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We consider the linear and nonlinear theories of scattering of linearly polarized electromagnetic 
waves by an electron beam in the absence of an external magnetic field. We show that 
the scattering of linearly polarized waves by a beam has a number of fundamental peculiarities 
absent from the case of circularly polarized waves. We use analytic methods to calculate 
the amplitudes of the scattering waves and the characteristic scattering-process times. The 
scattering processes are classified. 

1. INTRODUCTION directly without some averaging generates a slow force 

Induced scattering of electromagnetic waves by rela- 
tivistic beams of free electrons are widely used at present in 
free-electron lasers of various types.lp2 The numerous pa- 
pers on scattering theory the processes 
of interaction between linearly polarized waves and a non- 
magnetized beam have been far from thoroughly investi- 
gated and have a number of fundamental peculiarities due 
to relativistic as well as nonrelativistic effects. In particu- 
lar, interaction between linearly polarized waves and a 
nonrelativistic nonmagnetized beam induces processes that 
are already of higher order in the parameter v1 /c  than in 
the usual scattering theory9 (vl is the electron velocity 
transverse to the beam propagation direction). We must 
therefore consider briefly the nonrelativistic theory and an- 
alyze the mechanism of high-order processes. 

- - -  

component ( - aA1A2/az), since A: and A; are both con- 
stant for waves with circularly polarized waves. 

The situation for linearly polarized waves is more com- 
plicated. Rapidly oscillating terms appear on top of the 
slow -A1A2 ones. However, the described procedure of 
expanding the phases q1,2 followed by averaging, the slow 
terms also contribute to the slow motion. The mathematics 
of scattering by a beam of linearly polarized waves includes 
therefore elements of the theory of scattering of both cir- 
cularly polarized waves and of the theory of scattering of 
quasitransverse waves by magnetized beams. The theory of 
scattering of linearly polarized waves requires therefore a 
consistent allowance for various types of nonlinearity. 

In the most general formulation of the temporal evo- 
lution of stimulated scattering processes we use for linearly 
polarized transverse electromagnetic waves a vector poten- 
tial in the form 

2. NONRELATlVlSTlC NONLINEAR THEORY 
At ={Ax, ,O,O), A2=CAx2,0,0), 

It is known that in scattering processes the resonant 
(1) 

force exerted on an electron by an electromagnetic field is where 
proportional to the product of the incident- and scattered- 
wave amplitudes (the combined force). The product of the ~~~=$[~~(t)ex~(-iw~t+ik,z) +c.c.], j =  1,2 (2) 
wave amplitudes can be due here to various causes. Thus, and take the initial system of equations describing the dy- 
for straight beams in an infinitely strong longitudinal field 

namics of an electromagnetic field in an electron beam to 
the force acting on the electron is proportional to the lon- 

be 
gitudinal electric field 

F-E.=El exp(iql) +E2 exp(iq2) 477 . 
and the product ElE2 of the amplitudes of the interacting 
waves is obtained by expanding the phases q, and q2 in dz 
terms of the fast oscillations of the electron coordinates, -- dt-v~ '  
followed by averaging3>" under the assumption that the 
electron is fast in fields El and E2 and slow in the dvz ----- e a 
combination-wave field E1E2. "+-vX- (Axl+Ax2), dt - m mc az 

The situation is different in transversely oscillating 
beams." Thus, for scattering by a nonmagnetized electron e 
beam of purely transverse electromagnetic waves we have vX= -- 

mc (Ax~ +Ax2) 
a 

F--(AI +A212, az Here z is the coordinate of the electron in the direction of 
the beam motion, v, and vx the longitudinal and transverse 

where A l  and A2 are the vector potentials of the incident velocities, and q, the scalar potential of the field produced 
and scattered waves. If the electromagnetic field is circu- upon longitudinal modulation of the beam in density (po- 
larly polarized the procedure of squaring the sum Al +A2 tential of the charge-density wave). 
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Following a known scattering-theory approach, we re- 
gard as fast the beam-electron motion in fields Axl and A, 
and as slow the motion in the fields of the combination 
wave 

and of the charge density 

Here wo=ol-w2 and ko=kl-k2. 
Substituting expressions (2) and (4) in the system 

(3) ,  we obtain for the longitudinal velocity the expression 

where o+ =a1 + 02,  k+ = kl + k2. It can be seen from Eq. 
(5) that the first and second terms contribute to the slow 
motion, the second being the result of squaring the sum 
AXl+Ax2. The last term of (5) oscillates rapidly. Applying 
to this term the corresponding phase-expansion and aver- 
aging procedure315" we can obtain the additional contribu- 
tion to the slow motion. 

To this end we represent the coordinate z and the lon- 
gitudinal electron velocity v, in the form 

Here 5 and F are the rapid oscillations of the coordinate 
and the velocity, while v' and z' are the slow ones (u is the 
velocity of the unperturbed beam). The subsequent aver- 
aging procedure, and hence also the representation (6), is 
meaningful if the following inequality is satisfied: 

where to is the characteristic variation time of the ampli- 
tudes of the interacting waves, and ob is the Langmuir 
frequency of the beam electrons. Moreover, for the aver- 
aging procedure to be correct it is necessary to satisfy the 
easily realizable assumption that the amplitudes of the fast 
oscillations of the electrons are small 

It is just the condition (8) which allows us to write the 
expression for the fast electron-coordinate oscillations in 
the form 

where 

I n o = ~ l - k l ~ ~ ~ 2 - k 2 ~ = i ( w + - k + ~ ) .  

As a result, the slow electron motions are described by the 
equations 

dz' -- dt -vf -u, 

dv' i e  -- 
d t - - i m  k ~ ( ~ o  exp( -iEt+ikozf ) -c.c.) 

-c.c.)), (1 1) 

in which the angle-brackets denote averaging over the fast 
oscillations, and D=wo-ko is the degning. In the one- 
particle-scattering regime we have D=0, and in the 
collective-scattering regime, when for example resonance 
obtgins with the beam slow charge-density wave, we have 
-D=-  Wb.  

Expressing next the amplitude 9, of the potential of 
the beam's longitudinal oscillations in terms of the charge- 
density wave amplitude pl  , 

where L=2r/ko, and averaging, we obtain for the equa- 
tion of motion of the electrons 

dz' -- dt -vl-u, 

2 dv' i ob ----- 
'it - 2 ko 

(pl  exp(ikozl) -c.c.) 

-c.c.). (13) 

Let us dwell in greater detail on the structure of the second 
equation. Its first term is the force due to modulation of the 
beam charge, and the second and third terms are the res- 
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onant forces from the directions of the incident and scat- 
tered waves, respectively. The second term, as already 
noted, stems from squaring the sum Axl+Ax2, and the 
third from averaging over the fast oscillations. Note that in 
addition to the algebraic and nonlinearities, due to the 
structure of the Lorentz force, of the second and fourth 
order in the amplitudes Al and A2, the equation of motion 
contains also a transcendental nonlinearity exp[ikozr (t,zo)] 
that will be shown below to be reducible in a number of 
cases to an algebraic one. 

We shall now describe the dynamics of the electromag- 
netic field. Following a substitution of the representation 
(2) in the first equation of the system (3) and elementary 
averaging, this equation breaks up into two1) equations for 
the amplitudes Al and A, : 

This equation was obtained with account taken of the fact 
that A,  and A2 are slow functions of the time. 

Recognizing that for a single-velocity beam the trans- 
verse current is defined as 

we rewrite ( 14) in the form 

with vx(t,zo) given by 

The subsequent derivation of the equations for the ampli- 
tudes Al and A, reduces to substitution of (17) in (16) 
following by an averaging similar to that described above. 
Omitting therefore the intermediate steps, we have for the 
final result 

Here 

Equations ( 13) and ( 18) constitute the complete sys- 
tem of nonrelativistic equations describing the scattering of 
linearly polarized waves by a nonmagnetized beam. Dis- 
carding from the resultant equations the terms due to av- 
eraging over the fast oscillations, we obtain a system de- 
scribing the usual three-wave  interaction^.^"'^ The 
processes are then of second order in the parameter vl /c. 
On the whole, however, Eqs. ( 13) and ( 18) describe pro- 
cesses of second as well as of at least fourth orders in the 
parameter (vl /c). Generally speaking, allowance for all 
the nonlinearities in the averages makes it possible to treat 
consistently processes of arbitrary accuracy in vl /c. In this 
case, however, the inequality (8) should not be strong. 

Further analysis of scattering processes, in both the 
linear and nonlinear stages, will be based on a more general 
relativistic system of equations. We shall determine simul- 
taneously the validity regions of Eqs. ( 13) and ( 18), and 
present a general classification of the processes as they re- 
late to the degree of relativism and the density of the beam. 

3. RELATIVISTIC THEORY: DERIVATION OF NONLINEAR 
EQUATIONS 

Allowance for relativistic effects leaves the first two 
equations of the initial system (3) unchanged, whereas the 
last two take the form 

where yl l  = ( 1 - v2/2) -'I2, while 

yt = ( 1 - v;/2 - v:/c2) - (20) 

is the total relativistic factor of the electron. Since y, de- 
pends on vx and hence also on the amplitudes Axl and A,, 
expansion in powers of Ax, and Ax2 is unavoidable not only 
in the equation for fast oscillations, but also in the equa- 
tions describing slow motion and containing y,. This ap- 
proach, used in classical scattering theory, cannot be re- 
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garded here as satisfactory. To get around the above 
difficulty, we regard yt as an independent variable satisfy- 
ing the equation 

Let us dwell, as above, in greater detail on the trans- 
formation of the equations of motion. We substitute ex- 
pressions (2) and (4) in the equations for vz and y, and 
represent, by analogy with (6), y, in the form 

where 7 and y denote fast and slow oscillations, respec- 
tively. Assuming, as before, inequalities (7) and (8)  to be 
satisfied, we write for the slow electron motion the equa- 
tions 

dz' -- dt -v-u, 

dv' i eko 
d t -  2 m 

2 3/2 - 
(1 -$) (, exp(- i ~ t +  ikg') - c.c.) 

Xexp -2i@, +k+ k+-- AlA2 ( 1 ( v:+) 

Xexp -2ia2 + k+-cZ AlA2 ( 1 ( O w + )  

+02A: exp -2ia2 + w+A1A2 ( 1 

+w2A:exp( -2iQ2) +w+A1A2 exp(-i@+) 

-c.c.]), 

where the oscillations of the coordinate .Z, the velocity 
and the relativistic factor 7 are given by the relations 

Xexp(-2i@+)+w+AlA2 exp(-i@+)+c.c.]. 

We write next for the longitudinal electron velocity 

v = u ~ + u ,  U ~ ~ U  (25) 

and, after substituting (24) in (23) and actually averaging, 
we write the electron-beam equations of motion: 

dz' -- dt -vl, 
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- A ~ A :  exp ( - 2iDt 

c2 U 

x A:A:~ exp ( - 2iDt + 2ik,y1 ) 

Here 

Note that by putting formally c +  w (but not for the com- 
bination e/mc) in Eqs. (23) ,  (24),  and (26) we obtain the 
nonrelativistic equations derived above. 

Equations for the amplitudes Al and A, are obtained 
by a procedure similar to that in the nonrelativistic theory. 
The only difference is that the oscillations described by 
Eqs. (24) have a more complicated structure. We present 
therefore directly in final form the equations for the am- 
plitudes of the incident and scattered waves 

c c A,*A: exp ( - 2iDt + 2ik,y1) 

X exp ( - iDt + ik,yl ) , 

where 

I 

It is easy to show that Eqs. (26)  and (27) lead to flux 
energy and momentum conservation laws for the electro- 
magnetic waves interacting with the beam 

= const, (29) 

= const, 

where p=my ( u  +vl)  is the electron momentum. 
We introduce next the following dimensionless vari- 

ables: 
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and rewrite Eqs. ( 2 6 )  and ( 2 7 )  in the form 

d&2 -= - iv,yzlfiT exp ( - iqOr) - ivo 
d7 

p d ~ :  E : E ~  exp ( - 2iq03-I+ 2v2 6: -52 1 ( 

1 
f i n  =; JO2= y- ' exp ( - iny ) dyo , 

Note that pO is indicative of the degree of relativism of the 
electron beam, while the product vo 1 I is inversely pro- 
portional to the beam density if the amplitude is fixed. The 
remaining parameters (P1,2,tj1,2,Ql,2,~+,I,2) are governed to 
a considerable degree by the dispersion laws of the inter- 
acting waves. 

Let us consider an actual model: scattering of linearly 
polarized transverse waves by a nonmagnetized beam of 
electrons in a decelerating system filled with dielectric. As- 
suming that the incident and scattered waves obey a linear 
dispersion law: 

and that the approximate resonance condition 
wl - w2= ( k ,  - k 2 )  u, is satisfied, we transform the princi- 
pal parameters in ( 3 0 )  into the following: 
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pn =A exp ( - iny ) dyo, 
TT 

Equations (35) lead to relations of the Manley-Rowe 
type: 

Using Eqs. (33), we estimate in Eqs. (31) the terms of 
type pq, (jq, and those similar to them. Thus, for example 

where 1 r=O, &20=&2 1 T=O, yo= y I T=O; using these re- 
lations one can define the effectiveness of the process: 

Equations (33) are thus substantially simplified and take 
the form 

- -- Po 

8 d (  I&212- I&2012) ' 
(37) 

Recall that the terms proportional to the squared ampli- 
tudes of the interacting waves in the system (35) are of 
second order in the parameter vl , whereas the terms pro- 
portional to ( E ~ E ~ ) ~  are respectively of fourth order. We 

d&1 -= - 
d r  i v g ~ ~ j 3 ~  exp ( iqor) - ~ ; o ( + E T E ; ~ ~  exp (2iqo7) 
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estimate them with the aid of Eqs. (33) in greater detail 
using the equation for y as an example. As a result we have 

where iT1 zeA/mc. It follows hence in the nonrelativistic 
limit, when pog 1, yo - 1, and u -4 vph 5 C, all the expressions 
in (38) are of the same order and are small compared with 
unity. On the contrary, when po) 1 and yo) 1 the situation 
is determined by the relations between u, vph, and c. If 
vph=c > u (scattering in vacuum), the terms proportional 
to G, vl, and v2 in (35) are small and can be disregarded. 
In the case of the inequality 

U Z U ~ ~ ~ C ;  (39) 

however, it follows from (33) that the terms proportional 
to G, vl , and v2 can predominate. In other words, processes 
of higher order than (vl /c2) will have a substantially 
larger growth rate. 

4. LINEAR THEORY 

We assume further that wl > w2 and accordingly the 
wave with amplitude is the signal and that with ampli- 
tude E~ the pump. In this case we have scattering with rise 
of frequency, with qO= - 1 in the case of collective scat- 
tering (resonance with a slow beam wave). 

In the linear approximation, when I e2 1 = I E~~ I = const, 
and 

where 6 is a growth rate normalized to the frequency w2, 
we obtain from (35) the dispersion equation 

where 

We consider first the nonrelativistic limit, when the 
parameter pogl .  In the case of high-density beams, when 

there is realized a regime of collective scattering by the 
beam-density  oscillation^^^ and the instability growth rate 
is determined by the expression (Im 6(qo= - 1 ) 

The parameters po and v; are regarded in (43) as small 
parameters. 

For low-density beams, when v; ) 1, the scattering be- 
comes a single-particle process" (Im 6)qo-0). If the in- 
equality 

holds, the usual Thomson scattering of waves is realized, 
with a growth rate 

However, in the case of the inequality 

the stimulated scattering is due to energy bunching8,10 and 
has a growth rate 

2 
The quantity v; in (45) and (47) is a small correction. 

Consider now strongly relativistic beams, when po) 1. 
For high-density beams, when the inequality 

is satisfied, the collective-scattering regime sets in again, 
but with another growth rate 

If, however, an inequality opposite to (48) obtains, the 
electromagnetic-wave scattering is due to energy bunching 
with a growth rate (47). 

The equations obtained above for the scattering growth 
rate make it easy to single out more particular cases, in 
which the scattering is due to the second order in the pa- 
rameter (vl /c) [v; -4 l ]  or to the fourth [v; ) l]. 

The main results above are listed in Table I. 

49 JETP 77 (I ) ,  July 1993 Bobylev et a/. 49 



TABLE I. 

Conditions on v; and 110 Instability growth rate Type of process Stabilization mechanism 

Collective or Trapping of Langmuir beam wave 
-l+i -$ /( 1 +v;) ( 1 + v ( + h (  1 + 3v;) ) Raman scattering at v; d 1; nonlinear frequency shift 

atv; ( 1. 

k 4 1 ,  Single-particle or Trapping by combination wave 
Thomson scattering 

1104 1, Energy phasing Beam total momentum modulation 

Collective or Trapping of Langmuir beam wave 
Raman scattering at p,-1'2v; 5 1; nonlinear frequency 

shift at p; '"v; 4 1. 

h> 1, Energy phasing Beam total momentum modulation 

fv; J (1+v;2) (1+3vf )>~1/2  i(&(1+3v()(l+v())~/2v; 

5. NONLINEAR STABILIZATION MECHANISM energy. We shall show below that in this case analytic 

We consider the mechanisms of nonlinear stabilization 
of stimulated-scattering processes in accord with the clas- 
sification given above. For nonrelativistic beams, when the 
inequality (42) is satisfied is not strong, the scattering is 
stabilized as a result of capture of electrons by a Langmuir 
beam wave, breaking of this wave, and turbulization of the 

The beam is in this case fully modulated in den- 
sity ( I pl 1 ,= 1) and no analytic solutions can be ob- 
tained. If, however, the inequality (42) is satisfied [very 
dense beams], the stabilization is due to a nonlinear fre- 
quency shift.12 The nonlinear frequency shift in nonrelativ- 
istic beams is determined mainly by the deceleration of the 
electron beam.7 The beam modulation in density is in this 
case weak ( I pl 1 ,< 1 ) and the deceleration effects are 
described by nonlinearities of cubic type, so that an ana- 
lytic solution of the problem can be obtained. 

If inequality (44) is valid, single-particle Thomson 
scattering processes are stabilized, as is well known, by 
trapping beam electrons in the electromagnetic wave.3 Un- 
der these conditions the beam is fully modulated in density, 
so that no analytic solutions can be obtained. 

If inequality (46) and an inequality inverse to (48) are 
satisfied, the beam is modulated mainly in energy [or mo- 
mentum]. This case, least known in the  literature,'^^ is il- 
lustrated in Fig. l ,  which shows the results of a numerical 
simulation of the system (35) with p0=0.8, vh = 1, 
(O= vl = v2=O). It can be seen that if the signal-wave am- 
plitude I ) and the first harmonic of the charge density 
I p, 1 grow smoothly enough, the quantity 1 1 indicative 
of the beam modulation in energy increases radically. For 
the values of po and v; chosen here, the aforementioned 
inequalities are not yet strong and therefore I pl 1 ,- 1. 
However, with increase of, say, po the beam modulation in 
density becomes immaterial ( I pl l,4 1 ) and the scatter- 
ing is stabilized only by total bunching of the beam in 
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solutions are possible. 
Finally, if the strong inequality (48) is satisfied and the 

beam is relativistic, the collective scattering is stabilized as 
before by a nonlinear frequency shift. Here, however, the 
principal role is played no longer by the beam deceleration, 
but by the relativistic dependence of the frequency of its 
Langmuir oscillations on the amplitude,' which is again 
mathematically described by cubic nonlinearities. Analytic 
solutions can be obtained in this case, too. 

6. EXPANSION IN TERMS OF THE COORDINATES AND 
MOMENTA FOR THE COLLECTIVE-SCATTERING REGIME 

We introduce the electron momentum 

FIG. 1. 
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where is the dimensional momentum and rewrite the 
equations for the coordinate y and for the velocity q from 
the system (35) in the form 

+VIE] I E ~  1 2 ~ f  exp(&-iqor) 

+ V ~ E ~  I E ~ ~ ~ E ~  exp(iy-iqor) -c.c.). 

It was taken into account in the equation for the momen- 
tum that q< 1. This makes it possible to write the approx- 
imate relation 

which will be used below. 
We represent next the coordinate and the momentum 

(or the relativistic factor) of the electron in the form 

Y=YO+ W(r) +t[al(.r)exp(&o) +a2(7) 

xexp(2iyo) +c.c.], (53) 

Here W is the average displacement of the electron beam, 
(p) is the average momentum of the electron, while al,2 
and b1,2 are the averaged coordinate and momentum oscil- 
lation amplitudes in the combined-wave field. 

Substituting (53) in (35) and (51) and expanding in 
powers of the wave amplitudes up to cubic linearities in- 
clusive, we obtain the systems of equations 

+ [~+E:E; exp ( - 2i W+ 2iqOr) 
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5 Po + i - a 0 b f ~ : ~ f ~  exp (2i W- 2iqo7) 
2 Yo 

Here 

The system (54) is quite complicated and requires sim- 
plification. We consider therefore only limiting cases in 
accordance with the linear classification. 

Consider the case of weakly relativistic beams, when 
~ ~ ( 1 .  In this case u)vph-C, and Olal~$l - ~ ~ l ~ ~ 1 ~  
- v2 I E~ 1 4 1. Assuming further that 

al=a;(r)exp[i(r+ W)], a2=a;(r)exp[2i(r+ W)], 
(56) 

bl=b;(r)exp[i(r+ W)], b2=b;(r)exp[2i(.r+ W)], 

where a; ,  a;, b; , and b; are slowly varying functions of the 
time (the apostrophes will henceforth be omitted), and the 
detuning q0 is set equal to - 1, the system (54) reduces to 

The standard solution of the system (57) is expressed in 
terms of elliptic functions, but the equations are quite un- 
wieldy. We shall dwell therefore on the case of adiabatic 
application of the field when for r = 0 we have I E,, I = 0 
and I E~~ I #O; the solution is then 

2 
la1 lmax 

la1I2= 
ch( 42 v 0 ( ~ 2 0 / r / # ~ ) '  

1 ~ 1 1 ~ = 2 d l a l I ~ ,  I&2l2=  1~2012-2d1a112~ 

where 

l~l~:,=32JZyol~201~;~~~~ 

I & I [  kax=64 JZVO I '20 I 9 (59) 

The maximum effectiveness of the process, defined above 
by Eq. (37), is given by 

Kmax = 8 f i~ovo I ~ 2 0  I Y; *I2, (60) 

i.e., K,,, - J:'~, where Jb is the beam current. 
When po, 1 and u < vyh-c, we have, as before, 

01 E ~ E ~  ( - v1 1 1 - v2 I c2 1 4 1. The system (54), with 
account taken of (56), reduces under these conditions to 

dEl 3 1 "Go 
-+-i ( ~ E ~ ~ ~ - ~ E ~ ~ ~ ~ ) E ~ = - ~  
d r  8 2 E2a1, 

dc2 3 1 "GO 7+i i2  ( 1821 2- 1 ~ 2 0 1  2)&2=z &la?, (61) 

and has for an adiabatically turned-on field the solutions 
2 

la1 lmax 
la1I2= 

ch ( "0 I -520 I PA12Yi- 5/27) ' 

where 

The maximum scattering efficiency is given then by 
4 1/2 -5/2 

Kmax~+o YO "oIE~oI, (64) 
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and K,, is independent of the type of beam. The latter is 
obvious if one returns to the dimensionless variables (36). 

We consider now the case when the principal role is 
played at po> 1 by processes of fourth order in the param- 
eter UL /c. Here u z up,, 5 c and v2 I EZ I '#vl I 1 2, O I I 
and furthermore v2 1 E~ 1 2y;2~ 1. The system of equations 
(54) is transformed then into 

7. EFFECT OF ENERGY BUNCHING 

We consider energy bunching in the limit pO) 1, when 
the beam modulation in density is extremely small and it 
can be assumed that y-yo (and accordingly qozO and 
f lzO) .  We assume in addition, to simplify the analytic 
equations that / I < I E~~ ( =: I E~ I . This assumption is, of 
course, not a constraint in principle, and is made only for 
the sake of clarity. Assuming for simplicity, as above, that 
the pump wave is fixed and v2 I E~~ 1 % O I 1, and vl I 1 2, 
we reduce the system (35) to the form 

The solutions of the system (65) are in structure to those 
of (62), and the expressions for 1 a l  1 -, 1 1 and 

I &Z I min are 

32 8 210212 I ~ 2 0  I 
l a 1 l k a x = ~ ~ 9  

We consider first the case v2 241 (a process of 
second order in the parameter ul /c). In this case the sec- 
ond terms in the right-hand sides of the equations for 
and y can be discarded. We introduce the new variables 

The maximum effectiveness of the scattering is 

Note that the main analytic results above are listed in Ta- 
ble 11. 

If for r=0,  the solutions of the systems (57), 
(61 ), and (65) are expressed, as noted above, in terms of 
elliptic functions and have for I 1 4 I 1 ,, the structure 

and assuming furthermore that e=dS/drl, where S, with- 
out loss of generality, is a real function, we reduce the 
system (71) to 

. . ---- 
dr' - 2 y dr' 

cos yo. 

Here 
Integrating the equation for y and changing variables once 
more: 

Im 6 is the imaginary part of the growth rate for the cor- 
responding limiting case and the time of nonlinear stabili- 
zation of the scattering process is we reduce the system (73) to a single equation for q: 

The scattering efficiency is in this case In the general case the equations for I al  I ,,, and I / ,,, in 
expressions (68)-(70) are very unwieldy. In the strong 
pumping approximation, however when 1 e2 1 z ( E~~ 1 
# ( c10 1, the expressions for I 1 k,, and I czl 1 iax coincide 
with those given above for the corresponding limiting 
cases. 

To estimate the maximum efficiency we integrate (75) 
once more under adiabatic initial conditions: 
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TABLE 11. 

Since qmax = 1, we have 
- 

v2 l a,, 1 << 1, (v,/c)~ 

In the opposite limit, when v2 I E~~ 1 2, 1, we can neglect 
the first terms in the right-hand sides of the equations for 
and y of the system (71 ) .  Just as above, we introduce the 
new variables 

v2 IaZ0l2 >> 1. (v,/c)~ 

3 
E= - iE1 ( V , ~ ~ ~ V ~ )  T I  = 

(79 )  
p1  =poyg2 ( vOE:ov2) 2 /3  

and, after substituting ~ = d S / d ~ l ,  we reduce the system 
(71 )  to 

d2s 277 cos yo 
Jo T d y O ,  2= -- 

dT1 IT 

Collective scattering 

dy p1 dS cos yo ---- 
~ T I -  2 d ~ '  7 ' 

The solution of (80 )  is similar to that of (73 ) .  We write 
therefore directly the expression for the maximum scatter- 
ing efficiency 

Thus, a scattering process of fourth order in the parameter 
v, /C is more effectively realized than a second-order pro- 
cess. 

tr 
1 

Kmax = I - - $(I + m s  yo)'l4dy0 
2n 0 

Po *: 1 

Po >> 1 

PO * 1 

The expressions for the scattering efficiencies in the 
energy-bunching regime are listed in Table 11. 

112 112 
1"l I m a x  = 8(~l~Ol&2OlYO 

lal I,, = 4(2flvo I & Z O  I Y ~ ~ / ~ ) ~ ~ ~  

Kma, = 8 ~ ~ 0 1 ' 0 l ~ 2 0  lygm 
I12 

2 11, lszo lrkI2 
181 lma, = 4 ( 3 1 

la1 I,,, = 4 

112 y05/2 
Kmax = 31'0 ~ 0 1 ~ 2 0 1  

Energy bunching 
Zn 

1 
K~~~ = 1 - - J(1 + coa yo)112dyo 

2x 0 

8. CONCLUSION 

We have thus classified all orders of scattering of lin- 
early polarized waves by a nonmagnetized beam in terms 
of the current and density of the beam. We have shown 
that under certain conditions the fourth-order processes 
begin to predominate over second-order ones in collective- 
effect and energy-bunching regimes. 

')The functions exp (iklz) and exp (ik2z) are assumed to be orthogonal 
on some spatial segment ZE[O;L]. 
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