
Dynamic optical chaos of coherent excitons and biexcitons in semiconductors 
A. Kh. Rotaru and K. V. Shura 

Institute of Applied Physics, Moldauian Academy of Sciences, Kishineu 
(Submitted 12 November 1992; revised 25 March 1993) 
Zh. Eksp. Teor. Fiz. 104, 2374-2387 (July 1993) 

We predict the possibility (in principle) of ultrashort dynamic chaos appearing in a system 
of coherent excitons, photons, and biexcitons in semiconductors. We show that, 
depending on the value of the exciton-biexciton conversion constant and on the initial 
quasiparticle concentration, both regular and stochastic oscillations are possible in the system. 
The dynamic stochasticity of coherent quasiparticles is caused by breakdown of integrals 
of motion of the system. 

1. INTRODUCTION 

At present attention is focused on studies of nonlinear 
coherent interaction of laser radiation with matter. A spe- 
cial place among these phenomena is occupied by the prob- 
lem of dynamic chaos in both dissipative and Hamiltonian 
dynamical systems. 

In view of the large values of nonlinearities in semi- 
conductors in the excitonic part of the spectrum, the prob- 
lem of nonlinear cooperative phenomena in a system of 
coherent excitons, photons, and biexcitons is of consider- 
able interest. Among such phenomena are self-induced 
transparency and nonlinear optical nutation.'-' A theory of 
dynamic chaos and formation of strange attractors of ex- 
citons and biexcitons in solids, which allows for dissipation 
processes, has been built by a number of  researcher^.^-'^ 
They have shown, for instance, that dynamic evolution of 
coherent excitons, photons, and biexcitons in condensed 
media, with allowance for dissipation processes, is de- 
scribed by a generalized system of Lorenz equations in a 
four-dimensional phase space. Basing their reasoning on 
Keldysh's equations generalized to the case of coherent 
pumping and damping, the authors of Refs. 15-18 show 
how in principle it is possible for dynamic chaos to emerge 
in a system of coherent excitons and photons. 

Developing methods for generating and forming light 
pulses with lengths up to 10-l5 s (femtosecond) has be- 
come one of the most striking achievements of laser phys- 
ics in recent times.19 This makes it possible to lift all re- 
strictions on the characteristic times of the dynamics of a 
system of coherent excitons and biexcitons in semiconduc- 
tors, the relaxation times of the latter being of the order of 
10-~-10-" s, and to continue studying the physical pro- 
cess when ultrashort laser pulses act on matter. The inter- 
est is due, on the one hand, to the prediction and investi- 
gation of new nonlinear effects when ultrashort laser pulses 
act on matter, and on the other to the use of these effects 
for ultrafast data processing, where chaotic instability is 
undesirable. Hence, fixing values in the parameter space at 
which dynamic chaos sets in is of great practical impor- 
tance, too. 

Dynamic chaos in optical Hamiltonian systems was 
studied in the model of two-level atoms in Refs. 20-23. But 

similar phenomena in the excitonic part of the spectrum 
have still to be studied. 

This paper is devoted to a new cooperative nonlinear 
phenomenon, the ultrashort dynamic chaos of coherent ex- 
citons, photons, and biexcitons in condensed media. In 
contrast to dissipative dynamic chaos studied in Refs. 8-18 
and caused by the production of strange attractors in a 
diminishing volume of the phase space, when the system of 
photons, excitons, and biexcitons is open (the length of 
laser pulses is of the order of, or greater than, the relax- 
ation time), ultrashort optical chaos evolves in times 
shorter than the relaxation time, when the system of co- 
herent quasiparticles is Hamiltonian. In this case the vol- 
ume of the phase space occupied by the system is invariant 
and dynamic chaos appears because integrals of motion of 
the system break down and a stochastic layer appears in 
the phase space near the separatrix. 

2. STATEMENT AND HAMlLTONlAN OF PROBLEM. 
DYNAMIC EQUATIONS 

Let us examine the ultrashort temporal evolution, 
without allowing for dissipation processes, of a spatially 
homogeneous system of coherent (in the sense of 
Bogolyubov) excitons, photons, and biexcitons in the event 
of optical conversion of a biexciton into an exciton in the 
vicinity of the M luminescence band of a semiconductor. 
There is ample experimental proof at present of the exist- 
ence of biexcitons in crystals, based on observations of the 
M band caused by radiative recombination of 
b i e x ~ i t o n s . ~ ~ - ~ ~  This band is shifted toward the long-wave 
part of the spectrum in relation to the excitonic light- 
absorption band by a quantity equal to the biexciton's 
binding energy ?bM= Eg- la - I b ,  where wM is the bound- 
ary frequency of the M band, E, the band gap, and I, and 
Ib the binding energies of an exciton and a biexciton, re- 
spectively. For CuCl crystals, Ib-40 meV (Refs. 23, 26, 
and 27). Hence, the photon energy ?bM possesses consid- 
erable detuning from the resonance in the transition be- 
tween the ground and excitonic states of the crystal. In 
view of this we will not consider such transitions here. 
Moreover, as shown in Refs. 28 and 29, the processes of 
optical conversion of excitons into biexcitons and of radi- 
ative recombination of biexcitons are characterized by an 

60 JETP 77 (I), July 1993 1063-7761 /93/070060-08$10.00 @ 1993 American Institute of Physics 60 



enormous oscillator strength, which facilitates a stronger 
manifestation of nonlinear coherent phenomena in this re- 
gion of the spectrum. Because the binding energy in CuCl 
and CuBr crystals is high enough, we also ignore processes 
of two-photon production of a biexciton from the ground 
state of the crystal in view of the large detuning from res- 
onance. The relaxation times for excitons and biexcitons in 
CuCl are equal, respectively, to 1 . 3 8 ~ 1 0 - ' ~  s and 
1.38X lo-" s (Ref. 30). Since, on the one hand, the tem- 
poral width of the excitation pulse must be smaller than 
the relaxation times, observing ultrashort dynamic chaos in 
a system of coherent excitons and biexcitons requires laser 
pulses with picosecond and subpicosecond lengths, which 
presently feasible ultrashort laser pulses. As shown below, 
exciton concentrations at which observation of ultrashort 
dynamic chaos in crystals of the CuCl type is possible are 
of the order of 10'~-10'~ cmP3. Thanks to the small exci- 
ton radius in CuCl (aa-7 A),  high exciton concentrations 
(nu- 1019 ~ m - ~ )  can be created in CuCl (Refs. 24, 3 1, and 
32). 

Our problem contains two types of nonlinearity: opti- 
cal nonlinearity caused by exciton-biexciton conversion, 
which occurs for all levels of excitation of the crystal, and, 
generally speaking, the nonlinearity caused by the interac- 
tion between quasiparticles, the importance of which in- 
creases with the level of excitation of the crystal. In Refs. 
26, 33, and 34 it is shown that allowing for exciton-exciton 
interaction leads to a shift of the excitonic level, both under 
conditions when the Bose-Einstein condensation of exci- 
tons is realized and under conditions of biexciton produc- 
tion 

where ha is the energy of exciton production, and ~ ( 0 )  
the Fourier transform of the exciton interaction energy. 
The nature of the coupling constant v(0) depends strongly 
on the symmetry of the wave functions of the interacting 
quasiparticles. A shift of the excitonic level in a CuCl crys- 
tal has been observed in For concentra- 
tions nu- 10'~-10'~ cmP3 in CuCl this shift amounts to 
0.01 8-0.18 meV. Hence, in what follows we do not explic- 
itly take the nonlinearity caused by exciton-exciton cou- 
pling into account, assuming that it renormalizes the 
quasiparticle-production energy. More than that, 
~ h a d z h i ~ ~  has shown that in ultrashort nonlinear phenom- 
ena such as self-induced transparency and nonlinear nuta- 
tion in exciton-biexciton conversion the interparticle inter- 
action contributes little to formation of nonlinear processes 
because of the huge oscillator strength of the optical con- 
version of excitons into biexcitons. 

The above estimates suggest that all the necessary cri- 
teria for experimental observation of ultrashort chaos in a 
system of coherent excitons and biexcitons are quite 
achievable. The model considered is shown schematically 
in Fig. 1. 

The starting point in a theoretical investigation OF ul- 
trashort dynamic chaos in a system of coherent excitons, 
photons, and biexcitons, restricted to pulse lengths shorter 

FIG. 1. Energy diagram of one-photon conversion of an exciton into a 
biexciton: 0 is the ground state of the system, I the excitonic level, 2 the 
biexcitonic level, wPh the excitation frequency, w, the exciton transition 
frequency, and ob the biexciton transition frequency. 

than the quasiparticle relaxation time, is the interaction 
Hamiltonian in the second quantization representation. 
Only one macrofilled mode of coherent excitons, photons, 
and biexcitons characterized by fixed wave vectors is con- 
sidered. This makes it possible to introduce amplitudes and 
phases for the respective quantities. 

The Hamiltonian of the problem consists of the Hamil- 
tonian of free excitons, biexcitons, and photons and the 
Hamiltonian of the interaction of the radiation field with 
the system of coherent excitons and biexcitons: 

where ak+ (ak), bk+ (bk), and ck+ (ck) are the operators of 
creation (annihilation) of an exciton, biexciton, and pho- 
ton, respectively, with a wave vector k; the quantities ha 
and hb are the renormalized (owing to the interparticle 
interaction) energies of production of an exciton and biex- 
citon; hph is the photon energy; a is the constant of opti- 
cal conversion of an exciton into a biexciton and is defined 
in Ref. 6; and gk is the dipole moment of the transition 
from the ground state of the crystal to the excitonic. In 
what follows we put fi= 1. The interaction of light with 
excitons and biexcitons contains both a resonance part and 
an antiresonance part. The resonance interaction leads to 
coherent nutation of excitons, photons, and biexcitons 
studied in Refs. 1 and 6. As shown below, allowing for 
antiresonance terms in the Hamiltonian leads to destruc- 
tion of bound states of the system of excitons and biexci- 
tons interacting with the radiation field and to formation of 
dynamic ultrashort chaos. 

In what follows it is expedient to go over to amplitude 
and phase variables: 
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C? = Sf exp{iqph + ikx), 

where n and q, are the number and phases of excitons, and 
f and qph and N and qb are similar quantities for photons 
and biexcitons, respectively. In these variables the system 
Hamiltonian assumes the form 

The temporal evolution of coherent excitons, photons, 
and biexcitons is described by the following system of 
equations: 

Note that Eqs. (4) can also be obtained from the Heisen- 
berg equations of motion. 

We introduce the following phase variables: 
$=~b-qa-4)ph, Pl=qb-qa+4)ph, 4)2=Q)b+Q)a-4)ph, 
and Q)3=Q)b+qa+Q)ph. In this case we get from Eqs. (4) 

1 nf 
3 

*=A+- 8 (&- E- g) (sin $+E i= x 1 sin qi 

3 

sin $+E x sin qi 
i= 1 

where il=8ag/wph and A= (wb- ma- w,)/w,, and a dot 
denotes a derivative with respect to dimensionless time 
r=twph. The parameter E is introduced in such a manner 
that E=O when the antiresonance terms are ignored, while 
at E= 1 the system of equations (5) is equivalent to (4). In 
the resonance approximation (E=O) the system has three 
integrals of motion, 

Combining this with (5) readily yields 

(C1-N)N -d C-N ) sin $, 

il 
P=NA+S ~N(c-N)(c,-N) sin 6 

where P= w;' (H- C1wa- Cwph) is an additional integral 
of motion and assumes the role of the Hamiltonian in the 
parameter space (N,$). In the resonance approximation 
the system of coherent excitons, photons, and biexcitons 
nutates in time with a frequency that strongly depends on 
the initial quasiparticle concentrations. The phase trajecto- 
ries in this case are closed curves that depend on the inte- 
grals of motion and on the resonance detuning. 

At P= CA and C1 = C the phase trajectory becomes a 
separatrix, which corresponds to an aperiodic oscillation 
regime. As Belobrov, Zaslavski'i, and Tartakovskii have 
s h o ~ n , ~ ~ , ~ ~  arbitrarily small perturbations destroy the tra- 
jectories near the separatrix, with the motion of excitons, 
photons, and biexcitons becoming stochastic. 

(5)  
3. BREAKDOWN OF INTEGRALS OF MOTION AND 
STOCHASTIZATION OF PHASE TRAJECTORIES 

Since from the very beginning the states of excitons, 
photons, and biexcitons are assumed to be macrofilled, we 
cannot consider the initial values No, no, and f o  to be zero. 

62 JETP 77 (I), July 1993 A. Kh. Rotaru and K. V. Shura 62 



However, in what follows we extrapolate cases of the type 
no) No to the initial conditions of the type no=O, No=O, 
etc. 

Introducing the notation 1 = A fi, Z=n/Cl, 
f = f /c l ,  fi= N/c1, and c= C/C1, going over to the vari- 
ables N and N, and dropping the bar, we obtain in from 
(7) the unperturbed case 

. A2 
N ~ = - ~ ( 1 - N ) ( c - N )  -(P-NA)~. 

16 (8) 

Generally, the solution to Eq. (8) has the form 

Here F is the elliptic integral of the first kind, K 
= @ 2 3 / ~ 1 3  the modulus of the elliptic function, qo 
- - sin-' J(NO-N~)/N~~, and Nik= Ni-Nk, with 
N3 < N2 < N1 the roots of the equation 

At C= 1 and P = A  we have 

that is, all excitons and photons are converted into biexci- 
tons, which finishes the evolution of the system. 

We note that P and A impose restrictions on the initial 
conditions. The solution of Eq. (8) has physical meaning 
when No>N3. We also note that for nonzero A aperiodic 
motion is possible, while periodic oscillations can also oc- 
cur at A=O. These solution classes were not discussed in 
our earlier papers. 

The variation, by a perturbation, of the integral of the 
motion P with allowance for canonical variables N and Il, is 
described by the equation 

Below we are interested in the system's motion near the 
separatrix, where P-+ A and C-+ 1. In this case we have for 
the characteristic roots the expressions: 

The quantity N(t)  varies almost from 0 to 1, and at a 
turning point of the hyperbolic type its period tends to 
infinity. In this case we have instead of (12) 

. A2 3 

P=- A(r )  z sin Oi, 
32 i= I 

where A(r)  is a periodic function with a period 2n-/w(P), 
a height of the order of unity, and a width 2a/wo, with 
w(P) the nonlinear oscillation frequency and wo the fre- 
quency of small oscillations of the system equal to A/4 as 
C- 1. If we now change from ( 14) to a system of discrete 
transformations, we get 

i12 3 

P , , ,+~=P~+~P,  A=- 
32 
I A (7) s sin 647, 

i= 1 
(15) 

4n- 4 a d w ( P m ) -  
=€Jim+---- AP. 

w(Pm) wpm dpm 

The nature of the solution of Eqs. ( 15) is determined 
by a quantity M (Refs. 20 and 2 1 ): 

4a  dw(P) - 
M=- - 

w (P) I d P  1"' 
When M(1, the system performs conditionally periodic 
oscillations, and when M) 1, the motion becomes stochas- 
tic with a phase-correlation splitting time 

where rc= [w(p)ln MI-'. 
The boundary of the stochastic layer is determined 

from the condition that M(Po,C,H) be of the order of 
unity, or 

with constant a of the order of unity. 
The growth rate of the nutation decay in the stochastic 

layer is 

4. COMPUTER SIMULATION 

In the most general case Eqs. (5)  have one integral of 
motion (the energy of the system) and a region of motion 
in phase space which is a five-dimensional hypersurface 
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FIG. 2. Temporal evolution of the number of 
(a)  coherent excitons, (b) biexcitons, and (c) 
photons, and (d)  of phase, and (e) the projec- 
tion of the phase trajectory on the exciton- 
concentration-phase plane at C= 1.001, 
p= - 1 . 5 8 ~  and /1=0.2. 

It b 

0.62 FIG. 3. (a)  The time dependence of the phase, 
and (b)  projections of the phase trajectory on 

0.38 the exciton-concentration-phase plane in the 
event of a smali unit perturbation at C= 1.001, 
p= - 1 . 5 8 ~  and A= 1. 
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tion of the phase trajectory onto the (f,n) plane at 
no= fo= 1, N,= lo-', pd=pph= 1.571, pm= lo-', and 
/1=0.3. 

defined by ( 1 )  in a six-dimensional phase space. Ignoring 
the antiresonance terms leads to the appearance of addi- 
tional integrals of motion, C and P. 

The nature of the motion of the system of excitons, 
photons, and biexcitons depends on the coupling constant 
A. For A41 the motion is conditionally periodic. If C+ 1 
and P-A, the phase trajectories move closer to the sepa- 
ratrix and land in the stochastic layer, which grows bigger 
as A increases. Since at present there is no standard algo- 
rithm for solving nonlinear differential equations of the 
general type, and obtaining analytic solutions of the system 
of equations (5) is an extremely complex problem, we per- 
formed a computer simulation of the particular case A =O. 

Figure 2 shows the temporal evolution of coherent 
quasiparticles and of the phase, and also the projection of 
the phase trajectory on the exciton-concentration-phase 
plane for unperturbed motion. At P=O the phase trajec- 
tory is a rectangle. The number of particles changes from 
minimal to maximal at a constant phase $=na (n 
=0,1,2, ...), and when an extremum is reached the phase 
suddenly changes: $r+O= qt-, * a. Such a phase trajectory 
is highly unstable and can be forced into another a-region 
of the phase space by an arbitrarily small unit perturbation 
(Fig. 3 ) .  This does not alter the nature of the temporal 
dependence of the number of quasiparticles. The entire 
phase space consists of a sequence of such rectangles with 
P=O; inside of these there are regions where P>O and 
P <  0 alternately. At constant values of A the growth in I PI 
makes the phase trajectories circular and smaller, so that 
trajectories with larger values of IPI are "internal" with 
respect to trajectories with smaller I PI. 

Figure 4 depicts the time dependence of the number of 
biexcitons, the resonance phase, and the projection of the 
phase trajectory onto the (n,$) plane in the event of a 
perturbation. The reader can see that small perturbations 
caused by the antiresonance terms in the Hamiltonian in- 

crease the size of the phase-variation region, owing to sud- 
den transitions to different a-regions in the phase space 
and to the appearance of new harmonics in the oscillations 
in of number of quasiparticles, and also because the phase 
portrait of the respective oscillations becomes more com- 
plicated. The motion is conditionally periodic. When the 
coupling constant A reaches its unity, critical value the 
system performs complicated nonlinear oscillations, which 
indicate the beginning of stochastization of the motion 
(Fig. 5). A further increase in A makes the system com- 
pletely stochastic, and the stochasticity region fills the en- 
tire admissible phase space (Fig. 6 ) .  

Figure 7 illustrates the development of local instability 
for different values of A. The distance between two initially 
close trajectories is 

and the decay rate y, can be found from the equation 

The decay rate yc increases with A; for instance, yc=0.014 
at A=0.6, y,=0.029 at A=l ,  and y,=0.183 at il=2.1. 

Note that different nonresonance terms of the Hamil- 
tonian of the interaction of the electromagnetic field with 
the system of coherent excitons and biexcitons are respon- 
sible for the breakdown of different integrals of motion. If 
the detuning from resonance A is nonzero, there can also 
be a breakdown of the integrals of motion, but at larger 
values of A. 

In conclusion we give numerical estimates of A for the 
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- 5 FIG. 7. The time dependence of the distance 
between initially close trajectories at 
no= fa= 1, N,= lo-', p,=pph= 1.571, and 

- 11 -11 -11 pm= lo-' for (a) /1=0.6, (b) A =  1, and (c) 
A=2.1. 
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