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We investigate theoretically the possible operating regimes of a ruby NMR laser with a 
feedback injection signal that depends on the radiation field generated in a preceding instant 
of time determined by the time of passage of the signal through the feedback loop. We 
track the bifurcations experienced by the system when the delay time is changed. We determine 
the conditions for generating stable pulses and the pulse characteristics. We describe the 
course of the randomization and of the onset of multistabilities. 

INTRODUCTION nucleus as the active medium. The crystal is placed inside 

The ruby NMR laser is recently attracting much at- 
tention as a test system for the study of regular and ran- 
dom regimes.I4 On the one hand, it demonstrates the va- 
riety of nonlinear effects under various single-mode lasing 
conditions. On the other, its dynamics can be adequately 
described by three or two Bloch-Kirchhoff equations with 
parameters close to the actual ones."2 In particular, a num- 
ber of peculiarities of the cycle-creation bifurcation was 
investigated in Ref. 2, using as an example an NMR laser 
controlled by an injected signal formed directly from the 
generated rf signal. To this end, the latter was fed into a 
supplementary fast-response feedback (FB) circuit con- 
taining an amplitude limiter, a precise attenuator, and a 
phase rotator. As a result, the injected field did not vary 
with time, the frequency coincided with that of the radia- 
tion field ( ~ ~ 8 0  MHz), and the fixed phase difference 
between these fields was zero or T. In the former case the 
control field had the same direction as the laser field (co- 
operative field configuration). In the latter the fields were 
oppositely directed (competing configuration). A 
competing-configuration NMR laser turned out to be quite 
sensitive to variation of the parameters and a convenient 
tool for the study of many aspects of nonlinear dynamics in 
the vicinity of the point where the Andronov-Hopf sub- 
critical bifurcation takes place (an unstable equilibrium 
state bifurcates to an unstable cycle that surrounds the 
stable equilibrium state). 

We report here the results of a theoretical investigation 
of the dynamics of a modified system with FB; the system 
organizes a signal with an amplitude that depends on the 
emission field. We assume in addition that the FB circuit 
includes a delay line. It is known that the presence of 
retarded FB that controls one of the laser parameters en- 
riches substantially the lasing dynamics (see, e.g., Refs. 
5-9). We shall determine below the conditions under 
which such a control of the injected field can lead to var- 
ious bifurcation phenomena, multistability, and chaos. 

THE MODEL 

We use as the basic model the single-mode ruby NMR 
laser described in Refs. 1 and 2. Its principal element is an 
Al2O3:cr3+ crystal with an ensemble of spins of the 2 7 ~ 1  

the NMR coil of an LC circuit tuned to the frequency w, of 
the transition between the Zeeman levels produced by a 
static magnetic field with induction Bo. In the case of the 
transition ( 1/2, - 1/2) transition considered by us we have 
wa=gBo (g is the gyromagnetic ratio of 2 7 ~ 1 ) .  The reso- 
nant circuit acts as the laser cavity. The current induced in 
it by variation of the nuclear-magnetization vector pro- 
duces an emission magnetic field B(t) that acts on the 
2 7 ~ 1  spin system. This interaction can be described by the 
Bloch equations in a (u,v,z) coordinate frame rotating rel- 
ative to a field Bol(z at an emission-field frequency o: 

Here Mu and Mu are subcomponents of the transverse 
component of the active-spin nuclear-magnetization vec- 
tor, Mz its transverse component and proportional to the 
population difference to the Zeeman levels, Me the magne- 
tization produced by the pump, B, and Bu components of 
the laser-field magnetic induction B( B, , B, ,O), y, the rate 
of transverse relaxation, yll the rate of spin-lattice relax- 
ation, Am = ma-@, and s is a spin factor equal to 9 for the 
given transition. 

It is assumed that the magnetic induction of the laser 
field is equal to 

where jL( t )  is the current in the NMR coil; 1 is the effec- 
tive length of the winding, N the number of turns, and p 
the induction constant. According to Kirchhoffs rules as 
applied to an LC circuit with feedback that transforms the 
output signal into a signal injected into the circuit through 
resistor Ro, the current JL satisfies the equation 
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Here a,= 1/LC is the frequency of the circuit, RII its 
effective parallel resistance, Q=RII /ucL the NMR coil 
which determines the damping constant k=oJ2Q, and V 
the electromotive force induced in the coil by rotation of 
the magnetization vector, and equal according to Fara- 
day's law to 

d 
V= -pqAN - (Mu cos a t+M, sin a t ) ,  

dt (4) 

where q is the space factor and A the transverse cross 
section of the NMR coil. The voltage VFB injected via the 
feedback signal is determined by the loop voltage ULC 

- V(t-7) , I ( 5 )  

/3 is the FB coefficient, and r is the time of passage of the 
signal through the FB circuit. We assume hereafter that 
WT= 2 m  or ~ ( 2 n  + 1 ) , and include the corresponding sign 
in /3. 

Since the following conditions are usually satisfied in 
experiment: lt2 

Eq. (3) reduces, with sufficiently good approximation, to a 
first-order equation for a slowly varying amplitude of the 
current I ( J L = I  exp( -iot) +I* exp(iwt) ). Taking (2) 
into account, we obtain the connection between I and the 
generated-field magnetic-induction components Bu and 
B" : 

and write the equation for the field characteristics. It takes 
in the case of exact resonance the form 

(8) 

We have introduced here new dimensionless variables 

the time is normalized to l/yII , k, = k/yII is a parameter, 
and a=RII  B/Ro is indicative of the depth of feedback. 
Usually 1 a 1 4 1. The system ( 1 ) reduces here to 

where 

According to Refs. 1 and 2 the field-damping is k1 4 y) 1. 
This permits an adiabatic exclusion in (8), so that 

A solution of ( 10) can be obtained by expanding b in terms 
of the small parameter a. The result is 

Substituting ( 1 1 ) in (9), choosing the initial conditions 
such that B,(t=O) =O (M,(t=O) =O), and introducing 
the real variable m = -iG, we obtain the final system for 
the description of the dynamics of the investigated laser: 

Equations (12) are similar to those obtained in Ref. 2 for 
an NMR laser with constant injected signal, if the 
magnetic-induction b = - m +am ( t - r )  is regarded as the 
sum of the inductions of the field b,= - m generated at the 
given instant of time and the field 
bi=am (t-r)  = -abg(t-T) of the injected signal. If a < 0 
the feedback preserves the injected-signal phase, which is 
equal to the emission-field phase at the instant t-r. When 
a > 0 the corresponding phase is shifted by IT. 

The NMR-laser output voltage picked off the LC cir- 
cuit is first applied to an rf rectifier. The resultant output 
signal is proportional under the above assumptions to the 
transverse components of the nuclear susceptibility m. 

EQUILIBRIUM STATES 

For -A < y/(l -a) the set (12) of equations with 
delay has one trivial equilibrium state: mT=O, zT=A. 
When the pump parameter I A I reaches a value y/( 1 -a)  
a fork-type bifurcation leads to two more states: 

They correspond to generation of counterpropagating 
fields with magnetic-induction vector constant in time. The 
trivial solution becomes unstable in this case. If a < 0 for 
both solutions ( 13), the phase difference between the in- 
jected and generated fields is zero, i.e., a cooperative con- 
figuration of these fields is effected. Just as the case of an 
injected signal constant in timeY2 in this configuration the 
equilibrium states are stable in almost the entire accessible 
range of parameter variation [instability sets in only at 
relatively large feedback depth a ,  when the conditions for 
transforming to the set of equations (12) no longer hold]. 
All the bifurcation phenomena of interest take place when 
the solutions (13) accord with the competing field config- 
uration ( a  > 0). 

The stability of the equilibrium states (13) is deter- 
mined by the roots of the characteristic quasipolynomial 
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FIG. 1. Bifurcation curves (15)-(16) for y=2.4.103 and A= -3  . lo3. 

Using the method of  artiti it ion" in the parameter 
space of the system one can separate regions with different 
orders of stability (different number of roots p, =x ,  A iy, 
with x, > 0, n = 0, 1, 2...). The corresponding boundary 
curves where x,  reverses sign take for each n the form 

1 y ,  [ d l  -a) +a( 1 -dl 1 +ay: 2 m  
7: =- arctg +-. 

Y ,  y;(a2+c) - (d-a)(a+c) Y, 
(15) 

The arctangent is chosen here in the interval [0,2?r] in 
accordance with the sign of 
sinyfr-a$,+c(l-a)+a(l-d), y + > 0  and is equal to 
y, on the bifurcation boundary x, = 0: 

Figure 1 shows plots of ( 15) and (16) with n =0, 1,2, 
3 for typical parameters of a ruby NMR 1a~er.I'~ The x,  > 0 
regions are bounded by two branches r$ and 7;. The equi- 
librium states are stable at low feedback depths 
( a  <, 3 .  As a increases bounded intervals of r ap- 
pear, in which one of the roots has a positive real part and 
the corresponding partial solution of the linearized system 
oscillates with frequency y, close to the frequency 
w,=[-2(~+ y)]"2 of the relaxation oscillations of the la- 
ser without feedback. With further increase of a these in- 
tervals overlap partially. A larger number of roots with 
positive real part raises the order of the system instability. 

Note that instability occurs mainly at delay values 
r>y-l Following Ref. 11, with allowance for the fact that 
the longitudinal component of the magnetization changes 
little relative to the threshold value - y/( 1 -a) ,  the first 
equation can be reduced adiabatically to the difference 
equation 

The equation for z takes then the form 

In view of the foregoing, the value of I az/(y +z) I remains 
close to unity all the time. If az/( y +z) =: 1, Eq. ( 17) de- 
scribes a mapping of the function m(t). Its fixed points 
[mo(t) = mo(t - r ) ]  coincide with the equilibrium states 
( 13) of the initial system and describe stable time-constant 
solutions. The mapping for m(t) takes at az/( y+z) =: - 1 
the form 

The corresponding fixed points 

describe stable 2r-periodic solutions shifted apart by half a 
period. They are characterized by a constant value of ( m ( 
and a jumpwise reversal of the sign of m at time intervals 
equal to r: 

The generated signal has the form of rectangular pulsa- 
tions. By virtue of relation (21), a cooperative field con- 
figuration is realized. It is natural to expect the solution of 
the system of differential-difference equations ( 12) to tend 
(asymptotically as r, y-. w ) to the solution (20), (21 ). 
The feasibility of its realization, as well as that of other 
solutions of the system (12), was investigated by numeri- 
cal integration. The results are summarized below. 

BASIC BIFURCATIONS 

We consider first small FB depths, when uo and zo are 
respectively close to ul and z,. The intervals of r in which 
the equilibrium states (13) are unstable do not overlap as 
a rule in this case (Fig. 1). Let us track the bifurcations 
that occur in the system ( 12) when the delay time is varied 
(Fig. 2a). As indicated above, at small r the solutions ( 13 ) 
are stable. They lose stability at the point r= r$ ,  where 
each of the solutions undergoes a subcritical Andronov- 
Hopf bifurcation. Unstable cycles are produced when r 
decreases from the value r$ . They separate attraction 
wells for three stable solutions coexisting in a narrow delay 
interval [ ~ ~ , , , r t ] ,  two equilibrium states ( 13) and a peri- 
odic regime. The latter is characterized by abrupt bursts of 
magnetization m (or field b )  symmetric about a zero value 
and separated by a time interval much longer than r and 
Tr=2?r/w, (Fig. 3a). 

The value of m fluctuates about zero in the intervals 
between the pulses. Since r is small compared with the 
pulsation period m (t) ,  the injected field, which is propor- 
tional to m(t-r), is mainly in counterphase to the gener- 
ated the generated field, except in the instants when the 
sign of m(t) is reversed. The corresponding phase trajec- 
tory encloses both stationary states. If, following Ref. 12, 
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we denote by x each turn of the trajectory during the pe- 
riod around the state m$, by y each turn around the state 
m;, and by the braces symmetric orbits, the symbol of the 
given attractor will be {xy). We refer to this branch of 
periodic solutions as the zeroth, since the region of its 
existence practically coincides with the instability region of 
the equilibrium states ( 13) with n = 0. The amplitude and 
the period of the oscillations decrease in motion along this 
branch toward decreasing r (see Fig. 2a). At r = r ~ , ~  the 
cycle {xy) becomes unstable as a result of bifurcation of 
the symmetry loss. 

Two asymmetric cycles (xy) and (yx) are produced 
(the parentheses denote here asymmetry of the oscillations 
about the zero value of the magnetization m), one of which 
is shown in Fig. 3b. The presence of a pair of cycles, as well 
as of solutions (13) that go over into one another upon 
reversal of the sign of m, is due to the invariance of Eqs. 
( 12) to the substitution m - m or to a change of the field 
phase by T. These cycles undergo next successive period 
doubling bifurcations (xy12" and ( y ~ ) ~ " ,  leading to two 
asymmetric random attractors. As r increases further, in- 
creases take place in both the scatter of the extremal values 
of the pulsating magnetization and in the number of jumps 
of the phase trajectory from the vicinity of one equilibrium 
to that of another with a different sign of m, until the 
attractors coalesce into one symmetric random attractor. 
At 7=70.3 it bifurcates to a periodic symmetric orbit {xZy2) 
(Fig. 3c). Finally, the succeeding bifurcations of symmetry 
loss and of period doubling of the type ( ~ ~ 3 ) ~ "  again lead 

to two asymmetric random sets, which converge subse- 
quently into one (Fig. 3d). 

The Andronov-Hopf bifurcation on the upper bound- 
ary of the interval of instability with n=O at the point 
r; is also subcritical. Unstable cycles are produced in this 
case when r increases. A chaos coexisting with two equi- 
librium states is preserved in the interval [r; , T ~ , ~ ] .  

In contrast to the zeroth mode of the periodic solutions 
of the system ( 12), the first mode is produced "softly" via 
a supercritical Andronov-Hopf bifurcation at the point 
T=T? (Fig. 2a). Both equilibrium states ( 13) lose stability 
and two stable cycles x and y, are generated, with opposite 
signs of the magnetization m, each enclosing a correspond- 
ing immobile point. 

An example of such a solution is shown in Fig. 3e. The 
magnetization m oscillates without change of sign (vector 
direction). A competing configuration of an injected field 
and a generated one is produced. The pulsation period z r  
is close to Tr=2r(wr), i.e., the relaxation oscillations of 
the laser are amplified by resonance with the feedback nat- 
ural frequency 2?r/r. The pulsation amplitude increases 
with the delay r. The solutions remain stable up to the 
value r=rl, , ,  which exceeds the upper limit of the 
instability interval of the states ( 13) with n = 1 in which a 
subcritical Andronov-Hopf bifurcation takes place anew. 
Multistability is observed in the vicinity of this point, viz., 
coexistence of the T-cycles and a pair of solutions a four- 
fold period x4 and y4. The numerical experiment revealed 
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FIG. 3. Shapes of pulsations m ( t )  and corresponding 
phase portraits at a = 5 . 1 0 - ~  and ~=0.04(a) ,  
O.l(b), 0.1 16(c), 0.17(d), 0.25(e). The remaining 
parameters are those of Fig. 1.  P+-immobile points 
( 13), P-projection of solution (20), (21 ). 
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FIG. 4. Envelope of maximum pulsations m ( t )  for a=5. and 
~=0.3423(a), 0.343(b). 
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next a 47 period-doubling bifurcation and a soft transition 
to two quasiperiodic solutions close to the cycles x8 and 
of period 87 (Fig. 3a). 

When the parameter r exceeds a certain critical value, 
these solutions interact and the result is reversal of the 
direction of the magnetization vector and a change of the 
phase of the generated signal by n. The system stays ini- 
tially a rather long time on one of the quasiperiodic orbits, 
goes over next to another orbit with opposite sign of m, 
and so forth. These transitions are irregular in time and are 
characterized by an increase of the pulsation amplitude 
(Fig. 4b). This corresponds to the presence of relatively 
long laminary phases of quasiperiodic motion, interrupted 
by irregular flashes, i.e., a "quasiperiodicity-chaos" 
alternation. l3 The frequency of the reversal of the sign of m 
in individual time intervals and the durations of these in- 
tervals increase with increase retardation T and the system 
goes over into a symmetric chaotic motion similar to that 
shown in Fig. 3d. The chaos exists up to the point r l , ~  of its 
annihilation with an unstable orbit separating the wells of 
attraction of the random set and the equilibrium states 
( 13). A regularity window with an (xZg)  regime was ob- 
served at ~ ~ 0 . 3 5 .  In addition, supplementary insulated 
branches of periodic solutions, {x3y3) and {x4y4) exist in 
the vicinity of the bifurcation boundary r; (Fig. 2a, inset 

a 2). When the delay r is increased, they undergo bifurcation 
- sequences analogous those described above for the solu- 

tions {xy) and {x2$) on the zeroth branch: loss of sym- 
metry, doubling bifurcation of the period of each of the 

- asymmetric cycles, coalescence of two asymmetric chaotic 
attractors. 

The succeeding branches of the periodic solution are 
also generated softly at the points 7; on account of the 

one of the natural feedback frequencies-2~n/r. On each 
branch there exist two r/n cycles with opposite signs of m. 
The character of the oscillations is similar to that shown in 
Fig. 3e. As the delay T is increased, these solutions, just as 
for n = 1, bifurcate to two quasiperiodic orbits which inter- 
act subsequently through intermittency, creating a sym- 
metric chaotic attractor. The chaos region contains win- 
dows of regular motion with symmetric and asymmetric 
trajectories of type xkyk. The upper limits of the instability 
intervals 7; of immobile points are characterized by sub- 
critical Andronov-Hopf bifurcations, so that the complex 
motion on the nth branch coexists with stable equilibrium 
states ( 13) practically up to values of rL With increase 
of the number n of the solution, and hence of the delay 
time T, the interval of r in which a solution with period r/n 
exists becomes shorter, and quasiperiodic and irregular 0s- 
cillation regimes become more typical. 

Note that in the considered case of small feedback 
depths a no solutions close to the solution (20), (21) of 
the simplified system ( 17), ( 18) were observed even for 
relatively long T ) ~ - '  (at least within the limits of the 
investigated delay up to 7 ~ 2 ) .  The dynamics of the system 
( 12) is determined mainly by the character of the bifurca- 
tions of the immobile points ( 13). In view of the proximity 
of ul, zl (20) to uo, zo ( 13) the phase trajectories of the 
existing lasing regimes enclose both types of equilibrium 
states (Fig. 3). 

An increase of a leads first of all to divergence of the 
values of the longitudinal magnetizations zo and zl , and as 
a consequence to an increase of the distance between the 
corresponding points in the phase space of the system. For 
certain parameters this makes it possible to realize phase 
trajectories only in the vicinity of the projection of the 
solution (20), (21). Thus, in the region of the existence of 
the zeroth branch of the solutions, where the delays r are 
small enough and are comparable with y-', neither a tran- 
sition from the system of equations (12) to the simplified 
system (17), (18) nor the presence of a solution (20), 
(21) is right. The dynamics is determined as before by the 
states (13). The basic structures of the solution duplicate 
those shown in Figs. 3a-3d. The range of variation of z is 
large and the phase trajectories, just as for small a ,  enclose 
the points mo, zo and m l ,  zl . Only pairs of solutions x and 
y are noted and represent in fact {xy) solutions (Fig. 3a) 
with values of m reversed every other pulse to the positive 
or negative m, respectively, and with half the period. The 
intervals where such solutions exist alternate with intervals 
where {xy) solutions exist (Fig. 2b). The larger a ,  the 

0 r - S  t supercritical Andronov-Hopf bifurcations (Fig. 2a, n > 1 ). 
1000 1030 1060 The physical mechanism of their onset is resonant ampli- 

ml b fication of relaxation oscillations at a frequency w, close to 
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more frequent the alternation of these regimes with in- 
crease of 7, until symmetry-loss bifurcation sets in, i.e., a 
transition to a pair of coexisting solutions (xy) and (yx). 
The scenario of the transition to chaos duplicates subse- 
quently the one described above for small a. With increase 
of a ,  at the end of the zeroth branch after the reverse 
cascade of period-doubling bifurcations, of the period, or 
via a "cycle-chaos" alternation,13 a new type of regular 
symmetric solution takes place, with a period that tends to 
27 when the delay is increased. The phase trajectory shifts 
gradually relative to the immobile points ( 13). Starting 
with a certain a ,  it encloses only the projection of the 
solution (20), (21) (Fig. 5a). 

We track now the corresponding changes in the re- 
gions of instability with n > 1. As indicated above, as the 
FB depth increases these regions overlap partially, leading 
to a larger interaction of the r/n-periodic solutions. The 
stability intervals of these solutions decreases. When a ex- 
ceeds a certain value = ( 3 4 )  . lov3, a quasiperiodic or 
chaotic regime with small regularity windows is observed 
for practically all .r > rf . In these windows are realized 
regimes both with structure of type (xkyk), determined 
mainly by the equilibrium states (13), as well as 27- 
periodic oscillations. In the latter case a fine structure ap- 
pears in the segments of the time r where m(t) does not 
reverse sign, namely, pulsations attenuating towards values 
mt or m l  (Fig. 5b). After several contracting loops 
around the point (mf , z,) the phase trajectory goes over 
into the region of the point (m;, zl) etc. The solution 
tends to become discontinuous, with sections of slow and 
fast changes of the variable, characteristic of singularly 
perturbed systems with small parameters preceding the de- 
rivative. We denote such solutions by wk, where k is the 
number of turns in the time r. Further increase of a leads 
to formation of one branch of 2r-periodic solutions, along 
which the number of rotations of the phase trajectory 
around the points (m?, zl) increases (Fig. 2b). A certain 
correlation is observed then between the number k of turns 
and the number of the solution of the linearized system, 
i.e., the period of the fine structure is z r / n  and is close to 
the period T ,  of the relaxation oscillations. The form of the 
m ( t )  signal becomes more and more rectangular, with a 
strong spike on the leading front of the pulse (Fig. 5c). 
The solution of the system of differential-difference equa- 
tions ( 12) becomes close to the solution (20), (21 ). 

Thus, for relatively large a the main solution corre- 
sponds to a cooperative configuration of the fields in a laser 
with an external signal, a solution that turns out to be more 
stable, just as in the case of a signal constant in time.' Even 
at very large az0.1,  only an insignificant "breathing" is 
observed in the values of the spikes m(t). 

The proximity of the system (12) at large a and r to 
the difference system (17), (18) predetermines the pres- 
ence of harmonics with a period 2r/(21+ 1) (1=0,1,2, ...) 
and of isomers [solutions with a period =2r/(21+ 1) (1 
=0,1,2, ... )] and isomers (solutions with period z 2 r ,  but 
of more complicated structure). Without dwelling on a 
proof of this fact, which is given in Ref. 11 for an equation 
of the type of (17), we note that such solutions were in- 

deed obtained by numerical integration of (12) (see, e.g., 
Fig. 5d). This, however, calls for imposition of special ini- 
tial conditions. Thus, with change of the feedback depth a 
the system changed over to isomeric branches from a 
W-branch, and to harmonic branches from isomeric ones. 
When a constant magnetization m of any size was speci- 
fied, only a W solution was realized on the segments 
[-r,OI. 

CONCLUSION 

We have proposed a theoretical model of a ruby NMR 
laser with injectable signal controlled by retarded feedback. 
The lasing dynamics was studied in detail on the basis of 
formulated differential-difference equations. We have 
shown that at relatively large feedback depths there is re- 
alized mainly a cooperative field configuration (the phase 
difference between the generated field and the injection 
field is zero). Just as in the case of a time-constant signal,' 
this configuration is characterized by stable solutions. In 
contrast to Ref. 2, however, where such a solution was one 
of the nonzero equilibrium states (constant nuclear mag- 
netization and constant NMR-laser output signal), the 
principal regime here is 2.r-periodic with asymptotically 
(as the delay r increases) constant longitudinal component 
of the magnetization and output-signal amplitude. The 
phase of the latter, just as of the magnetization, changes by 
.rr every segment of the time r. The presence of harmonics 
with a period 2.r/(21+ 1) and of isomers brings about mul- 
tistability. 

The competing configuration of the injectable and gen- 
eratable fields (the difference of their phases is .rr) predom- 
inates at a low depth of feedback. Corresponding to such a 
configuration are the constant-time solutions (13) as well 
as regimes with periods r/n. Just as in the case of a con- 
stant injectable signal, we have here regions of stability and 
instability of the given solutions. Equilibrium states can 
lose stability via supercritical or subcritical (as in Ref. 2) 
Andronov-Hopf bifurcation. As a result, stable equilib- 
rium states can coexist with periodic limit cycles or with a 
random set. Chaos is produced as a rule via creation of two 
quasiperiodic orbits with opposite signs of magnetic induc- 
tion of the pulsating laser field and interaction of these 
orbits. For relatively small delays T, the system can gener- 
ate more complicated periodic structures which are diffi- 
cult to relate to the aforementioned two field configura- 
tions. Their creation and annihilation can also be 
accompanied by multistability and, as a consequence, by 
hysteresis. 

The results indicate that the considered laser system 
enriches substantially the ruby NMR laser generation spec- 
trum. This extends is field of application and utility for the 
study of bifurcation phenomena and multistability. 

Note that the presented mathematical model of a self- 
oscillating system with delay can describe also other real- 
istic devices or processes. For example, it is similar to the 
model proposed in Ref. 14 for the analysis of dynamic 
regimes in a laser whose active layer is significantly thinner 
than the emission wavelength. Our present results can 
therefore be of value when it comes to determine trends in 
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FIG. 5. Form of pulsations m ( t )  and corresponding phase portraits 
for a= lo-' and ~ = 0 . l  (a), 0.37(b), 1.5(c). The remaining param- 
eters are those of Fig. 1. PI-immobile points (13), P-projection 
of solution (20)-(21). 
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the development of the dynamics not only in NMR lasers, 
but in similar systems of different nature. On the other 
hand, the investigationsI4 of equilibrium states in the case 
of arbitrary detuning of a laser-transition frequency points 
to the possibility of obtaining regimes that differ from those 
described above, which call for further study. 
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