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We study hopping conduction over Coulomb-gap states in strong electric fields for a-Si(Mn) 
samples. All previously predicted nonlinear transport effects are discovered in 
experiments. We are able to observe the entire spectrum of field and temperature dependences 
of the conductivity a, using a single sample. We observe a decrease in a as the field gets 
stronger. In a narrow range of temperatures and field strengths the effect is so strong that 
negative resistance emerges. 

1. INTRODUCTION 

In disordered semiconductors the charge transfer at 
low temperatures takes place owing to electron hopping, 
and the hopping range grows as the temperature decreases 
(variable range hopping, or VRH). Study of the tempera- 
ture dependence of the hopping conductivity a in weak 
electric fields, in which Ohm's law is valid, makes it pos- 
sible to gather information about the spectrum of localized 
states of a material. 

In studying hopping conduction over the states of the 
impurity band of Mn and Fe created in amorphous silicon 
(a-Si) by ion implantation we discovered an anomalously 
wide and deep Coulomb gap1 formed, according to the 
existing theoretical ideas,' in the electron spectrum because 
of the Coulomb interaction of electrons localized at differ- 
ent centers. Within such a gap the density of states g(E)  
vanishes according to a power law when the energy tends 
to the Fermi energy: 

where a is a numerical factor, e is the electron charge, and 
E the dielectric constant of the medium. This paper is de- 
voted to non-ohmic hopping conductivity in a-Si(Mn) in 
intermediate and strong electric fields. The distinctive fea- 
ture of the object, the presence of a large Coulomb gap, 
made it possible to observe in experiments practically all 
the nonlinear effects of hopping transport. An- 
other remarkable feature of the system under investigation 
is that it was possible to observe the entire spectrum of field 
and temperature dependences of a in studies of the 
current-voltage characteristics of one and the same sample. 
The main results of our work are the following: 

1. The exponential increase in conductivity with field 
strength was observed only in fairly strong electric fields, 
when the local field was nonuniform due to the nonlinear 
screening by electrons localized within the Coulomb gap 
and followed the current conductor. 

2. In the intermediate range of field strengths and tem- 
peratures (up to the temperature of thermal clogging of the 
Coulomb gap) and field varied little owing to the potential 
of the electrons redistributed on the critical subgrid and 

remained practically uniform, as in an insulator. In this 
case the experiment showed a drop in hopping conductiv- 
ity as the field got stronger and the phenomenon of nega- 
tive incremental resistance manifested itself. 

3. Raising the temperature to the value at which the 
Coulomb gap clogged led the system to a state with super- 
linear current-voltage characteristics. 

2. THE EXPERIMENT AND THE RESULTS 

The layers of amorphous silicon were prepared by 
electron-beam evaporation of crystalline silicon in a vac- 
uum onto quartz substrates with subsequent implantation 
of manganese ions. The leads to the samples were made by 
planar-geometry gold or aluminum sputtering. The elec- 
trode separation d amounted to 25-50 pm. To exclude the 
possibility of the samples getting too hot in strong electric 
fields, a pulsed voltage with a period r= 1-10 ps was ap- 
plied to them. Measurements of the current in samples 
with different electrode separations showed, first, that the 
impedance grows with d and, second, that the non-ohmic 
threshold voltage U, is proportional to d. These properties 
prove that the observed nonlinear effects are due to bulk 
processes in a-Si rather than to junction properties. 

The preparation and properties of a-Si(Mn) sample on 
the ohmic section of the current-voltage characteristics are 
described in greater detail in Refs. 1 and 10, where it is 
shown that at low temperatures the conductivity of this 
material follows the ~hklovskii-~fros law 

where k is the Boltzmann constant, a the range of local- 
ization of electrons at impurities, and f i  a numerical coef- 
ficient. Formula (2) corresponds to hopping charge trans- 
port over the Coulomb-gap states.' 

To exclude the possibility of current oscillations at a 
constant voltage in conditions where the sample exhibits 
negative incremental resistance, we used a measurement 
setup in which the current was measured by the decrease of 
the voltage on the load resistance rlOad. Here, if r, is the 
absolute value of the sample resistance, the load resistance 
was chosen such that rload < r x .  In this case the current- 
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FIG. 1. Temperature curves for the conductivity of an a-Si(Mn) sample 
with N=7 at. % at different electric field strengths F: curve I corre- 
sponds to 20 V cm-', curve 2 to 5X lo3 V cm-', curve 3 to lo4 V cm-I, 
and curve 4 to 1 . 5 ~ 1 0 ~  V cm-I. 

voltage curves for the load and the sample, when consid- 
ered as functions of the sample voltage, have only one 
point of intersection. If in conditions of negative incremen- 
tal resistance no domain instability develops in the sample, 
such a circuit excludes current oscillations. 

In the studied a-Si structures with Mn densities of 
N=7  and 8 at. % the temperature T, of the onset of the 
~hk1ovski~-~fros law (2) is 47 and 41 K, respectively. 
Measurements of the temperature dependence of o for 
T <  T, have shown that as the electric field strength F 
increases, the temperature dependence of conductivity 
weakens considerably and departs from the law (2). The 
respective curves for a-Si(Mn) with N=7 at. % are de- 
picted in Fig. 1. 

The measured o as a function of F at different temper- 
atures are illustrated by Fig. 2 (N=  7 at. %). Ohm's law 
breaks down for F > F,= ( 1-4)  x lo2 V cm-'. The situa- 
tion just above the non-ohmic threshold is remarkable: de- 
pending on the temperature, the conductivity in the field 
either exponentially grows ( T ~ 1 2 . 5  K; by Ref. 9 this is 
called "positive non-ohmic behavior") or decreases ( 14.5 
K<T<50 K; "negative non-ohmic behavior"), which cor- 
responds to superlinear current-voltage characteristics or 
to sublinear characteristics. The decrease in hopping con- 
ductivity accompanying an increase in field strength man- 
ifests itself only in a limited temperature range; this phe- 
nomenon disappears in fairly strong electric fields. 

At T z 3 8  K the drop of conductivity of the system in 
the field is so large that the current-voltage characteristic 
acquires a section with negative differential resistance (Fig. 
3) .  As measurements in constant electric fields have 
shown, a characteristic feature of the observed negative 

FIG. 2. The field dependence of the conductivity of an a-Si(Mn) sample 
with N=7 at. % at different temperatures T: curve I corresponds to 50 
K, curve 2 to 38 K, curve 3 to 22 K, curve 4 to 14.5 K, curve 5 to 12.5 
K, curve 6 to 9.2 K, curve 7 to 6.9 K, curve 8 to 5.2 K, and curve 9 to 4.2 
K. 

FIG. 3. Current-voltage characteristics of an a-Si(Mn) sample with 
N=7 at. % at different temperatures T: curve I corresponds to 12.5 K, 
curve 2 to 22 K, curve 3 to 40 K, and curve 4 to 50 K. 

114 JETP 77 (I), July 1993 Yakimov et a/. 1 1  4 



differential resistance is the absence of any domain insta- 
bility. 

It was found that the high-temperature limit at which 
sublinear features of the current-voltage characteristics dis- 
appeared (T,z50 K at N=7 at. % Mn and T,z40 K at 
N=8 at. % Mn) coincides, with high accuracy, with the 
temperature of thermal clogging of the Coulomb gap de- 
termined in Ref. 1 ( T b z 4 5  K at N=7 at. 5% Mn and 
T b z  35 K at N =  8 at. % Mn). This is not accidental. The 
presence of a Coulomb gap in the spectrum of states ex- 
plains the observed qualitatively different field dependences 
of hopping conductivity. 

3. GENERAL INFORMATION ABOUT NON-OHMIC HOPPING 
CONDUCTION AND DISCUSSION OF THE EXPERIMENTAL 
RESULTS 

The theory of non-ohmic hopping transport in the 
VRH region developed in Refs. 3-5 predicts markedly dif- 
ferent temperature dependences for a. In extremely high 
fields (Ref. 3 ) ,  eFa/kT) 1, we have 

In the theory of VRH conduction the average hopping 
radius R is equal to :a{,(T), where 6,) 1 is the percolation 
threshold. For the case of hopping conduction over 
Coulomb-gap states we have gc= m. In exceptionally 
high fields, the energy acquired in the hopping range, 
W= eFR ( T )  , becomes higher than the energy spread 
AE- kTgc of the localized states over which hopping con- 
duction takes place. Hence, the conduction is not of acti- 
vation origin. 

In weaker fields, AE > eFR ( T )  > kT, we have 

Here 1( T )  is a parameter with the dimension of length and 
is called the non-ohmic length, I( T )  = CIR ( T), where 
C, < 1 (Ref. 4) or Cl= (14k2)  X (Ref. 6).  

The main idea leading to this result is that the activa- 
tion energy AE needed for hopping between localized 
states is decreased by the field by a quantity of the order of 
w. 

shklovskii5 shows that the non-ohmic behavior rnani- 
fests itself even at lower fields. The explanation is as fol- 
lows. In the ohmic region, hopping conduction over states 
localized at random points is equivalent to a grid of ran- 
domly connected resistors with resistance distributed ac- 
cording to an exponential law: 

r i jaexpgij ,  gij)l. 

Hence, the conductivity of the system is determined by 
resistances with values cij close to the percolation thresh- 
old gc (Ref. 2),  which carry practically all the applied 
voltage. In the non-ohmic regime the role of I (T)  in (4)  is 
then taken by the distance between the pivotal resistances, 

where v=0.88 is the critical exponent of percolation 
theory.2 According to Ref. 5, if eFLc(T)/RT$l, we have 

Equations (4) and (6) contain constants C, and C2 that 
are poorly defined in the theory. 

The result (6) has been obtained in a concrete model 
of an infinite hopping-conduction cluster in the form of a 
twisting single-conductor grid with suspended "dead ends" 
(Ref. 1 1 ) . Each conductor in the grid, which we call a 
macrolink, contains one pivotal resistance and lc exponen- 
tially smaller resistances, so that the conductor is much 
longer than LC.  The geometric distance between the piv- 
otal resistances, LC, has the meaning of the characteristic 
cell size of such a grid, that is, the scale starting with which 
the system may be assumed homogeneous. 

In the same model, an effect was predicted and exper- 
imentally observed9 in which a decreased as the field 
strength grew and even negative differential resistance 
manifested itself for the regime of hopping conduction over 
the nearest neighbors in the range of hopping-conductivity 
saturation. The sublinear nature of the current-voltage 
characteristics was linked to the capture of electrons by the 
dead ends and, as a result, to the decrease in their mobility 
caused by the exponentially long delay in the dead ends. 
Bottger and ~ r ~ s k i n ~  and Nguyen Van Lien and 
shklovskiis expressed the idea that the presence on the 
lines of current flow of sections directed against the force 
with which the field acts on an electron, or "bottlenecks," 
can also lead to sublinear current-voltage characteristics. 
Such sections of the critical subgrid (dead ends and bot- 
tlenecks) carry the generic name of traps induced by the 
electric field. 

It is assumed that with VRH conductivity there is no 
negative differential resistance caused by capture at dead 
ends because in this case the number of electrons leaving a 
trap is exactly balanced by the number of electrons sup- 
plied by the Fermi level. However, bottlenecks must be 
here, and Aleshin and shlimak12 do mention observing 
sublinear current-voltage characteristics in the VRH re- 
gime. 

Note that all the arguments concerning field-induced 
traps7-9 implicitly assume that the field is uniform over the 
size of the trap. At the very least it is assumed that over 
such a distance there is no time for the field to change its 
direction. Yet the question of uniformity of the field is not 
discussed in the papers cited above. 

It is clear, however, that the potential difference ap- 
plied to the sample not only generates a hopping current 
but redistributes the electrons over the impurity states. The 
carriers will build up in the dead ends, and regions de- 
pleted of electrons will appear at entrances to bottlenecks. 
The emerging space-charge density p ( R )  leads to potential 
fluctuations inside the sample. As a result the local fields 
F,,,(R) differ from the average field P in both magnitude 
and direction. Thus, in the event of a current in the system 
there emerges another parameter of the dimension of 
length characterizing the size of regions in which the elec- 
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TABLE I. Numerical parameters of non-ohmic hopping conduction in 
a-Si(Mn). 

Impurity con- 
centration, at. % T, K &= ( T 2 / T )  "* C1 C, Cj 

FIG. 4. Non-ohmic length I and L- LC as functions of the square of the 
percolation threshold, t:= T d T ,  in a-Si(Mn) samples with the following 
impurity concentrations: A and 0, N=7 at. %; and A and 0, N=8 
at. %. 

tric field may be assumed uniform, the screening radius R,. 
From the very definition of field-induced it is clear 
that a trap can be no larger than R,. If R,> LC, the field is 
uniform over the entire system, and the greatest delay is in 
traps whose length along the field is the greatest (of the 
order of or greater than LC). Since such traps are exponen- 
tially rare, the average delay time in the motion along a 
macrolink is determined by the competition between two 
exponents. One of these determines the probability of a 
trap appearing, the other the time of delay in the trap.9 

If the screening radius is so small that the field follows 
the current conductor, no traps appear and the quasime- 
tallic situation realizes itself. Then Shklovskii's  result^,^ 
which predict an increase in hopping conductivity in a field 
to follow Eq. (4) or ( 6 ) ,  are valid. Thus, a negative incre- 
mental resistance exists only if 

Rs> LC. (7) 

In practice, maintaining a uniform field in the VRH 
conduction regime is fairly difficult. Indeed, if the energy 
dependence of the density of states near the Fermi level 
g(Ff)  is weak and the linear screening theory holds true, 
then 

Using, for instance, the known data on Si(P) (Ref. 13), 
g(Ef) =5X 1018 ev-' cmP3 and E =  12, we get R,= 150 A. 
The correlation radius can be found from Eq. (5). Typical 
values of the percolation threshold 6, at low temperatures 
amount to roughly 10-15. Taking a=20 A and v=0.9, we 
get LC= 1000 A. Thus, not only is condition (7) invalid 

but R s z  (2-3) X R, as one can easily see. In this case the 
dead ends and bottlenecks cannot be electron traps and the 
current-voltage characteristics must be superlinear, a situ- 
ation observed in most experiments. Uniformity in the field 
can be achieved only in the special case where the com- 
pensation ratio K does not exceed (Ref. 9). In a 
semiconductor with a Coulomb gap the low concentration 
of screening carriers is achieved by nullifying the density of 
states at the Fermi level. 

Another feature of a semiconductor with a Coulomb 
gap is the nonlinear nature of screening. The screening of a 
potential q is achieved by electrons with an energy 
Ef = Aeq. According to Eq. ( 1 ), the farther we are from 
the Fermi level, the greater the density of states within the 
Coulomb gap, so that screening a large potential fluctua- 
tion requires a high electron number density [with p ( q )  
growing faster than q], that is, the effective screening ra- 
dius decreases as the screening potential increases. Hence, 
in a semiconductor with a Coulomb gap, as the voltage 
grows, one can expect a transition from the quasi4nsulator 
hopping-conduction regime (the case of a uniform field) to 
the quasimetallic regime, a situation that manifests itself in 
experiments by the change from negative non-ohmic be- 
havior to positive. We believe that this explains the disap- 
pearance of negative differential resistance for F > 1000 V 
cm-I in Fig. 3 and the minima in hopping conductivity in 
Fig. 2. To our mind, the absence of negative differential 
resistance at low temperatures is due to the increase in LC 
as T lowers so much that conditions (7)  becomes invalid 
[see Eq. (5)]. At high temperatures ( T > Tb) the Coulomb 
gap in the spectrum of states blurs, which means that the 
screening radius decreases, condition (7)  breaks down, 
and negative differential resistance vanishes. 

Let us return to Fig. 1. We see that for TG12.5 K 
beyond the non-ohmic threshold and for 1 4 . 5 ~ T  <50 K 
following the decrease in conductivity, there is observed an 
exponential increase in o with field strength. Here the law 
(4) holds true for T29.2 K in intermediate fields. From 
the slope of the straight lines in Fig. 2 one can find the 
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a, ohm- ' cm- ' - 

FIG. 5. Conductivity of an a-Si(Mn) sample with N=7 at. % as a func- 
tion of the electric field strength in log a vs F " ~  coordinates at different 
temperatures T:  curve I corresponds to 14.5 K, curve 2 to 12.5 K, curve 
3 to 9.2 K, curve 4 to 6.9 K, and curve 5 to 4.2 K. 

non-ohmic length I. The dependence of 1 on the parameter 
T d T  =g f for a-Si(Mn) samples with impurity concen- 
trations 7 and 8 at. % is depicted in Fig. 4. We found that 

where m=0.51 and 0.58 for N=7  and 8 at. %, respec- 
tively. On the other hand, the typical length of a hop over 
the critical subgrid is determined by the formula 
R = a ( T d T )  '12/4. On the basis of Eq. (4) we determined 
the size of parameter Cl , which links the non-ohmic length 
and the hopping length. We found that C1 =2.0-2.4 (see 
Table I) and is independent of g,. Note that computer 
simulifion predicts a linear increase in C1 with the perco- 
lation threshold growing.6 

As the electric field strength grows, the field depen- 
dence of conductivity weakens. Detailed analysis shows 
that in this case the link between o and F is best described 
by the exponential function (6) (Fig. 5). For samples with 
Mn concentrations N=7 and 8 at. % an analysis of the 
In a vs F " ~  dependence at different temperatures yielded a 
value L = C2 LC proportional to the correlation length of 
the conducting cluster. The results of such a procedure are 
depicted in Fig. 4. 

If the spectrum of states of a semiconductor contains a 
Coulomb gap, LC must grow, as the temperature lowers, 
like ( T ~ T ) ( ' + " ) ' ~ .  Setting the critical index at 0.9, we get 
$(l+v)=0.95. It was found in experiments that 
L a  ( TdT)",  where m =O.88 and 0.92 for N=7 and 8 
at. %, respectively, which supports the validity of the 
Coulomb-gap model. 

Determining the constant C2 from the experimental 
data is of practical interest because calculating it presents 
serious difficulties. From the formula C2 = L/ LC= 4 L/ 
af :+" we find that for different temperatures and impurity 
concentrations the value of C2 lies between 2 and 3 (see 
Table 1). 

A detailed study of the sublinear sections of the exper- 
imental current-voltage characteristics has shown that the 
conductivity decrease in the field is described by the fol- 
lowing formula: 

with the factor C3 in the 5.6 to 6.4 range. 
We are grateful to V. A. Dravin for implanting Mn+ 

ions in a-Si samples and to M. V. ~ n t i n  for numerous 
discussions of effects related to the fluctuations of q, in the 
event of a hopping-conductivity current. 
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