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We establish the analytic continuation of the Bohr-Sommerfeld quantization rule for 
potentials with a barrier into the range of above-the-barrier resonances. The derived equations 
are valid for an arbitrary analytic potential satisfying quasi-classical conditions and 
determine both the position E, and width r of the resonance. The results are illustrated by a 
number of model potentials and also for the Stark effect in a strong field. We find the 
asymptotic behavior of the resonance energy in the tight-binding approximation. 

1. INTRODUCTION 

The quasiclassical approximation, or the WKB 
method, is one of the most effective approximate methods 
of quantum mechanics and theoretical physics (see, e.g., 
Refs. 1-14). In contrast to perturbation theory, this ap- 
proximation is not linked to the weakness of interaction 
and has therefore a broader range of applications, making 
it possible to study the qualitative laws of the behavior and 
properties of quantum-mechanical systems. Usually the 
WKB method is used in the case of a discrete spectrum and 
somewhat more rarely to calculate the wave functions of 
the continuous spectrum and in scattering 
However, in various physical problems one encounters po- 
tentials with a bamer for which the energy levels are qua- 
sistationary. For instance, atomic physics exhaustively 
studies resonances with large quantum numbers (Rydberg 
states), including those that lie above the classical ioniza- 

ymptotic result (formally valid for g) 1) extends down to 
values of g of the order of unity even for small quantum 
numbers, n=O and 1. Section 5 studies resonances in the 
potential (28) which is a generalization of the spherical 
model of the Stark effect. In Sec. 6 we derive similar equa- 
tions for the energies of Stark resonances in the hydrogen 
atom, consider their analytic continuation to above-the- 
barrier region, compare results with the experimental data, 
and obtain the asymptotic behavior of resonance energies 
in a strong electric field. Appendices A, B, and C are de- 
voted to auxiliary questions, including the method of ana- 
lytical calculation of the coefficients of the asymptotic se- 
ries ( 17) for an anharmonic oscillator. 

A remark concerning the history of the problem is in 
order. The quantization rule (8) for quasistationary states 
(without allowing, however, for corrections proportional 
to # and f i4) was, apparently, first used in Refs. 15-17; 
namely, in the problem of a cubic anharmonic o~cillator,'~ 

tion threshold ( E, > Urn, with Urn the top of the potential 
~ = f ( ~ ~ + k x ~ )  + g ~ 3 ,  - UJ < x <  co, bamer ) . 

Below we formulate a generalization of the Bohr- 
Sommerfeld quantization rule to the case of quasistation- 
ary states (resonances) with a complex-valued energy 
E=E,-ir/2. The derived equations determine both the 
position of a resonance E, and resonance's width r, and 
simplify considerably the calculation of these quantities. 
For one thing, they allow finding the asymptotic behavior 
of the resonance energy in the tight-binding approxima- 
tion, for instance, for atomic levels in strong external fields. 

Here is the plan of the paper. Section 2 considers the 
analytic continuation of the Bohr-Sommerfeld quantiza- 
tion conditions from the discrete spectrum range to above- 
the-barrier energy range. The main result is Eqs. (8) and 
( 12), which determine the spectrum of quasistationary 
states. Sections 3 and 4 study the simplest model of an 
anharmonic oscillator (one-dimensional and three- 
dimensional) with a power-law nonlinearity. The quanti- 
zation rule is used to establish an asymptotic expansion for 
the energies of quasistationary levels in the tight-binding 
approximation, g+ UJ [g is the coupling constant; see Eq. 
(13)]. Comparison with the results of a numerical 
solution15 shows that the range of applicability of this as- 

and in calculations of the Stark shifts and of the widths of 
the ( n  - 1,0,0) and (0,n - 1,O) states of a hydrogen atom 
in a strong electric In both cases we demonstrate 
the effectiveness of this quantization condition in the tight- 
binding approximation. As far as we know, there is no 
detailed derivation of Eq. (8) in the literature. 

2. ANALYTIC CONTINUATION OF THE BOHRSOMMERFELD 
QUANTIZATION RULE') 

As is known (see, e.g., Refs. 5-7), the quantization 
rule for states from the discrete spectrum has the form 

A generalization of this rule for a finite barrier factor was 
obtained in Refs. 18-20: 

where fi=m= 1, 
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FIG. 1.  Integration contour C in Eqs. ( 8 )  and 
(12) for (a) the one-dimensional case, and 
(b)  a spherically symmetric three-dimensional 
potential ( I = O ) .  The cuts of the function 
p(x,E) are also shown. 

the conditions necessary for the WKB method to apply 
begin to be met once more. For ( a  ( ) 1 we arrive, taking 
(7) into account at the following:') 

with r(9) the gamma function and 

p(x,E) = is the quasiclassical momentum, 
and xi the turning points. Here x0 < x <XI and x > x2 are 
the classically allowed regions, xl < x < x2 is the subbarrier 
region in which p2(x) < 0, and for x > x2 the particle goes 
to infinity (see Fig. 1 in Ref. 19). 

Near the top of the barrier, xzx, ,  we use the para- 
bolic approximation to get 

where Urn = U(xrn), and w = is the frequency 
of a "flipped oscillator." In Eq. (4) this parameter is writ- 
ten in a more general form applicable for ( a 1 ) 1, too. For 
complex-valued resonance energies both the parameter a 
and the turning points are complex-valued. 

For the function q ( a )  introduced in Eq. (3') the fol- 
lowing asymptotic behavior (as 1 a 1 + m ) holds true: 

(for this function the ray a = n/2 is a Stokes' line). 
For deep-lying levels ( E  < Urn and a, 1 ) we can easily 

verify, using expansion ( 6 ) ,  that Eq. (3)  transforms into 
the ordinary Bohr-Sommerfeld quantization rule and its 
imaginary part yields the Gamow formula for the level 
width. 

The turning points x1 and x, move closer as E-t Urn ; 
there is a (narrow) energy region in which the quasiclas- 
sical approximation is invalid. However, as Er grows, these 
points move farther apart and into the complex plane, and 

Noting that = ip(x), we can write this equation in 
the final form: 

where the integration contour encompasses the complex- 
valued turning points xo and x2 (see Fig. la). For a dis- 
crete spectrum the quasiclassical quantization rule can also 
be written in the form (8) but with an integration contour 
C that encompasses the points xo and x l ,  both of which lie 
on the real Thus, the integration contour becomes 
"re-engaged" as we move from the subbarrier region to the 
above-the-barrier one. 

Equation (8) gives the analytic continuation of the 
Bohr-Sommerfeld quantization rule into the above-the- 
barrier region Er>  Urn. The continuation can also be per- 
formed via the formal substitution 

directly in the quantization integral I (E) .  Indeed, if the 
level's energy approaches the top of the barrier, a + 0 and 
the quantization integral acquires a logarithmic singularity 
with a coefficient independent of the shape of the potential: 

[in contrast to the other coefficients Jk ,  which are deter- 
mined by the potential U(x); explicit formulas for these 
are given in Ref. 221. Note that this singularity is due to the 
divergence of the oscillation period T(E)  as E+ Urn : 

[with w defined in ( 5 ) ] .  If in the quantization rule (2) we 
perform the substitution (9), the rule, as (10) clearly 
shows, coincides with Eq. (3), provided that in the latter 
we allow for the asymptotic behavior (7) of the function 
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q(a).  Thus, the substitution (9) transforms Eq. (2), valid 
for discrete spectra, to Eq. (8) for above-the-barrier reso- 
nances. The condition 1 a ]  % 1 used in the derivation was 
necessary so that the quasiclassical approximation could be 
applied [actually, as Eq. (7) shows, a less stringent condi- 
tion is needed, namely, I a ( ) 1/ ,/% =: 0.081. 

As is known,'12 fi2 is the formal parameter in the qua- 
siclassical expansion. Higher-order corrections (of the or- 
der of fi2, #, etc.) have been calculated by various 
authors,'-lo who considered only the discrete spectrum. 
Here we use the quantization condition in a form suggested 
by Kesarwani and ~arshni:' 

where 

etc. (in Ref. 9 corrections up to the order of fi8 inclusive 
are listed). Differentiation with respect to the energy vari- 
able E can be done explicitly if we go over to contour 
integrals and allow for the fact that 

As a result we get the following: 

- 2 2 4 ~ " ' ~ " ~ ' + 9 3 ~ " ~ ) + 0 ( f i s )  = n+- fi, (12) I ( 2 
where the contour C encompasses the turning points xl  
and x2 for a discrete spectrum and the points xo and x2 for 
above-the-barrier resonances (we have re-established 
Planck's constant fi and mass m explicitly). Equations (8) 
and (12) can be used for an arbitrary differentiable (ana- 
lytic) potential U(x) that allows continuation into the 
complex plane. The quantization condition is quite useful 
for calculations if contour integrals are employed, which is 
what we do below. If ordinary integrals are used in calcu- 
lations of the corrections J2k, Eq. ( 12) is invalid because of 
singularities at the turning points, and we must resort to 
(11). 

We illustrate the application of Eqs. (8) and (12) by 
examples that employ a number of model potentials for 
which the calculations can be done analytically. 

3. ANHARMONIC OSCILLATOR 

~lvarez" studied in detail the behavior of resonances 
(as a function of the coupling constant g)  for the one- 

dimensional oscillator ( 1 ) and found the asymptotic be- 
havior of the energies En(g) both for weak coupling and 
for g- CXJ . Generalizing somewhat this example, let us con- 
sider the potential 

with odd N=3,5, ... (in what follows k = l ) ,  a potential 
that has a maximum at x=xm : 

l/(N-21, N-2 
xm= (Ng)- (jyg) -2/(N-2) Urn== 

( 13') 

[the frequency w = .\llN.2 introduced in (5) is indepen- 
dent of g]. Note that the Schrodinger equation with poten- 
tial ( 13) can serve as a standard equation for the theory of 
quasistationary states. 

The equation U(xi) = E(g) determines the positions of 
N complex-valued turning points and can be solved explic- 
itly in two limiting cases: g-0 and g+ W .  In the latter we 
can ignore the oscillator potential in comparison to gxN in 
Eq. (13). ~ e n c e , ~ )  

and Eq. (8) assumes the form 

The integral can easily be evaluated if we take for the cut 
connecting the turning points two segments, one from xo to 
0 and the other from 0 to x2. AS a result we arrive at an 
asymptotic formula for the energies of quasistationary 
states in the tight-binding mode: 

where 

(Fig. 2). In connection with this formula we note the fol- 
lowing: 

(a) The E,(g) cc2/(N+2) dependence follows already 
from scaling considerations (x-px in the Schrodinger 
equation with a power-law potential gxN and a suitable 
choice of the scaling factor p) .  In this respect see 
Simanchik's remark cited on page 85 of Simon's paper.23 
Note, however, that the given statement now refers not to 
a discrete spectrum but to quasistationary states. 

(b) The equality Im E,(g) = - rn /2  has, according to 
( 15), the correct sign, and for large values of N the level is 
fairly narrow: r/Ercx N-'. The smallness is due to the fact 
that as N-,  w the potential becomes very sharp (see the 
discussion at the end of Appendix A). 

(c) For a cubic anharmonic potential (N=3),  Eq. 
( 15) coincides with formula (5)  of Alvarez's paper.15 
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FIG. 2. Asymptotic coefficients CN (+ )  and c, (solid curve) for the 
anharmonic oscillator. 

(d) An interesting question is the structure of the as- 
ymptotic expansion of En(g) for large values of g. If in 
( 13) we regard kx2/2 as a perturbation, we can show that 

where a=4/(N+2),  

dk=dr'+d12'(n+q)-2+dp)(n+f)-4+ ..., (18) 

with dhO) = 1, and A =g(n +f) (N-2)" is the effective cou- 
pling constant for high-lying levels (see Appendix A). The 
coefficients df;i) can be calculated analytically by a proce- 
dure described in Appendix B. For one thing, 

(see Fig. 3; note that all the coefficients dhi) are real). 
The potential ( 13) with N= 3 (the cubic oscillator) 

was studied by ~ l v a r e z , ' ~  who obtained with a very high 
accuracy the numerical values of En (g) for n = 0 and 1 and 
g< 100 by employing the method of complex-valued rota- 
tions well-known in atomic physics (see, e.g., Ref. 24). In 
this case the few first terms in the expansion ( 17) and ( 18) 
have the following values: 

The coefficients d g )  rapidly decrease as j and k grow. We 
keep therefore only three terms in ( 17) : 

FIG. 3. Power-law corrections to the leading term of the asymptote of 
E,(g). The coefficients I d i ~ )  I for the anharmonic oscillator are depicted 
as functions of the exponent N (the one-dimensional case: 0, dA2); , 
dl0)) and v (the three-dimensional case: solid curve, djO)). 

This formula and the numerical results given in Ref. 15 are 
compared in Table I (see also Fig. 1 in Ref. 21 ). This 
required the use of the scaling relation 

~ , ( k , g )  = &E,,( 1,gk-(N+2)/4) 

(we used k= 1, while in Alvarez's paper k= f ) . Table I 
shows that the range of applicability of the quasiclassical 
asymptotics, formally valid for g) 1, extends down to val- 
ues of g of the order of unity even for the ground level 
n =O. An especially high accuracy is achieved for the ratio 

which in the limit g+ co is independent of n and g and 
equal to g=tan ?r/(N+2). Remarkably, such a simple ap- 
proximation as (20) describes the resonance energies in the 
region g Z  not only qualitatively but also quantitatively 

TABLE I. 

n=O n= 1 

The first line (for fixed n and g) contains the results of numerical 
 calculation^,^^ and the second the results of calculations by the asymptotic 
formula (20). The limiting value 5, =tan lr/5=0.726 5425 ... . 
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(for excited states with n)l its accuracy is even higher). 
This shows that power-law asymptotes of the type (17) 
can be of considerable interest. 

4. SPHERICAL OSCILLATOR 

Let us now consider the potential 

with an arbitrary v>  2, which is, for ns-states, the three- 
dimensional analog of ( 13). The left turning point is fixed, 
ro=O, the integration contour Cis shown in Fig. lb, and in 
the quantization rule n+f must be replaced by n-4 (see 
Refs. 2 and 11). We restrict our discussion to the tight- 
binding approximation. The asymptotic expansion of 
EJg) has the form 

where now a=4/(v+2), 

and 

[a generalization of the (23") is given in (A8)]. The most 
important difference between the asymptotes (17) and 
(23) is in the phase factor; for instance, now 
6 =tan 2?r/(v+ 2). The dependence of the coefficients 
d?) and dh2) on the exponent (Nor  v) is illustrated by Fig. 
3, which shows that power-law corrections to the leading 
term in the asymptotic expansion of E,(g) are small. 

Let us consider in detail the case v=4. Here (22) 
coincides, to within an inessential energy shift, with the 
potential 

[ w = d  and rm=R = ( 1/2) &I, which (with the opposite 
sign) is often encountered in quantum field theory (the 
potential for Higgs bosons in the Weinberg-Salam model). 
The turning points are 

11,2 = rm JCG, (25) 

where E= E/Um= 16gE. The quantization integral (2) can 
be calculated analytically here and gives the following 
equation for the energy of ns-levels: 

where A=g(n -4) and G(z) =zF( 1/4,3/4;2;z), a function 
whose properties are discussed in Appendix C. The turning 
points (25) collide at E= 1, or A=A,= (23/23~)-1 
=0.0375. The analytic continuation of Eq. (26) into the 
above-the-barrier region ( E  > 1 and A > A,) has the form 

In the limit as A - C U ,  this equation leads, as expected, to 
the asymptotic formula (23) with v=4 (for more details 
see Appendix C). 

5. A GENERALIZED STARK MODEL 

Our last example, which we briefly consider, is a gen- 
eralization of the spherical model of the Stark effect in the 
hydrogen atom (into which it transforms at a = 1/2): 

In this case (1=0), r, =g-1/4a, Urn= - 2 &, and the turn- 
ing points are 

For levels with E < Urn the variable z is real (0 < z < 1 ), 
provided that we ignore the level width. The quantization 
rule (2) assumes the form 

where / ~ = ~ n ~ " / ( ' - " ) ,  and 

The solution to this equation remains real up to z= 1, 
which corresponds to an effective coupling constant 

For A >A,  the analytic continuation of Eq. (30) has the 
form 

This equation determines (in the quasiclassical approxima- 
tion) the energies of above-the-barrier resonances for 
model (28) : E = - 2 g z .  In particular, as g+ cu we 
have z c ~ g - ( ' - ~ ) / ~ ( ' + ~ )  -0, and on the left-hand side of 
Eq. ( 3 1 ) the second term is predominant. Hence the as- 
ymptotic formula 

with c~~ the same coefficient as in Eq. (23') at v=2a. 
Several remarks are in order. 

(a) Under the substitution g +  -g the potential (28) 
becomes a cutoff potential, in which there is only a discrete 
spectrum.4) Here Eq. (30) remains valid if we substitute 
-z for z, and the asymptote ( 32) becomes real. 
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(b) The case a= 1/2 corresponds to the spherical 
model of the Stark effect. Here A,= 1/2, g =  8 is the elec- 
tric field, and z = 4 g / ~ ~  = 1 6 ~ / 2 ,  with A = F and E vari- 
ables defined in (36). The field dependence of the reduced 
energy e = 2 n 2 ~  is determined by equations that follow 
from (30): 

where G(z) is the same function as in (26). The value z= 1 
corresponds to the "classical" ionization threshold 
~ , = 2 ~ ~ ( 3 ~ ) - ~ = 0 . 1 2 9 8 ,  (see Refs. 25 and 26), and for 
F > F, the resonance energy and width are determined by 
the equation 

which can easily be solved numerically. 
(c) For a=; (and only in this case), the same hyper- 

geometric function enters into Eqs. (30) and (31), in view 
of which the quasiclassical equations simplify considerably. 

(d) The case a = 1 corresponds to the exactly solvable 
potential U ( r )  = - (r-2+g?) considered in Ref. 20. 

6. THE ASYMPTOTES OF STARK RESONANCES 

The quasiclassical quantization rules in the below- 
barrier region were obtained in a convenient form in Refs. 
17 and 25. They can be written as follows: 

[for Rydberg states (nl,n2,0) with n=nl+n2+l) l ,  
where nl, n2, and m the parabolic quantum numbers], 
where zi= l6p,F/Z, the pi are the decoupling factors, and 
E, F, and vi are the "reduced" variables 

(we use atomic units). In (35) we ignored corrections of 
the order of fi2; allowance for these is no problem.27 

The variable z increases monotonically with F. At z= 1 
the quasiclassical energy E acquires a singularity; this cor- 
responds to an electric field strength equal to F,, the clas- 
sical ionization thre~hold.~) The parameter a in (4) in this 
case can also be calculated analytically, 

with a(F)  -0 as F-+F,: 

I 2-l3I23.rr if vl=O, 
a(F)=na,(l-z2)+ ..., a,= 3 s(l-vl)  as vl-1. 

(38) 

If we combine this with (9),  we see that the analytic con- 
tinuation of Eq. (35) into the above-the-barrier region 
( F  > F,) can be done via the substitution 

TABLE 11. 

-E,,  c ~ - '  r/2, cm-I 

nl ,n2,m Theory ~ x p t . ~ ~  Theory  EX^^.^^ F  F ,  

16,1,0 106.9 103.8 9.0 9.0 0.343 0.265 
15,1,0 167.8 167.9 0.8 2.1 0.273 0.263 
15,0,0 196.5 198.5 1 . 1  X 0.214 0.308 
14,2,0 212.1 210.1 5.4 6.6 0.273 0.236 
13,2,0 273.6 275.4 0.23 0.214 0.233 
12,3,0 313.3 314.8 1.6 0.214 0.214 
11,4,0 353.8 351.4 2.5 3.0 0.214 0.200 
11,3,0 384.2 386.3 1.8X lo--' 0.165 0.211 
10,4,0 418.7 419.2 3.2X lo-' 0.165 0.197 

Here n, , n2, and m are parabolic quantum numbers of a Stark resonance, 
F = n 4 1  the reduced electric field strength, and F, the classical ionization 
thresholdZZ (the case F  > F ,  corresponds to above-the-barrier resonances, 
and the case F  < F ,  to below-barrier resonances). 

under which the function G(z2) in the second equation in 
(35) is replaced by G(q)  [see Eq. (C4)], while the first 
equation remains unchanged. 

The derived equations can easily be solved by numer- 
ical methods (the authors are grateful to A. V. Sergeev 
who performed the necessary calculations). In Table I1 the 
calculated values of E, are compared with the positions of 
the peaks in the photoionization cross section established 
in experiments with hydrogen atoms (at $=16.8 
kV cm-'; see Ref. 28). Evidently the quasiclassical results 
agree with the experimental data to within the accuracy of 
the latter ( 1-2 cm-'; see Ref. 28). Since for F < F, the 
solution to Eqs. (35) is real and does not determine the 
resonance width, there are corresponding gaps in Table 11. 
In this case more exact must be used that 
will allow for the finite value of the barrier factor. 

In conclusion let us briefly discuss the strong-field 
limit. Analysis of the equations shows that e cc F ~ / ~  and 
f i i c c ~ 1 / 3  as F-+ co. We consider two limiting cases: the 
longest-lived states (n- 1,0,0) (for a fixed field g), and 
the short-lived states (0,n - 1,O). It can be demonstrated 
that in the first p= 1 and f i = O  for any value of F, and in 
the second B=0 and P = l .  Hence, the system (36) 
simplifies.6) The asymptotic expansion of the reduced en- 
ergy E has a somewhat more complicated form than (17) 
and contains logarithms in addition to power corrections 
proportional to F - ~ / ~  to the leading term in the asymptotic 
expansion.7) Using (C1 ), we get 

+ O( f -'I3 ln2 f ) I .  
Here 

and the variable f is equal to F in case (a)  and to ~ e - ' *  in 
case (b). The reason why F is replaced by ~ e - ' *  when we 
go from (a) to (b) is that the equations for the states 
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(nl ,n2,m) and (n2,nl ,m) of the hydrogen atom are inter- 
changed by the substitutions F - - F and f I 1 d 2 .  Note 
that (40) has an imaginary part E"= -1m E(F) only in 
case (b). The reason is that in case (a) E"(F) is of extra 
order of smallness in the parameter l/n (see Ref. 26). 

Qualitatively, the asymptotic expansion (40) agrees 
with the results of numerical calculations of Rydberg states 
at F- 1, but its accuracy is insufficient for quantitative 
calculations. Here, as in the case of an anharmonic oscil- 
lator, we must allow for second-order corrections a f -'I3, 
which raises no serious difficulties. At present such calcu- 
lations are done. 

We would like to thank P. E. Volkovitskii, N. B. De- 
lone, B. M. Karnakov, and A. V. Sergeev for useful dis- 
cussions and helpful remarks. 

APPENDIX A 

Let us consider the effective coupling constant and the 
expansion parameter in ( 17 ) and ( 1 8 ) . 

The energies of highly excited levels (nBl)  in the po- 
tential 

which transforms at 6=2 into (22), can be determined 
from the quantization rule (2). Introducing the scaled pa- 
rameters 

where 1 is the orbital angular momentum, we obtain for the 
reduced energy &=&(A) an equation containing no large 
parameters when n - co : 

If the coupling constant g tends to zero, the level's energy 
is determined by an attraction a #. For one thing, for 
ns-levels at g=O we get 

where n) 1, and the constants A and A' are independent of 
n; for instance, 

[0 < a < 2; the coefficient A is approximately equal to a - I  

as 0-0 and is proportional to ( 2 - ~ ) ~ / ( ~ - ~ )  as 0-21. 
From (A2) and (A3) it follows that (x) - 1, that is, the 
average radius of a bound state, (r), is proportional to 
n2/("2). For instance, 6= - 1 corresponds to the Coulomb 
potential, with A =f and (r) =4(3 -p2)n2. 

As g increases, repulsion becomes stronger (we assume 
that v > 0),  and when A - 1 it balances the attraction at 

characteristic distances r- (r). Here both terms in poten- 
tial ( A l )  are of the same order of magnitude; from the 
condition that # -grv at r- (r) we get 

This suggests that for excited states A is the effective cou- 
pling constant rather than g. 

Putting U(r) = v(r) -grv in Eq. (8), we find that as 
g+ m ,  

where 

' 2  vdr 
PO = J W G 5 ,  A = lro / . 

This leads to the estimate A - $E- ' or, allowing for ( 15), 

Thus, A-" is the expansion parameter in (17); for one 
thing, for the potential (22) we have 6=2  and a=4/(v 
+2). 

From Eq. (A3) it also follows that the leading term 
in the tight-binding mode does not depend on 6, that 

is, on the shape of the attractive potential that binds the 
particle at small distances. However, such a dependence 
does exist in the next terms of the asymptotic expansion. 
For instance, for the potential (Al)  we have a= (6+2)/ 
(v+2) and 

where cv is the coefficient from (23'). In particular, for 
VB 1 we have 

and also in (17) as N- co, 

Since ro=O for s-states, 6 must be greater than - 1 for 
the integral in (A6) to have a finite value. The case of 
6 = - 1 corresponds to a Coulomb singularity appearing in 
U(r) when r+O. Here the integral J:vp;'dr is divergent 
at the lower limit, and expansion (23) transforms into 

where a=ao=1/(v+2), and ~ = g n ~ " + ~ .  AS 6- - 1, the 
coefficient (A8) diverges. Allowing for the fact that 

6+1 1 
lim T( y) (A-"-A-%) = -- A - 4  ln A, 

6- - 1 v+2 
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we get 

The case where v= 1 corresponds to the Stark effect in the 
hydrogen atom; here 

which reproduces the first terms in expansion (40). 
Let us now discuss resonance widths for potential ( 13) 

with N)1. As noted in Sec. 3, in the tight-binding mode 
r/E,ccN-'+O. The reason for this smallness (related to 
the fact that the potential becomes very sharp when 
N-. m)  can be understood by employing the simple 
model8) 

which admits of an exact solution. The energies of quasis- 
tationary states, ~ , = f k 2 , ,  can be found by solving the equa- 
tion 

A potential with a sharp edge corresponds to the case 
x= (K,-,R)-'(~, when 

and r/Erz2x.  The relative smallness of the widths r, and 
the fact that momentum k, is close to nn-/R can, obviously, 
be attributed to the interference of the waves reflected by 
the sharp edges at x=O and x=R of the potential. 

Finally, a remark concerning the energy spectrum for 
potential (22) with v > 2. Here the Hamiltonian is a Her- 
mitian rather than self-adjoint operator,I5 and selecting a 
self-adjoint extension requires fixing an additional bound- 
ary condition at infinity.29 Physically this means that the 
time 7 that it takes a classical particle to get to infinity is, 
for v > 2, finite: 

whence in quantum mechanics a particle can be "reflected" 
at infinity with an arbitrary phase. However, for the ques- 
tions of interest here large distances are not essential, since 
the quantization integral contains only the segment from 
xo to x2, and turning points xi- (E/~) ' /"-~- ' / ("+~) 4 1  
when g+ W.  The authors are grateful to B. M. Karnakov 
for discussions of this problem. 

APPENDIX B 

Let us calculate the coefficients dij ) .  The asymptotic 
expansion (17) can be arrived at in the following way: we 
regard the term h2 in U(x) =;x2+gxN as a perturbation, 
expand the quasiclassical momentum in a series, 

m 

p(x) = C a k ~ ~ ~ p A - ~ ~ ,  PO= .IZGG?J, ( ~ 1 )  
k=O 

with ao=l  and ak= - (2k-3)!!/2kk! for k>l,  and inte- 
grate (8) term by term. As g- W ,  the terms of the result- 
ing series rapidly decrease as number k increases, which 
follows from the estimate 

[we have allowed for the asymptotic expansion (15) of 
E(g)]. As a result we arrive at the equation 

in which 

(to= 1 and t2= -eiTIN, with N odd). Assuming that 
z= ( E ~ - ~ ~ ~  ) 'IN, we get 

where 

and 

We seek the solution to (B4) as A- m in the form of a 
power series in A-B, 

from which there follows expansion ( 17) for the energy, 

Erik) =g- 2/(N-2)ZN/(N-2) 
9 

in which 

with CN the coefficient defined in ( 16). 
Let us now study the integrals in (B3). At k=O and 

k= 1 these can be evaluated in the same way as in ( 14): 
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To generalize this result to arbitrary k it is convenient to 
examine somewhat more general integrals by introducing a 
parameter M > 0: 

(the contour C encircles in positive direction the branch 
points to= 1 and t2). Taking the derivative of (B9) with 
respect to p and then putting p = 1, we arrive at the recur- 
rence formula 

On the other hand, a direct calculation yields 

From this it follows that at k= 1,2,3 ,..., 

[here (-1)!!=1]. If m=-l(mod N), then ~ + ' = l  and 

[this result follows also from the fact that 
P - ' ( l  -P)1/2-k is a total differential]. Bearing in mind 
that 

we finally find that 

which fully determines the coefficients bk and df) .  
Let us consider the contributions of higher-order cor- 

rections to the quasiclassical approximation. Allowing for 
the fact that when g+ UJ the term x2/2 in the expression 
for p(x,E) can be discarded, we find from Eqs. ( 12), 
(13'), and (15) that 

from which it follows that 

etc. Using Eqs. (16) and (B12), we obtain explicitly, for 
one thing, Eq. (18) for dh2) (note that gamma functions 
are absent from this formula owing to the identity 
r (z) r ( 1 -z) = ?r/sin TZ) . For any value of 1 we have 

and from (B12) it follows that ( N  is odd) the phase of 
T1,(N-2, ,/Too coincides with the phase of 

1 +exp[-ir(21- 1)/N] 
1 +exp(i?r/N) ' 

and this cancels out eiT1IN completely. Thus, all the coeffi- 
cients dhi) in ( 18) are real. 

Finally, in the case of a cubic oscillator (N=3) we 
have bl=b4= ... =0, and 

from which we obtain 

662 1 d$O)= ---2= -- c3e- ids, 
5B 2 5 d  

where C3 is the constant of Eq. ( 16). The numerical values 
of these coefficients are listed in (19). 

APPENDIX C 

Let us list the properties of the function G(z) intro- 
duced in (26). As z+0, 

and at z= 1 the function has a singularity: 

where 

gl=i(ln 2+;), g 2 = 2 ( l n  2-%), ..., 
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and t=  1 -2-0. This function has a cut 1 < x  < OD,  the 
jump at which is 

1 1 
AG(x) =- [G(x+iO) -G(x-a)]  = -- G(l -x), 

2i t/Z 
(C2) 

with AG= (x- l)/fl+ ... as x +  1, and A G Z C X ~ / ~ ( C >  0) 
asx-.oO. 

According to rule (39), upon bypassing the branch 
point the function undergoes the following transformation: 

[see formula 2.10( 12) in Ref. 301. Hence, 

Note that in (34) zcc F-'/~+o as F-. O D ,  whence (C4) 
implies the asymptote (40). Finally, when z-. OD , 

Here we have allowed for the fact that -z=zel", since in 
our case E acts as z, and 

where 

(all the other coefficients hk can also be written explicitly). 
This implies that I E I cc g4/3, and at En =&,/I 6g we arrive at 
expansion (23) in which a =$ and 

which fully agrees with formula (23') obtained directly 
from the quantization rule (8). 

 he results of this section were announced in Refs. 20 and 21. 
"What is important here is that for above-the-barrier resonances the 

parameter a lies in the second quadrant of the complex plane. As Eq. 
(5) shows, in the below-barrier region we have Re a > 0 and the imag- 
inary part of a is exponentially small. As the level 'touches' the top of 
the barrier (E,= U,,,), point a crosses the imaginary axes, and after that 
arga > r/2. 

3'~ince for a quasistationary state - ~r < argE(g) < 0, the turning point x2 
lies in the upper half-plane and the point x, in the lower. This can be 
shown to be true also for finite values of g. 

4 ' ~ o r  one thing, at a= 1/2 we arrive at the funnel potential often used in 
QCD. 

"The numerical value of F,  depends on v, and v2 and changes from 
0.1298 at vl=O, that is, for states (0,n-1,O) with n- m, to 0.3834 at 
Y= 1 [states (n- 1,0,0)]; see Refs. 25-27. 

 or levels (0,n-1,O) with n>l  these equations coincide with (34). 
Thus, the spherical model has a direct physical meaning. 

7 ' ~ h i s  is due to the Coulomb singularity in the potential as r-+O (for 
states with m=O, i.e., without a centrifugal barrier). In this respect see 
Eq. (A10). Note, however, that numerically k ,  is small. 

''we have P. E. Volkovitskii to thank for this example. 
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