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A method and a diagrammatic technique are proposed for constructing a formally exact 
solution in the form of an infinite series for a moment of arbitrary order. The problem of long- 
time evolution of the normal and anomalous correlation functions of turbulence and the 
problem of the interaction of a wave packet with initially Gaussian turbulence are considered 
as examples illustrating the advantages of the method. 

1. INTRODUCTION 

Several approaches now exist for describing turbulence 
in nonlinear media.' One of the most promising ap- We assume next that ak is a random variable. Averag- 
proaches is considered to be Wyld's diagrammatic ing over an ensemble of its realizations we obtain for the 

This technique yields for the normal correla- moments 
tion and Green's functions a system of Dyson-Wyld equa- 
tions which in turn yield, under various simplifying as- (2n- 1) bk:' = (.kI) y . . . ~  bkl ,..., kZn-, = (akl .--a knat+,  ...atn-, ) 9 

sumptions, such as weak nonlinearity, a system of kinetic 
equations. However, both systems are nonlinear, and this ( 2 4  

k k a k 2  9 .....4n 
makes it very difficult to study them. 

A different and, in my opinion, simpler method for = (akl -..akn+ lakn+2 * 
describing turbulence is presented below. The gist of the - 
method is as follows: For any medium with power-law ""I = (akl ... a a* ... a t  ) k k 1 2 Y ?  bkl ,....k2n 
nonlinearity the dynamics of the moments of the ampli- ' % % + I  2n 

tudes of the characteristic modes satisfies an infinite linear 
system of Karman-Howarth equations3 whose right-hand the following system of equations:3'5 

- 
sides are triangular matrices. This makes it possible to in- n 

tegrate this system and to obtain, for a moment of arbitrary bc! ..., k,,= -i ~ i ~ ) @ k ~ b c : . . . , k ~  
order, a solution in the form of a series consisting of m= 1 

Green's functions and either the initial amplitudes of the 
moments of order higher than a given order (in the prob- -i J + m  "' dKl " ' d K ~ + 2 ~ ~ ~  ,..., kn;Kl  ,..., Kn+2) 

-m 

lem of the evolution of a random initial distribution) or x bp+2) 
powers of the correlation function of an external Gaussian I ....9Kn+2 n= 1,2, ..., (3) 
force (in the problem of stationary turbulence). A dia- 

where grammatic technique that makes it easier to obtain an ap- 
proximate solution is also proposed. 1, m<n 1, m<n+l  

-1, m > n Y  -1, m > n + l Y  

2. MOMENT DESCRIPTION OF TURBULENCE 

We shall study the application of this method for de- 
scribing wave turbulence in a system with a nondecaying w(") (kl ,...,kn ;KI ,...~~n+2) 
spectrum. The dynamical equations for the normal vari- n 
ables of the system ak,  a t k  are (see Ref. 4; the dot indi- = C Aim) W(km s K m + l  ¶Ksn 
cates differentiation with respect to time) m= 1 

sn = in+2 ,  Gm)= -1 1, A P ) = - ~  
where w is the freauencv of a mode with wave vector k. 

m 

The coefficient W ( ~ , K ]  ,KZ,K~), which here is the kernel of The system of equations for the even moments 
an integral equation, describes four-wave interactions sat- gCi:~!..k,,$ similar to the system (3) with the substitution 
isfying the "resonance conditions" A;,"' - ~4,"). 
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Laplace-transforming in time yields from the system (3) a system of algebraic equations, 
in which the Laplace transforms of moments of order n 
and n + 2 are simply related. This fact makes it possible to 

B(") (k, ,..., kn;p) = n= 1,2,..., write down the formally exact solution (in the form of an 
(4) infinite series) of this system: 

where G(")(kl,...,kn2) = [p + i ~ : = , ~ ~ ~ ) a ~ ~ ] - ~  is the tains the Green's functions and initial values of all mo- 
Green's function for the nth moment in (p,k)-space. A ments starting with the (n+ l)st  n~oment. 
similar expression (with the substitution hi:) +A$:) is ob- We give below a graphical representation of the terms 
tgned for the Laplace transforms of the even moments appearing in the solution (5), i.e., we construct a diagram- 
B'~") (kl ,..., k2,;p). matic technique for it. For this, we associate with each 

Note that the solution (5) is formally exact and con- term of the series (5) the diagram 

The Laplace transform of the first- and second-order moments (of the normal B(2)(kl,k2;p) and anomalous 
~ ( ~ ) ( k ]  ,k2;p) correlation functions) can then be represented by the following series of diagrams: 
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We now describe the basic topological properties of the "2 2n 

diagrams in Eqs. (7)-(9). z q;)akm= 1 i$r)akm 
m=l m=n2+1 

( 10) 
1. The tree branches (matrix elements) are "virtual" 

variables K, , where m = 1,2 ,..., i.e., the variables over 
which integration is performed. 

2. Every tree terminates at rectangles representing the 
initial values of the moments. The number of branches is 
equal to the order of the moment. 

3. A tree trunk corresponds to the actual variables k,, 
where n = 1,2, ..., the number of variables being equal to the 
number of the moment for which the solution is being 

(here nl,, are arbitrary integers), the time dependence of 
the moments takes the form f exp( -iGkt), where a is the 
multiplicity of the poles. It is easy to see that as the pa- 
rameter m on the right-hand side of Eq. (5) increases, the 
multiplicity also increases. The two cases can be combined 
if the solution is written as follows: 

constructed. 
4. The Green's functions ~ ( " ) ( k ~ ,  ...,kn;p) of order n 

connect n branches, including the trunk, and the wavy bcl..,Kn(f) = b z ~ , , ~ ( ~ ) e x P  ( -i ~!~'%,,,t 
lines must be drawn vertically through all possible inter- m= 1 

actions in each term. 
5. Each diagram contains a factor ( - i)ml, where ml + r K  ,,..., K,,(t)t], (11) 

is the number of matrix elements in the diagram. 
The evolution of the moments bcl..,kn(t) is determined 

by the poles of the Green's functions in the expression (5).  where FK, ,..., ~ ~ ( t )  is interpreted as the effective (nonlinear) 

For conservative media (Im a k = O )  the poles lie on the turbulent growth (decay) rate and is represented by a Tay- 
imaginary axis of the complex p-plane. If the poles are lor series in the time: 
simple, the dynamics of the moments are oscillatory. If the 
poles are degenerate, which happens under the decompo- 

Cc 

sition conditions t" 
K , , , , , , K n ( )  = ( - m m , . . . ,  K )  -, (12) 

m=O m ! 

where the first terms have the form 
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Here 

is the frequency detuning in the decay process 

3. DYNAMICS OF INITIALLY GAUSSIAN TURBULENCE 

As an illustration of the proposed method we consider 
the problem of the evolution of homogeneous Gaussian 
turbulence created in a nonlinear medium at t = O .  These 
initial characteristics of the turbulence mean that in the 
series (8) and (9) terms other than those containing the 
initial values of the even moments can be dropped. In the 
retained terms the branches must be "glued together" in 
pairs in all possible ways. Next, we introduce a graphical 
representation of the initial values of the normal nk and 
anomalous ok correlation functions: 

Then the Laplace transforms of the normal and anomalous 
correlation functions are described by the following series: 

where Rk= S 2 z d ~ n ,  W ( ~ , ~ , K , K )  is the nonlinear fre- 
quency shift. 

We note that in the single-point approximation 
(k, = k2 = k) the normal correlation function $ikn(t) is 
the spectral density of the turbulence energy. For this rea- 
son, we now consider in greater detail the expression ( 14). 
Taking the inverse Laplace transform, we find that this 
quantity contains oscillations with the combination fre- 
quencies a,- ak and 0,- ak. 

Thus the evolution of initially homogeneous Gaussian 
turbulence can be interpreted in terms of four-wave inter- 
actions of the characteristic modes of a system whose fre- 
quencies satisfy the conditions 

As the next example we consider the interaction of 
honlogeneous Gaussian turbulence and a wave packet 
whose amplitude at t = O  is described by the function wk .') 
We neglect below for simplicity the intrinsic nonlinearity 
of the wave. This means that in the series (7) that deter- 
mines the dynamics of a wave packet all terms other than 
those containing the initial values of the odd moments can 
be dropped, and in the retained terms the branches must be 
"glued together" in pairs in all possible ways. The remain- 
ing free branch will correspond to the initial amplitude of 
the packet. 
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The expression for the Laplace transform of the packet 
amplitude has then the form 

In order to obtain the growth (decay) rate of the in- 
stability of the wave packet, which determines the dynam- 
ics of the wave packet in a turbulent medium, the diagrams 
containing the Green's functions with frequencies satisfy- 
ing the condition ( 16) must be summed in Eq. ( 17) .~)  
Then we obtain from Eq. (17) 

Making the formal substitution ok-+A&(k) it is easy 
to see that the expressions (20)-(22) are analogous to the 
corresponding expressions describing the modulation insta- 
bility of a regular monochromatic pump wave with ampli- 
tude A. and wave vector k, (see, for example, Ref. 7). 

It should be noted that when the intrinsic nonlinearity 
of the wave packet is taken into account, additional terms 
describing interaction of the modes of the packet with one 
another appear in Eq. (20). Owing to breakdown of the 
matching conditions ( 16), this in turn limits the growth of 
instability. 

4. CONCLUSIONS 

We now discuss the region of applicability of our re- 
sults. The proposed method, like the earlier theories, 
makes it possible to solve the problem in the form of an 
infinite diagrammatic series. However, in problems dealing 
with evolution of a random initial state this series can be 
put into the form of a Taylor series whose coefficients con- 
tain a finite number of diagrams that are of lowest order in 
the interaction. This suggests that the solution will con- 
verge at least in the initial stage of the process, especially 
since for sufficiently simple initial conditions (Gaussian 
and homogeneous turbulence) this series can be summed 

where A (k,K) =@,+ -,- Wk - a -k is the detuning and an analytic expression can be obtained for the solution 

and r k = l ? z d ~ c 7 K ~ ( k , ~ , - ~ , - k ) , ~ 2 ( k , ~ ) =  lrk12+@ (I9). 
-[A(K,~) + a d 2 ,  and P ( ~ , K )  =o,W(k,~, -K, -k)/ In the general case, in the regime of developed turbu- 

A ( k , ~ ) .  lence, the series obtained above are actually divergent and 

performing the inverse ~~~l~~~ transform and sum- the question of whether or not the solution remains valid 

ming the Taylor tirne series obtained from ( 181, we when a series is replaced by its finite sum remains open and 

represent the packet amplitude as follows: is an interesting question for future investigations. 

+ m  

wk(t) = - i a ~ ~  d ~ P ( k , ~ ) s h { A ( k , ~ ) * h  (19) 

whence it follows that turbulence can intensify the wave 
packet in a wave vector region determined by the inequal- 
ity 

According to Eq. (20), the maximum turbulence-induced 
growth rate of the packet, equal to 

is reached for 

')A similar problem was previously studied in Ref. 6 for a medium with 
decay. 

2 )~hese  will be the so-called weakly coupled diagrams. 
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