2p I 

and E(O) is determined from the integral equation 

The first term in the expression for E;') corresponds to 
the ferron motion due to the immediate exchange between 
f-spins at its boundaries, the second term to its magnon- 
assisted motion in the FM region. 

Both lead to practically the same exponential depen- 
dence of the ferron band width on the ferron size (with an 
accuracy of a relatively weak R-dependence of F ) .  As al- 
ready pointed out in the preceding section at the direct 
f-f-exchange the ferron-band width exponentially de- 
creases with increasing R, too, but according to (14) the 
exponent there is quite different. 

MANY-ELECTRON FERRON 

The distinguishing features of many-electron ferron 
motion are determined by two circumstances. Firstly, the 
indirect exchange influencing the positions of the ferron 
boundaries is carried out additively by all the N electrons 
of the ferron. This increases the mobility of a many- 
electron ferron compared to the one-electron ferron. But 
on the other hand, spin flip of one electron causes a rever- 
sal of one of the f-spins, i.e., a change in the f-spin con- 
figuration. The remaining ( N  - 1 ) s-electrons which pre- 
served their spin projections should change their orbital 
states in order to become adjusted to the new configuration 
of f-spins. The necessity of reconstruction of these electron 
states hinders the f -spin flip, i.e., the ferron motion, and to 
larger degree the more electrons in the ferron. Formally, 
this manifests itself in a many-electron renormalization of 
the effective indirect-exchange integral. 

In what follows we confine ourselves for simplicity 
only to indirect exchange directly connecting the ferron 
boundary atoms with each other. The basic wave functions 
are the following: the ground state wave function of the 
many-electron ferron 

and the wave functions describing virtual states with down- 
ward reversed spin of an electron initially in the jth state, 
and with upward reversed f-spin adjacent to the ferron 
boundary: 

Here the electron wave functions a21,i and y21+l,k are the 
same as in (6), (7 ) ,  and ( 15), and the wave functions 

correspond to electron states in a ferromagnetic potential 
well of length 2(R +a) ,  produced as a result of spin- 
reversal of one of atoms adjacent to the initial ferromag- 
netic potential well of length 2R. The level number i cor- 
responds here to the level numbering in the initial potential 
well. The product over i in (24) and (25) contains only the 
N lowest states, all occupied by electrons. The index j 
labels one of them. 
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Representing the wave function of the moving many- 
electron ferron as an expansion in the aforementioned 
eigenfunctions of the Hamiltonian Ho, i.e., in the form 

netic droplet. But for real systems this dependence is not 
very strong2 and for this reason does not influence the 
qualitative conclusion made above. 

THE HOPPING MECHANISM OF FERRON MOTION 

and acting on it by the Hamiltonian H ( 1 ), one obtains the 
following expression for the ferron spectrum: 

where the notation used is 

As seen from comparing (28) and (29) with ( 17), the 
many-electron nature of the ferron has led, in addition to 
summation over all the occupied electron states, also to 
renormalization of the indirect-exchange integral J, as 
manifested in its multiplication by the factor 8. When 
estimating this factor, if N is large, in the principal order in 
l/r, we can include in it also the omitted term with i f j .  
Using for ai and ci the wave functions of an electron in an 
infinitely deep potential well, we obtain 

At N(r one may write, using (30) and (31 ): 

N -  1 

@= n {1- l / (r+ 1) +2 s i n ( ~ j ) / ( 2 r +  1) 
j=o 

- (14139) ( j +  1 l21 

The character of dependence of the ferron bandwidth 
on the number of electrons in the ferron can be established 
as follows. Obviously, the quantity @ (32) decreases 
monotonically with increase of N. But on the other hand, 
in the sum (28) there are N terms, i.e., approximately the 
one-electron indirect-exchange integral is multiplied by N. 
Hence, given R, the ferron energy-band width should be a 
nonmonotone function of N: first it should increase with N, 
and then, passing through the maximum at N z  (9/3)'/3, 
it should begin to decrease steeply. In other words, if the 
number of electrons in the ferron is not too large, its mo- 
bility is higher than that of a one-electron ferron. For a 
very large number of electrons its mobility is vanishingly 
small. 

Strictly speaking, at fixed parameters of the crystal, but 
at variable conduction-electron density in it, the parameter 
R itself depends on the number of electrons in a ferromag- 

The expressions obtained above for the ferron band 
width evidence that the band mechanism of the ferron mo- 
tion can be realized only in almost perfect crystals. In fact, 
if one assumes the following values of parameters typical of 
rare-earth compounds: AZ0.5 eV, W e  3 eV, a e 4  A 
(which corresponds to an electron effective mass of the 
order of the actual one), then according to (22) the ferron 
band width amounts only to 10-~-10-~ eV at R = 5a and 
lo-' eV at R = lOa. Thus, potential fluctuations due to the 
imperfection of the crystal, should lead to the Anderson 
localization of the ferron at realistic imperfection degrees. 

The band mechanism of the ferron motion should be- 
come inoperative also in not very weak external electric 
fields g. In fact, at the ferron band widths indicated above 
they are so bent that the notion of the band spectrum loses 
its meaning: the band widths become less than the poten- 
tial difference 2ega between two successive locations of 
the ferron center already at the field strengths 1-100 V/cm. 

An alternative to the band mechanism is the hopping 
mechanism walks occurring with the energy exchange be- 
tween the ferron and the magnons or phonons playing the 
part of the heat bath. The gap in the magnon spectrum 
[A > 1 in ( l ) ]  hinder magnons in playing this part at low 
temperatures. It will be assumed in what follows that this 
part is played by acoustic phonons, and that the potential 
fluctuations are small enough so that ferron interstitial 
hops are accompanied by emission or absorption of only 
one acoustical phonon. The main regularities of ferron 
hops will be investigated below using the one-electron fer- 
ron as an example, neglecting magnetic disorder at T#O. 

First of all, the Hamiltonian ( 1) should be supple- 
mented with a term 

H ~ =  C E P Z ~ , , ~  (33 
g 

that takes into account the electron energy differences be- 
tween different sites (the energy E,, assumed small com- 
pared with A, includes both the potential fluctuations and 
the external field). Further, the Hamiltonian H  of the 

ph 
acoustical phonons and the Hamiltonian H3 of then inter- 
action with the conduction electrons should be added to 
the Hamiltonian ( 1 ) , 

where b,* and b, are the phonon operators, the electron- 
phonon coupling constant is assumed to be small, with 
G,+O at 9-0, and N is the number of the unit cells in the 
crystal. 
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As in the preceding section, it will be assumed here 
that the ferron motion is the result of indirect exchange 
relating atoms at opposite boundaries of the ferron. We 
consider ferron transition from the state with the central 
atom 0 to the state with the central atom 2. This process 
proceeds as follows: 1 ) Owing to the Hamiltonian H1 ( 1 ) , 
the spins of the atom ( r+  1) and of the s-electron reverse 
their direction, and the s-electron goes over into a free 
state. 2) In this state the electron emits or absorbs a pho- 
non whose energy is equal to the difference of the electron 
energies in the considered ferron states with centers at the 
atoms 0 and 2. Such a one-phonon scattering act is caused 
by the Hamiltonian H3 (35). 3) Owing to the Hamiltonian 
HI spin reversals of the atom ( - r+  1 ) and the s-electron 
occur, with transition of the latter into the ferromagnetic 
region centered at the atom 2. 

Thus, to calculate the probability Po, of the ferron 
transition from the atom 0 to the atom 2, one should use 
the sixth order of the time-dependent perturbation theory 
in the Hamiltonian H1 + H3. The corresponding expression 
is deduced in standard fashion and in a quadratic approx- 
imation for the electron spectrum it can be presented in the 
form 

where $21 and $21+l,k are given by Eqs. (7) and (15), 
fino is the wave function of phonons with momentum q 
co;responding to their number n,. The angular brackets 
denote thermodynamic averaging over the phonons. In the 
energy denominator of (38) the term w, is discarded be- 
cause of its small value. 

With allowance for the structure of the Hamiltonian 
H3 (35), the calculation of M:*) reduces virtually to in- 
tegration in the expression 

which is easily achieved by residue theory. The result is 

x [q cos qr+2x sin qr]2[v~(eE2-EO-wq) 

where vq is the average number of phonons with momen- 
tum q. 

As follows from (39), the transition probability also 
exhibits an exponential dependence on the ferron size 
which is even more sharp than the ferron band width. In a 
similar manner, PO2 increases with A/  W, and so does the 
ferron band width. The probability PO2 for a many-electron 
ferron at not very large numbers N of electrons in it in- 
creases with N as N~ (see the preceding section). Thus, the 
kinetic characteristics obtained by an analysis of the ferron 
band agree qualitatively with those obtained from the ex- 
pression for the transition probability. 

APPENDIX 
FERRONS IN MAGNETIC SYSTEMS WITH ARBITRARY 
ATOM SPINS 

The calculation presented above is restricted to mag- 
nets with spins equal to 1/2. One may expect that at larger 
spins the system should behave like a classical one, i.e., 
that the ferron bandwidth should tend to zero. To prove 
this statement, a calculation is carried out below for the 
case when the ferron motion is caused by a direct displace- 
ment of the ferron boundaries. But a change in the orien- 
tation of spins 21+ (r- 1) inside the ferron and 21- ( r+  1 ) 
outside it as it moves to the left (and of corresponding pair 
of spins as the ferron moves to the right) occurs via a series 
of successive spin rotation with change in their projections 
by 1, until their total change reaches * 2s. 

Since the total spin projection of the system should 
remain unchanged, in the first approximation in A/  W the 
energy of the s-electron does not change, this is equivalent 
to the use of a model magnetic Hamiltonian of the type 

(the r-dependence of the effective exchange integral I is not 
discussed here). 

The wave function of the ferron is constructed as fol- 
lows: 

I 2s- 1 

where @21 is given by Eq. (5) and Cn is the normalization 
factor. 

The coefficients of the expansion (40) are found from 
equations obtained with the aid of (40): 
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and similar equations for y21,n,21+2. The notations used here 
are 

At relatively small S one can obtain a solution of the 
set of equation (42) in explicit form: 

q=cos- ' (~(~~-2)/24},  (S=3/2) and so on, 

where q is the ferron quasimomentum. 
But at large S one can only obtain a lower-limit esti- 

mate for the moving ferron energy and an upper-limit es- 
timate for the ferron bandwidth WF. To this end it is 
sufficient to set in (43) all the values of T, except To equal 
to the maximum value T ,  =s2 - 1/4. Then the upper limit 
for the bandwidth is given by the relation 

( WF?hould be compared with the magnetic-ordering en- 
ergy  IS^ and not with the exchange integral I). According 
to estimates (4344) the ferron bandwidth becomes negli- 
gibly small compared to the exchange-interaction energy 
only at nonphysically large spin values exceeding, at least, 
5. This confirms the possibility of observing ferron motion 
in europium chalkogenides with S=7/2, as discussed in 
the Introduction. 
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