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We develop a consistent theory for the dynamic scattering of x rays in a vibrating deformed 
crystal for the case when the ultrasound wavelength A, is much smaller than the 
extinction length A. We construct a picture of the propagation of the wave field in the crystal 
which is based upon a representation of Bloch waves responding to the motion of the x- 
ray quantum with the emission and also both with and without the absorption of phonons. We 
pay special attention to evaluating the integral diffraction coefficient (IDC), I?, which 
is a function of two parameters: the modulus of the amplitude I w I of the ultrasound wave and 
the gradient of the deformation B of the crystal lattice. We show that under well defined 
circumstances I? depends anomalously (nonmonotonically) on the amplitude I w 1 of the 
ultrasound wave (it goes through a minimum) for fixed values of B. The theory 
developed here explains quantitatively recently performed experimental measurements of the 
anomalous behavior of I?. 

1. INTRODUCTION 

It was shown in the first papers on the effect of acoustic 
vibrations on the dynamic scattering of x rays (see, for 
instance, the review in Ref. 1 ) that it is possible in principle 
to measure the amplitude w of the ultrasound wave and 
also to determine the structure of the normal modes in 
piezoelectric transducers and resonators. 

Later on the method of ultrasound action on the Bragg 
diffraction of x rays, and also of neutrons, was used to 
study a broad range of acousto-electronic, magneto- 
acoustic, and acousto-magnetic effects in perfect 

The basic propositions of a classical theory of the dy- 
namic diffraction in perfect crystals, in which an ultra- 
sound wave is excited with a sinsusoidal periodic atomic 
displacement field, were formulated in Refs. 4 to 6. A char- 
acteristic parameter of the diffraction problem is then the 
ratio of the ultrasound wavelength A, to the extinction 
length A of the x rays. 

We restrict ourselves in what follows to the A,(A case 
(high-frequency ultrasound) when positive gaps occur in 
the dispersion surface (DS; see Fig. 1 ), the magnitude of 
which corresponds to the renormalized value of the struc- 
ture factor of the Bragg  reflection^.^'^ Physically the new 
gaps in the multi-sheeted DS correspond to diffraction re- 
flections with the absorption or emission of n phonons (nth 
order satellites, n = 0, * 1, * 2 ,... ) . 

A convenient formalism for the description of the 
Bragg diffraction in vibrating crystals was proposed in 
Refs. 4 to 6 (see also Refs. 7 and 8) which was based upon 
expanding the amplitudes of the passing and the diffracted 
waves in Fourier series in the wave vector of the high- 
frequency ultrasound wave. In the angular region of each 
satellite one then takes into account only the two corre- 
sponding components of this expansion. This makes it pos- 
sible, in principle, to reduce the problem to the canonical 
form of the dynamic theory (two-wave approximation). 

Recently an exact solution of the diffraction problem in 

a vibrating crystal was obtained in Ref. 9 when up to two 
components were taken into account in the expansions for 
the passing and the diffracted waves (four-wave approxi- 
mation). It  was shown that in the case of high-frequency 
ultrasound the corrections to the "two-wave" amplitude of 
the passing (diffracted) wave and the shape of the DS 
were, as to order of magnitude, equal to (MA,)-' and 
(Mil,) -2, respectively. 

In the case of a vibrating crystal with a high-frequency 
ultrasound wave the integral diffraction coefficient (IDC) 
I? can be written as a sum of scattering intensities 17" for 
all satellites and the main reflection. Theoretically and ex- 
perimentally it is known that the IDC for diffraction by a 
vibrating perfect crystal goes beyond the kinematic limit 
when the amplitude hw (h  is the diffraction vector) of the 
high-frequency ultrasound wave increases.476 Physically 
this is connected with the fact that with increasing hw the 
structure factor of each satellite diminishes and the diffrac- 
tion scattering in the angular region of each satellite takes 
on a kinematic character. In the case of a nonabsorbing 
diffracting crystal the IDC therefore increases on the whole 
from its dynamic value for hw =O to the kinematic one for 
hw- cc which, in principle, agrees with the general 
statement8 that I? increases when the deformation of the 
crystal lattice increases. 

However, the situation becomes more complicated in 
the case of ultrasound excited in a deformed (for instance, 
a bent) crystal. It  has been shown e ~ ~ e r i r n e n t a l l ~ ' ~ ~ '  ' that 
I? depends anomalously (nonmonotonically ) on the am- 
plitude of the ultrasound wave with a minimum at a volt- 
age V z 4  V on the piezoelectric transducer. 

Interbranch scattering when the excitation point passes 
through angular regions of satellites which are close to the 
main reflection was indicated in Ref. 10 as a possible cause 
for the anomalous dependence of the IDC I? on hw for 
fixed values of B. The considerations in Ref. 10 are based 
upon a quasiclassical description of the dynamics of the 
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FIG. 1.  Six-sheeted DS. We show the distances between the sheets of the 
DS for different satellites, GK,,=~PI J,,(hw) I /A, n=0,1,2. 

excitation points and, hence, the results of Ref. 10 are 
applicable only when B( 1. 

In the present paper we construct a consistent dynamic 
theory of the diffraction of a spherical wave by a deformed 
crystal in which high-frequency ultrasound is excited. Our 
exposition is based on a Green function formalism (point- 
source functions). We show that the parameter in our 
problem is the ratio of the angular distance hed,  traversed 
by the excitation point owing to the deformation, to the 
distance between satellites, 

ABS= Ks/2ko sin 8, 

where 8 is the Bragg angle, K, the wave vector of the 
ultrasound wave, and ko the wave vector of the passing 
wave. 

In the special case of diffraction by a crystal with a 
constant deformation gradient, the angular distance tra- 
versed by the excitation point is equal to 

AOd=2rTB/(Ak0 sin 8) ,  

where T=tr/A, t is the thickness of the crystal, 

and ud is the displacement vector in the static deformation 
field. 

For 2BT < AK, where AK= Ako sin 8A8Jr, each ex- 
citation point passes through at most one turning point ( a  
point where locally the Bragg condition is satisfied). Under 
that condition we can use for describing the diffraction 
near a separate nth satellite the well known expressions for 
the Green function in a crystal with a constant deforma- 
tion gradient with a renormalized extinction length. The 

total Green function is a superposition of the Green func- 
tions corresponding to the different satellites. 

One can easily show that for AK < 2BT < 2AK the ex- 
citation point passes successively through two turning 
points. For 2AK < 2BT < 3AK the excitation point passes 
through three turning points, and so on. When the excita- 
tion point passes through several turning points there oc- 
curs a redistribution of the excitation between the branches 
of the DS due to the inter- and intra-branch scattering of 
Bloch waves in the crystal. 

These physical considerations enable us to develop for 
diffraction by vibrating deformed crystals a consistent dy- 
namical theory which we present in what follows. 

2. STATEMENT OF THE PROBLEM. BASIC EQUATIONS 

For simplicity we restrict ourselves in what follows to 
considering symmetric diffraction scattering of an x ray 
with a Bragg angle 8. We introduce a non-orthogonal di- 
mensionless system of coordinates so, sh with axes directed 
along the wave vectors ko of the passing and kh of the 
diffracted waves such that 

where eo and eh are the unit vectors along the axes of the 
non-orthogonal coordinate system and y =cos 8. 

All distances are measured in what follows in units 
A / r  where A is the extinction length: 

h is the wavelength, Ce is a polarization factor, equal to 
unity or cos 28, respectively, for a or r polarization of the 
incident radiation, 

and xh is the Fourier component of the polarizability of the 
crystal. 

The coordinates (sO,sh) in the non-orthogonal system 
are connected with the coordinates (x,z) in the Cartesian 
coordinate system through the relations 

the z-axis is here directed perpendicular to the entrance 
surface of the crystal and the x-axis antiparallel to the 
diffraction vector h (see Fig. 2). 

It is well known that the amplitudes of the passing and 
the diffracted waves of the x-ray field in the point r in the 
crystal are determined by integral convolutions of the 
Green functions Go(r,rl), Gh(r,rl) and the amplitudes 
E0(r1) of the wave incident upon the crystal along the 
entrance surface of the crystal, z=0: 
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FIG. 2. Geometry of symmetric von Laue diffraction. 

The Green functions in (3) (after exponential substi- 
tutions to account for the refraction of the x rays in the 
crystal) satisfy a system of inhomogeneous first-order par- 
tial differential equations:12 

where the dynamic coefficients of the problem are equal to 

and the normalized dynamic absorption coefficient x is 
given by the expression 

x= ( ~ h i x - h r + ~ - h i ~ h r ) / ~ ( ~ h r ~ - h r - ~ h i ~ - h i ) .  

The vector V of the total displacement of the atoms 
from their equilibrium position can be written as a sum 
u,+ud where us is the displacement vector in the field of 
the standing transverse ultrasound wave: 

and ud the displacement which is quadratic in the field 
coordinates, 

~ U ~ = ~ ( A ~ + ~ B S @ ~ + C $ ) .  ( 6 )  

Writing the Green functions Gg (g=O,h) in the form 

and substituting them into (4) we find that the functions 
Qg satisfy a system of homogeneous equations 

where hu = h u,+4Bsosh. 
Using (4) it follows also from the definition (7)  that 

the function Qh on the characteristic lines s h , ~  = sLs0 satisfies 
the following boundary conditions: 

For AK)1 (the case of a high-frequency ultrasound 
wave) we shall look for the solution of the set of Eqs. (8) 
in the form of an expansion 

m 

Qg= x Qg,,exp(2inAKz). 
n= - m 

(11) 

The set (8) then reduces to the following infinite set of 
partial differential equations 

where the Jm are mth order Bessel functions of a real ar- 
gument. 

Substituting ( 1 1 ) into the boundary conditions (9) 
and ( 10) and using the well known Gegenbauer expansion 

we find that the functions Qh,, describing the diffraction 
with the excitation of n phonons satisfy the following 
boundary conditions: 

One usually restricts oneself when solving the problem 
of diffraction of x rays by a crystal in which a high- 
frequency ultrasound wave is excited to the so-called two- 
wave approximation, taking only the terms Qo,o and Qh,n 
into account near the nth satellite. In the 2m-wave approx- 
imation one takes into account m terms when solving the 
set (8). The closed set of equations obtained as a result 
describes together with (13) and (14) completely the 
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problem of diffraction scattering of x rays in a vibrating 
crystal with a constant deformation gradient and, as we 
shall show in what follows, is a methodological base for an 
analysis of the propagation of x-ray waves in such crystals. 

3. PROPAGATION OF THE WAVE FIELD IN A CRYSTAL 

In the case considered (high-frequency ultrasound 
wave), when AKB1, the angular distance A8, between the 
satellites is much larger than the width of the Bragg reflec- 
tion of the main reflection. The processes of diffraction 
scattering of x rays corresponding to each of the satellites 
can then be considered independently of one 

Near the satellite corresponding to the diffraction of x 
rays with absorption of n phonons, the set (8)  reduces to 
two equations for the amplitudes Qo,o and Qh,, (two-wave 
approximation) 

The set of Eqs. ( 15) is, apart from the renormalization 
of the coefficients, the same as the corresponding equations 
of the theory of diffraction of x rays in a crystal with a 
constant deformation gradient.12 An exact solution of the 
set (15) can, if we use (13) and (14), be written in the 
form [cf. (2.9) of Ref. 121 

where we have introduced the variables 

is a confluent hypergeometric function and vn is a pa- 
rameter determining the nature of the diffraction scattering 
of x rays and has the form 

Using (7) and (16) to change to the Fourier represen- 
tation of the "partial" Green function (see Ref. 13) 

we find that the plane-wave harmonics Ph,, ( qo ,go ,gn) have 
the following form: 

where 

In (19) the parameter q, which is equal to 

is a linear function of the z coordinate and determines the 
deflection of the reflecting planes as the Bloch wave pene- 
trates into the crystal. The fact that the argument of the 
Weber functions Dvn and D-,,- vanishes in ( 19), 

corresponds physically to the Bloch wave passing through 
the turning point Zn (the point where locally the Bragg 
condition is satisfied for the nth satellite). 

As the wave penetrates into the crystal, when for the 
change in the parameter of the deflection of the reflecting 
planes the relation 

is satisfied, the Bloch wave may pass through one or sev- 
eral turning points while in the reciprocal space this pro- 
cess corresponds to the motion of the excitation point tak- 
ing into account transitions from one branch of the multi- 
sheeted DS to another (intra- and inter-branch scattering 
of the Bloch wave). 

Let now a Bloch wave propagate in the crystal with an 
initial deflection q0 in the range 

From the boundary conditions on the entrance surface 
and condition (22) it follows that in our case only the 
branch of the DS with the asymptote perpendicular to the 
radius k, (Fig. 3) is excited in practice. 

It is clear from Fig. 3 that as the wave penetrates into 
the crystal the excitation point will pass successively 
through the turning points Z1 ,Zo,Z-l,...,Z-n the positions 
of which are determined by the expression [see (21 )] 

Near the first turning point Z1 there is thus excited a 
satellite corresponding to the intersection of two straight 
lines perpendicular to the radii k, and kh + K, (Fig. 3) and 
to the components Po,,( Y1) and Ph,l ( Y1) of the quasipla- 
nar Bloch wave. In accordance with (19) these compo- 
nents have the following form: 
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Kh + 

FIG. 3. Intra- and inter-branch scattering of a Bloch wave when it 
passes through three turning points. 

Furthermore, near the turning point Zo, two satellites 
are excited corresponding to the pairwise intersection of 
two straight lines perpendicular, respectively, to the radii 
b, kh and b+ K,, kh+ K, (Fig. 3 ) .  The x-ray waves cor- 
responding to them are described by the following expres- 
sions: 

while the coefficients MA2), NA2), MA1), and Nil)  are de- 
termined from the solutions (24 )  to (26)  for z=z , ,  
z, <z* <zo. 

For simplicity we choose the point z ,  where the solu- 
tions are joined to be 

Assuming that the inequality O < A K / ~  is satisfied 
and using the standard asymptotic form of the Weber func- 
tions we find by direct calculation 

Po,, ( YO) = [Mh2)D-,( - YO) + N A ~ ) D , - ~  ( -iYo) ] 
~ e x p [ i ~ ( ~ T - ~ t ) ]  I Y ,  I v ~ - v o ,  ( 29 )  

X exp ( - 2iAKz), MA2) ,Nil) cc l / A K g  1 .  

( 2 6 )  Here rl is the amplitude of the interbranch scattering and 
Ph, l (Yo )=  [2  , , h / ~ ~ ( h w ) ] e x p ( - 2 i ~ ~ z )  [ V & A ~ ) D - ~ - , , ~  t l  and ql are the modulus and phase of the intrabranch 

scattering; they are given by the well known expressions 
( 2 ) ~  ( - i y 0 ) ] .  X ( -Yo) - iN0  vo 

The variables Y 1  and Yo in (24)  to (26)  are equal to rl=exp(-.rrlv11 ), 6=(1-6),  
(30 )  

the coefficients M 1  and N1 are determined from the bound- It follows from (28 )  and (29 )  that the coefficients 
ary conditions at the entrance surface for z=0  and are M A ' )  and NA2) depend on the position of the joining point 
equal to [see ( 19)] z ,  ; this is a consequence of the simplified description of the 
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process of the propagation of the waves between the turn- 
ing points Z1 and Zo. A more correct analysis shows that 
one must replace the factor 

e x p [ - i ~ ( ~ T - z i ) + i (  I ~ O I  - lvll )In1 Y,) I 
in (28) and (29) by the quantity 

- vl ln(2 1 vl 1 'I2) , I (31) 

where Kl,o(z) is the quasimomentum of the Bloch wave 
calculated in the four-wave approximation (see Ref. 9), 

Kl,o(z) = -AK+{[AK- Jm12+ ~:(hw)) ' /~.  
(32) 

Physically, the quantity Wl,o is, apart from a constant 
coefficient, the advance in the phase of the Bloch x-ray 
wave when it propagates in the crystal between the turning 
points Z1 and Zo. 

One can easily show that the angular width 6, of the 
nth satellite on the diffraction reflection curve is for 
AK > 2 BT, I x ~ , ~  I given by the expression 

a n =  [ ( m 2 +  I ~ h , ~ 1 ~ ]  'I2. (33) 

Indeed, if we use the standard asymptotic form of the We- 
ber functions ( I Yn I, I Yn(0) 1 > 1 ), depending on the value 
of the parameter qo of the angular mismatch, the asymp- 
totic expression for Ph,n(qo,{o,{n) in ( 19) takes the follow- 
ing forms 

1 ) for qo < - 2BT and for q0 > 0 we have 

xexpti( I Yn1 2- 1 Yn(0) 1 2)/4]), (34) 

2) for O>qo> -2BT we have 

It is clear that in the angular regions 0 < q0 (to the right) 
and qo<  -2BT (to the left of the maximum of the nth 
satellite) the diffraction intensity I Ph,n 1 decreases in pro- 
portion to I Yn(0) 1 -2 and I Yn 1 -2, respectively, whereas in 
the angular range 0 > q0 > -2BT (the central part of the 

peak) the intensity 1 Ph,n I is independent of qo and is pro- 
portional to $. We are thus led to the estimate (33) for the 
angular width of the satellite. 

We now consider the case when for the incident wave 
on the entrance surface z=0 the inequality 

is satisfied. The coefficient N1 occurring in (24) is then 
small as compared to MI :  

Moreover, one can simplify Eqs. (28) and (29) con- 
siderably under the conditions 

which are simultaneously satisfied if we take (36) into 
account, provided 

where the characteristic values of the constant deformation 
gradient are equal to 

For instance, for the experimentally possible values AK 
z 10 and T z  10 we get B 1 z  1/3 and B2z4.  

If we use (36) and (37), Eqs. (28) and (29) take the 
form 

For large crystal thicknesses z such that 

the x-ray Bloch wave traverses one more (a third) turning 
point Z- (see Fig. 3). Near the turning point Z- three 
satellites are excited corresponding on the DS to pairwise 
intersection of straight lines perpendicular to the radii k,, 
and kh-K,, k,,+K, and kh, k,,+2KS and kh+K,. 

Applying the same procedure we have used to derive 
Eqs. (39) and (40), and omitting the intermediate calcu- 
lations we have found that near the turning point ZF1 the 
corresponding coefficients in the two-wave expansion ( 19) 
are equal to 

One may thus say that in the general case a quasipla- 
nar wave incident upon a crystal of thickness T such that 
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FIG. 4. Picture of the propagation and relative intensities of Bloch waves 
undergoing intra- and inter-branch scattering in a vibrating deformed 
crystal. 

is, when leaving it, transformed into a superposition of 
n + 1 Bloch waves; the probability that they are excited is 
the product of the probabilities of the intra- and inter- 
branch scattering as the result of successively passing 
through n + 1 turning points. 

As an illustration we show in Fig. 4 the trajectories of 
Bloch waves in a deformed vibrating crystal (the so-called 
"wave propagation tree"). On each branch of the "wave 
propagation tree" we show the probability for its excita- 
tion. On the entrance surface of the crystal only the passing 
wave is excited with a probability z 1. Propagating inside 
the crystal the wave successively passes through one, two, 
and three turning points corresponding to the diffraction of 
x rays with the emission and also both without and with 
the absorption of a single phonon. 

4. THE ANOMALOUS BEHAVIOR OF THE INTEGRAL 
DIFFRACTION INTENSITY 

It is well known that the IDC can be written as an 
integral of the square of the modulus of the Green function 
along the entrance surface of the crystal z=0: 

1 

Ip=a IGh(x,T;x-gT tg 6,O) 12dg, (46) 

where T is the thickness of the crystal and 
a=%' ( x h ) / 2  sin 8. 

Equation (46) together with the procedure for forming 
the "wave propagation tree" described in the preceding 
section enables us to calculate the IDC I? as function of 
the two parameters hw and B. 

4.1. The 2BT<Ak case. One turning point 

Substituting Eq. (16) for the Green function Gh into 
(46) one can write the IDC I? in the form 

where ct is the sum of the diffraction intensities corre- 
sponding to the different satellites: 

and A l p  is the term describing the interference of the wave 
fields corresponding to the different satellites: 

It is clear from (49) that AI? contains a fast oscillat- 
ing factor exp[i(n-n1)AKTf/2] in the intejration range 
- 1 <g< 1. As a result, A I ~  , in contrast to Irt contains a 
small parameter of order ( AKT) -'< 1. Apart from terms 
proportional to ( AKT) 1-the IDC I? is thus the sum 
of the diffraction intensities, I$:, corresponding to the dif- 
ferent satellites. 

For simplicity we consider the case of a nonabsorbing 
crystal. Using the quasiclassical aymptotic formulas for the 
Green function Gh,n we find the following expresson for 
the "partial" diffraction intensity I$: : 

where D= BT. 
Physically the meaning of Eq. (50) consists in that 

each nth satellite corresponds to renormalized values of the 
extinction length, &=A/ I Jn(hw) I, the crystal thickness, 
Tn= T 1 Jn(hw) I, and the deformation gradient, 
Bn=BI Jn(hw) 1 2 .  

In the BnTn<l limit Eq. (50) goes over into the cor- 
responding expression f iy :  for a perfect vibrating crystal 
(dynamic limit) 

In the opposite limiting case, BnTn>l, we get from 
(50) 

If, moreover, the intra-branch scattering coefficient is 
small, (41, Eq. (52) goes over into the kinematic limit 

108 JETP 77 (I), July 1993 Chukhovskii et a/. 108 



FIG. 5. 2;' as function of the ultrasound wave amplitude hw for z= 12.8, 
B=O (curve I ) ,  0.01 ( 2 ) ,  0.02 (3), and 0.03 (4). 

In the general case we calculated the "partial" IDC 
$', by using Eq. (50) and the Gauss-Chebyshev numeri- 
cal integration method.12 Moreover, the results of the cal- 
culations using Eq. (50) which are given below were av- 
eraged over an oscillatory period of the standing 
ultrasound wave. 

We show in Fig. 5 the IDC 7;' as function of the 
amplitude of the ultrasound wave for B=O, 0.01,0.02, and 
0.03 (curves 1 to 4, respectively) for a crystal of thickness 
z= 12.8, evaluated using Eq. (50) taking the n = - 5 to 5 
satellites into accoun_t. Notwithstanding the fact that the 
diffraction intensity I)): for each satellite varies strongly as 
a-functkn of the ultrasound wave amplitude, the total IDC 
I/' increases monotonically with increasing ultrasound 
wave amplitude, tending to the kinematic limit. 

Before we turn to the case under consideration we 
make the following important remark which elucidates the 
physical meaning of Eq. (52). 

It is clear from (52) that 7): is the product of the 
deformation parameter, equal to the change in the angular 
deflection of the reflecting planes, Sr/ = 2 BT ( B > 0)  , over 
the total crystal thickness, and the probability rn= zf!, for 
the intra-branch scattering of the quasi-planar Bloch wave. 
This means that the main contribution to the diffraction 
scattering, corresponding to the nth satellite, comes from 
the excitation points which during the motion change 
along the branch of the DS with an asymptote perpendic- 
ular to k, to the corresponding part of the DS with an 
asymptote perpendicular to h + nK, . 

4.2. The 2AK<2BT<3AK case. Three turning points 

Using Eqs. (39) and (40) we can derive expressions 
similar to (52) for the AK< 2BT < 2AK case when the 
Bloch wave passes through two turning points. However, a 

FIG. 6. Propagation of Bloch waves along the DS. We show the excita- 
tion points passing through three turning points in black and those pass- 
ing through two turning points in white. 

further consideration shows that the main interest will be 
in the case when the Bloch wave passes through at least 
three turning points. 

In the case when the Bloch wave passes through three 
turning points, 2AK< 2BT < 3AK (see Fig. 6), using (42) 
t_o (45), we have instead of Eq. (52) for the "partial" IDC 
4% 

+rnPn+l~n+2) + A r 1 3 ( ~ n + l ~ n + ~ n + l ~ n ) I ,  (54) 

where Aq4= 2 BT - 2AK, Aq3 = 3AK- 2 BT. 

Summing the scattering intensities over all angular re- 
dons between the satellites we find a general expression for 
I),"' : 

We note that for hw=O Eq. (55) changes into the 
corresponding expression for the IDC of a crystal with a 
constant deformation gradient, and in the limit of large 
deformations, when I hw I > 1 or I B I ) 1 (but 2BT < 3AK) 
the IDC is the same as the kinematic value. 

Generalizing what has been said above to the case of 
the successive passage of a Bloch wave through turning 
points we can write the expression for the IDC I),"' in the 
form 
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FIG. 7. Experimental curves of 7,"' as function of the ultrasound wave 
amplitude hw; T=360 pm, A=88.8 pm, (660) reflection, for Si, and Mo 
K, . The values of the characteristic parameters of the curves are given in 
the Table. 

Here we have 

Aqm=2BT- (m- l)AK, Aqm+l=mAK-2BT, 

and we have introduced the coefficients 

creation of a Bloch wave undergoing j times intra- and 
m - j times inter-branch scattering. For instance, the co- 
efficient L14 corresponds to the sum of four terms: 

5. COMPARISON BETWEEN THEORY AND EXPERIMENT 

For a comparison of the theory with experiments we 
use the results of the measurement of the dependence of the 
IDC 1;' on the voltage V on a piezoelectric transducer 
which were carried out in the Physics Institute of the 
Latvian Academy of Sciences (see Fig. 7, and also Fig. 4 
from Ref. 1 1 ) . The diffraction was studied of Mo K, x rays 
by a vibrating Si crystal [thickness t=  360 pm, (660) re- 
flection, extinction length A =  88.8 pm, third harmonic of a 
standing ultrasound wave with /2,=2t/3 ~ 2 4 0  pm]. It is 
clear that one observes deformed crystals on the initial 
sections of the function I;' ( V) an appreciable diminution 
of the intensity which reaches a maximum value of the 
order of 30% (anomalous behavior of the IDC 1Ft). 

For a quantitative comparison of the experimental data 
with the results of our calculations it is necessary, starting 
from the experimental curve giving the function IT', to 
calibrate the voltage V on the piezoelectric transducer by 
the magnitude of the ultrasound wave amplitude (hw) and 
to determine the magnitude of the constant deformation 
gradient B. To do this we determine the magnitude of B by 
describing the experimental points I',"'(hw = 0;B) using 
the relation 

which follows from (52) ( ~ / 2  > B > 1/2T). 
We give in the Table the values of the constant defor- 

Ljm= C fnfn+lfn+~.-.fn+m-1 r 
P mation gradient calculated using Eq. (58) for the curves of 

(57) Fig. 7. In the last column we give the number N ohurning 

Qjm= C fnfn+~fn+~...fn+m-2, points traversed by the excitation points: 
r 

where the summation over odd j is up to the fixed m. To 
evaluate Ljm and Qim one chooses for the terms f in the where [x] is the integral part of the number x. 
product all possible permutations from the series in which We give in Fig. 8-the results of the corresponding cal- 
j of the elements are T and m- j of the elements are p. culations of the IDC 1;' as function of hw using Eqs. (52), 
Each term in (57) is then physically the probability for the (55), and (56) ( n  = - 5, ..., 5) as applied to the experimen- 

TABLE I. 
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Number of 
the curve 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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ihW(0, B) l - kt 
I h  (0' 0) 

1 

1~2 
1.77 
1,89 
2,14 
2.34 
2.56 
3.1 
3,43 
4.0 

Deformatio~~ 
gradient, B 

0 
0,07 
0,108 
0.12 
0,13 
0,148 
0,15 
0.189 
0,21 
0,244 

Number of turning 
points, N 

- 
2 
3 
3 
3 
3 
3 
4 
4 
5 



FIG. 8. Calculated functions Ftt(hw, V) for multiple passing of the wave 
through turning points. The values of the characteristic parameters of the 
curves are given in the Table. 

tal data of Ref. 11: AK= 1.1, T= 12.8. The calculated 
curves were averaged over an oscillation period of the ul- 
trasound wave. 

Furthermore, having in mind the construction of a cal- 
ibration of the voltage V by the ultrasound wave amplitude 
hw we approximate the curve I (B=O) in Fig. 8 by a 
linear function using the least squares method. As a result 
the coefficient linking the ultrasound wave amplitude hw to 
the voltage V determined in this way is equal to 8.1 V. 

The analysis shows (see the table) that in the case 
when the Bloch _waves pass through one or two turning 
points the IDC IFt increases monotonically (see Fig. 8, 
curves I and 2). If the Bloch waves pass through three 
turning points there-appears a local minimum on the curve 
showing the IDC IYt  as function of hw which reaches a 
magnitude of 12%. Its position and magnitude then are, 
within-an accuracy of * 5%, the same as the correspond- 
ing experimental values (curves 3 to 5 in Figs. 7 and 8). 

To calculate the IDC when the waves pass through 
four or more turning points one must use Eq. (56); the 
calculations show-that the depth of the dip on the curve 
giving the IDC IFt as function of the ultrasound wave 
amplitude for fixed B initially increases with increasing 
parameter B, which determines the number of turning 
points which are passed through,but afterwards, starting 
with some values-of B, the curve I;;"'(hw) is smoothed out, 
going over into Itkin. 

We give a qualitative explanation of this result, using 
the simple model proposed in Ref. 10. The results of nu- 
merical calcu_lations show that the minimum of the curve 
of the IDC Ift function is formed for small values of the 
ultrasound wave amplitude (hwz0.4) and small values of 
the deformation gradient, B<7r/2, when the scattering of 
the Bloch waves in the angular region of the main reflec- 
tion has an intra-branch character (po+O) while the prob- 
ability for the inter-branch scattering in the region of the 
nth satellite takes the form 

Under these conditions the scattering in the region of the 
higher-order ( 0 2 )  satellites has an essentially inter- 
branch character (rn+O) SO that we can neglect their ef- 
fect when calculating the IDC: 

One shows easily1' that in that approximation the pogtion 
of the minimum hw, on the curve of the function fit is 
determined by the expression 

while the ratio of the IDC et at the minimum 
g ( h w , , B )  to the IDC ?ft for a nonvibrating crystal 
Ift(O,B) has the form 

It follows from the experimental data (see Fig. 7 and the 
Table) that the 1/B dependence of the ratio 
$'(hew, , B)/?;~(o, B) can be approximated by a linear 
function with an accuracy of 5%. The coefficient of this 
linear relation, calculated by the least squares method, 
turned out to be equal to 0.052 whereas the theory [see 
(61)] gives for it the value AK/2T=0.043. 

For B>7r/2 the scattering of the Bloch waves has an 
inter-branch character [T, z ~ r ( h w / 2 )  2n/2 B] in the angular 
region of all the satellites, and the general Eq. (55) can be 
written in the form of a series in powers of 7r/2B with a 
first term which is the same as the kinematic limit for the 
IDC: 

In the region of intermediate B values we did not suc- 
~ e e d  in getting an explicit expression for the extremum of 
IFt as function of p l  using Eq. (55). 

1% this approximation the maximum decrease in the 
IDC fLt in a vibrating deformed crystal thus reaches 50% 
for ~ / 2 )  B$ AK/T. The position of the minimum of the 
IDC, h -  w, , for B<?r/2 is described by Eq. (60), and 
when B increases further and there is a change to the 
kinematic diffraction regime the minimum disappears alto- 
gether. We note that the model considered agrees well with 
the results of numerical calculations and of experiments 
(see Figs. 7 and 8). 

Summarizing, we can say that the phenomenon of an 
anomalous behavior of the IDC as function of the ultra- 
sound wave amplitude in deformed crystals is connected 
with multiple intra- and inter-branch scattering of Bloch 
waves when they pass through three or more turning 
points. 

In conclusion we note that qualitatively-the phenome- 
non of an anomalous behavior of the IDC I;' as function 
of the ultrasound wave amplitude in deformed crystals was 
explained in Ref. 10 where it was assumed that the main 
contribution to the IDC comes from three turning points, 
including the main reflection. According to Ref. 10 the 
IDC I;;"' is determined by the expression [cf. (59)] 
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It  is clear that this quantity reaches its minimum value 1/2 
for hw, [see (60)] and that the magnitude of the minimum 
is, in general, independent of the deformation gradient B. 
However, the discussion given here shows that a quantita- 
tive agreement between the calculated and the experimen- 
tal IDC is possible only in the framework of an exact the- 
ory, based on the Green function formalism, for the 
propagation of x-ray waves in vibrating deformed crystals. 
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