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We derive the complete set of quasihydrodynamic equations describing the interaction of 
plasma with a strong radiation field, and use it to study spherically symmetric Eddington 
accretion onto a neutron star. We obtain expressions that describe the spatial distribution 
of density, temperature, and the photon-gas and plasma flux. The overall flow, including all of 
the derived numerical values, depends on a single external parameter-the relative 
proximity to the Eddington limit. 

Rapid accretion onto a compact object such as a neu- 
tron star or black hole is a common astrophysical phenom- 
enon, and is thought to occur in x-ray sources, active ga- 
lactic nuclei, and quasars. Accretion results in the 
generation of radiation at power levels that approach the 
Eddington limit, giving rise to a strong interaction between 
the radiation and the accreting plasma, and leading to ra- 
diative slowing of the plasma flow and to energy exchange 
between plasma and radiation via Compton processes. U1- 
timately, a self-consistent distribution of the parameters of 
the infalling plasma and the counterstreaming radiation is 
produced over the entire interaction region. 

The basic features of this process can be studied in a 
natural way under the very simplest conditions by assum- 
ing spherical accretion; in the present paper, we solve for 
spherically symmetric accretion onto a neutron star. In 
Sec. 1, we make use of our previous results' to derive the 
complete set of hydrodynamic equations describing the dy- 
namics of the various fluxes and the interaction between 
radiation and plasma (we present the equations for the 
general nonspherical case in the Appendix). Although the 
radiation usually does not conform to an equilibrium dis- 
tribution under these conditions, the hydrodynamic system 
still has a closed solution, inasmuch as the radiation and 
plasma temperatures are small compared to mc2. It is im- 
portant here that the theory make it possible to determine 
these temperatures accurately. In Sec. 2, we study the 
equations thus derived in detail, and obtain a general so- 
lution. This enables us to construct a complete picture of 
the flow, to find the density, temperature, and flux distri- 
bution of both the plasma and radiation, and to fully elu- 
cidate the physics of all interaction processes. 

We emphasize that the overall structure of the flow, 
including the spatial distribution and the numerical values 
of all of the fundamental macroscopic quantities (flow 
rates, fluxes, densities and temperatures of radiation and 
plasma), is dictated by a single free parameter-the rela- 
tive proximity to the Eddington limit. We will show, in 
particular, that radiation and plasma temperatures are 
highest rather far from the stellar surface. As the Edding- 
ton limit is approached, the maximum temperature can rise 
to T -- 20 keV or more. 

It should also be pointed out that spherical accretion 
has been considered before (see, e.g., Refs. 2-5), but the 

dynamical equations used were not based on the complete 
kinetic theory, so that in many instances they are not en- 
tirely correct. The most thoroughgoing investigation was 
the one by ~ i l l e r , ~  who nonetheless did not obtain a com- 
plete solution-for example, the plasma and radiation tem- 
peratures went entirely unexamined. 

1. THE COMPLETE SET OF HYDRODYNAMIC EQUATIONS 
FOR RADIATION AND PLASMA IN SPHERICALLY 
SYMMETRIC ACCRETION') 

We consider accretion onto a neutron star. It will be 
shown below that the dynamics of that process can be 
considered in the weakly relativistic approximation, which, 
when we describe the radiation, enables us to neglect- 
among other things-photon emission and absorption, pair 
annihilation, and nonlinear photon-photon interactions. 

In the spherically symmetric case, the kinetic equation 
for the photon occupation numbers n(r;A,k) can then be 
written in the form 

Here r is the radius measured from the center of the neu- 
tron star and A =cos 6, where 8 is the angle between the 
radius vector r and the photon momentum k. The photon 
distribution F is simply related to the occupation numbers 
n: 

where h = 2 d  is Planck's constant. The quantity 
(Sn/St)ph on the right-hand side of (1) accounts for 
Compton collisions between photons and electrons. 

For most photons, we normally have 

k 4  JT,hm(mc, 

where Tph is the effective temperature of the photons and 
m is the electron mass; for the most part, electrons here 
undergo scattering through some angle in momentum 
space. In Ref. 1, we obtained for this case an expression for 
the integral over photon collisions with electrons. While 
the latter was an integral expression in A, it was neverthe- 
less a differential expression in k. 

5 JETP 77 (I), July 1993 1063-7761 /93/070005-09$10.00 @ 1993 American Institute of Physics 5 



Expanding Eq. ( 1 ) in Legendre polynomials, 

we obtain a set of recursion relations for the coefficients 
ni(r;k): 

ani if-' a n i - ~  i + l  a . 

F t + c [ m r  (F)+ ( ~ ~ + 3 ) f + '  % (++2ni+l) I 

We shall see below that when the rate of accretion onto 
the neutron star is close to the Eddington limit we have 

over a large spatial region of the flow, where Ne is the 
electron number density, Lph - r is the characteristic spa- 
tial scale length over which the electron distribution func- 
tion varies, and 

is the Thomson cross section for photon scattering by elec- 
trons. When (3) holds, photons are strongly scattered at 
all angles, and their distribution function is virtually iso- 
tropic. In the usual way, this then enables us to truncate 
the sequence of equations (2) in the small parameter (3). 
Retaining only the two leading terms, we have 

c a N P ~  a k4 
(1'2n1) =T & [; [no 

where Ve= - (vr) is the radial velocity of the electron flux 
directed toward the center of attraction, averaged over the 
ensemble of particles, 

is the effective temperature of the electrons, and p z m v  is 
the momentum of the electrons. 

The first group of terms on the right-hand side of (4) 
are the same as the corresponding terms in the 

Kompaneets equationY6 while the other terms proportional 
to Ve and V: account for modifications to that equation 
relating to motion in the electron flow. 

We introduce next a set of parameters that character- 
ize the radiation as a continuous medium: 

In these equations, Nph and Jph are the mean photon num- 
ber density and radial flux, Up,, and Sph are the mean pho- 
ton energy density and flux, and T p h  is the effective photon 
temperature, which is the same as the true temperature for 
equilibrium photons with a Planck distribution. Integrat- 
ing (4) and (5) with the appropriate weighting factors 
from (6), we obtain the quasihydrodynamic equations 

This set of equations must be supplemented by the 
analogous hydrodynamic equations for the plasma flow. 
Owing to quasineutrality, the number densities of electrons 
and ions are approximately equal: 

and noting that div J=O implies the impossibility of a 
continuous current flowing into the star (J=O) in the 
spherically symmetric case, we have an analogous equation 
for the mean electron and ion velocities, 

Taking advantage of the specific form of the electron- 
photon interaction operator,' we find that the steady-state 
hydrodynamic equations for the plasma flow take the 
form2' 
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Here Te and Ti are the electron and ion temperatures, mi 
is the mean ion mass in the plasma, ji= Gm,M, where G is 
the gravitational constant and M is the mass of the star, vei 
is the effective electron-ion collision rate, In A =  10-20 is 
the Coulomb logarithm, and Z=ZZ;N~/N is the mean 
charge on a plasma ion. The left-hand sides of Eqs. (9a)- 
(9d) are in standard form. On the right-hand side of Eq. 
(9b), which describes the variation of plasma momentum, 
we have included both the gravitational field and photon- 
electron interactions. The energy balance equation (9c) 
has accordingly a term for the Compton energy exchange 
between electrons and photons. We neglect thermal con- 
ductivity and any additional heat sources or sinks. Recall 
that throughout this paper, we neglect any process that 
violates photon number conservation (such as bremsstrah- 
lung, resonant photon absorption by ions, etc.). 

Equations (7)-(9) comprise a complete set of hydro- 
dynamic equations for radiation and plasma in steady-state 
spherically symmetric accretion. To study this system, we 
must set down the boundary conditions (which in the 
present case are specified on the surface of the neutron star, 
r=rO, and at r-r w ). 

Note that Eqs. (7) and (9) are conservation laws. 
Thus, the total flux of accreting matter should be given in 
the present context by 

where dMwr/dt is the total flux of matter incident upon 
the star per unit time (dM,,/dt=const in the steady 
state). The total photon flux emerging from the neutron 
star and counterpropagating with respect to the plasma 
flux is also constant, 

In contrast to ( lo), however, it cannot be specified a priori, 
but must instead be determined by solving the problem in 
a self-consistent manner. 

From (7) and (9), one can also easily obtain the con- 
servation law for the combined energy of radiation and 
plasma moving in a gravitational field, 

where 2=4?r?sph(r) is the total energy flux through a 
sphere of radius r. The constant YtOt can also be deter- 
mined by solving the complete problem. At the surface of 
the star ( r=  r,), however, 2' is related to I,. In fact, if we 
assume that in the steady state at r=ro, all of the kinetic 
energy of plasma incident upon the neutron star surface is 
transformed into radiation, then 

For (7) and (9) to form a completely self-contained 
set of equations, they must also be supplemented with a 
boundary condition at r+ W ,  which applies, for example, 
to the plasma velocity V. Since the plasma density remains 
finite as r- W ,  when the flux I. is constant we would nat- 
urally expect 

VI ,=, =O. (14) 

Equations (10)-(14) constitute a complete set of 
boundary conditions for Eqs. (7)-(9), which we can now 
proceed to solve. 

2. STRUCTURE OF THE FLOW IN THE PLASMA-RADIATION 
INTERACTION REGION 

To solve (7)-(9) for the combined dynamics of 
plasma and radiation, it is convenient to change to dimen- 
sionless quantities 

where 

Here yEdd=4?rTc/uTh z 1.26 . lo3' ( M/M@) erg/s is the 
Eddington luminosity. The constancy of the energy flux 
( 12), together with the boundary condition (13), yield 

The boundary condition (14) then means that 

We therefore obtain from ( 13) 

zm ~ z ( ~ = o =  1 +; (xe+xi). 

In the dimensionless variables (15), Eqs. (7)-(91, to- 
gether with (10)-(13), can be rewritten as 
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Here we have plugged the expression for z from ( 16) into 
the third of Eqs. (17). As we shall see below, that is just 
the equation which governs the structure of the plasma- 
radiation interaction region. 

It is clear from ( 17) that the parameter q in ( 15b), 
which is determined by the magnitude of the accretion 
flow, is always less than unity, and the accretion regime 
depends critically on the relation between q and 1. Thus, 
for q(1, accretion takes place far below the Eddington 
rate, and matter can flow unimpeded onto the star since the 
radiation is too weak to exert any kind of decelerating 
influence on the accretion flow. 

In the present study we have dealt principally with the 
most interesting case, for which q z  1; the radiation has 
then a substantial effect on accretion dynamics. The basic 
parameter governing the scale size of the interaction region 
is 

E=l-q>o. (18) 

We consider the case in which the parameters that we have 
determined, x , ~  in ( 15a) and E in ( 18), satisfy the condi- 
tion 

xe,i(EY < 1. (19) 

The left-most inequality here means that the plasma is 
cold, so that its hydrodynamic pressure has little effect on 
the plasma flow. From (17) we then obtain 

If the functions 9 (y) and g(y) here are known, the first of 
Eqs. ( 17) can be easily integrated: 

A complete solution of the entire problem thus requires 
only that (20b) and ( 2 0 ~ )  be solved with the boundary 
condition- 

FIG. 1.  Spatial distribution for ~ = 0 . 1  of the photon energy density (a) 
and plasma flow velocity (b), normalized as in (15) .  

g-0 as y+O. 

Far from the star, where 

Y 4 E  

(i.e., r % r d ~ ) ,  the sole consistent solution of (20) that 
satisfies (22) takes the form 

In this domain, the plasma dynamics are determined by the 
difference between the gravitational force and the pressure 
due to the directed radiative flux. Since the intensity of the 
latter here is essentially constant [ Y  = ( 1 - E) YEdd], these 
competing forces will have the same spatial dependence 
proportional to I/?, and respectively a velocity depen- 
dence proportional to l/r-"2 (23 ) . 

We solved Eqs. (20a)-(20c) numerically, with bound- 
ary conditions (22). The desired solution, which tends to 
the asymptotic values (23), has the following basic prop- 
erties. When E > ~ ~ ~ ~ 0 . 2 8 ,  the function g(y) increases 
monotonically up toy= 1; it becomes nonmonotonic when 
E < E,, (see Fig. 1 ) . Near some critical value y =ycr= rdr,, 
(where rcr is the critical radius) there is a maximum in 
g(y), and furthermore, as the flow approaches the star, the 
directional plasma flow falls off. Here 9 (y) and 9 (y) 
always increase monotonically with y. 

Let us clarify the physical nature of the nonmonotonic 
spatial dependence of the plasma flow velocity. In an op- 
tically dense medium, the decelerating force on the plasma 
flow consists of two parts [see Eq. (9b)l: the pressure force 
due to beaming of the photons and proportional to Sph, 
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and the viscous damping force due to the anisotropic flow 
of the plasma itself, which is proportional to VUp! (and 
which vanishes in a frame of reference comoving with the 
plasma). When the rate of accretion is near the Eddington 
limit (i.e., when E is small enough), the total radiative flux 
2' near the star, which is proportional to ?sPh, starts to 
decrease, gravitation is no longer balanced by radiation 
pressure, and the plasma flow begins to accelerate. Fur- 
thermore, close to the star, the photon energy density rises 
dramatically, and consequently so does the viscous darnp- 
ing force. This leads to a gradual reestablishment of bal- 
ance between the gravitational force and radiation pres- 
sure, and after passing the critical radius rcr, the plasma 
flow starts to decelerate. 

The rise in luminosity and decrease in radiative energy 
density with distance from the star have to do with energy 
and momentum conservation. As the plasma flow slows, 
some fraction of its kinetic energy is converted into pho- 
tons, which in the steady state yields a rise in the radiative 
flux (i.e., the luminosity) with distance from the star. At 
the same time, the momentum transferred to the photons 
increases the inward radial component of the radiative mo- 
mentum flux, and in the presence of strong photon scatter- 
ing, the corresponding component of the momentum flux is 
proportional to the radiative energy density Uph. The fact 
that the radiative flux increases and the energy density 
decreases with distance from the star inevitably leads to 
more and more narrowly beamed radiation, which in turn 
ultimately leads to the free expansion of photons suffi- 
ciently far from the star (see below). 

We now consider the case 

in more detail. We first study the region y-E (i.e., 
r - r d ~ )  far from the star. Renormalizing variables with 

substituting (25) into (20), and retaining leading terms of 
the expansion in the small parameter E, we obtain 

for this region, and the pair of universal equations 

with asymptotic boundary conditions at r(1 [see (23)] 

The asymptotic behavior is different for T> 1: 

The constant in Eq. (28) has been obtained numerically by 
matching to the exact solution. The solution for 6 and ( 
given by (28) also holds when y ) ~  out to y= 1. The var- 
ious asymptotic expansions verify this statement. 

The solution is given to high accuracy for ally by 

On the other hand, the expressions z~ 1 and 9 =: 9 as 
given by (28 ) only hold when y 6 E. When y -- 1, z is given 
by the general equation (20a), and by that time 9 and 9' 
will have begun to diverge appreciably. When q = 1 - E z 1, 
we have according to (28) and (21) 

Under the Eddington accretion conditions (24), therefore, 
Eqs. (20a), (29), and (30), supplemented by (15) and 
(25), account for the spatial distribution of luminosity, 
energy density, photon number density, and the mean rate 
of plasma mass flow. It is clear from these expressions that 
the small quantity E given by (18) is the dominant control 
parameter. The characteristic spatial scale length rcr of the 
interaction region between plasma and radiation, at which 
the plasma flow velocity is a maximum, is thus inversely 
proportional to E: 

As a result, when the total flux I,  of accreting plasma 
approaches the critical value 

the spatial structure of the interaction region extends to 
infinity.3) 

It is also clear from (29) that the flow attains its max- 
imum velocity at r=rcr (3 1 ). Under the conditions given 
by (24), it will then always be much less than the charac- 
teristic velocity V, of (15), the free-fall velocity of matter 
in the star's gravitational field. For r4rcr according to 
(28), the flow velocity V will fall linearly with radius r, 
and will be exceedingly small near the star: 

The luminosity 2 drops off rather abruptly near the 
stellar surface, possibly owing to the influence of small 
terms neglected above. Instead of Eq. (20a), we therefore 
make use of the more general expression (16) and obtain 

According to ( lo),  (15), and (28), we have 
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At the same time, the photon energy density rises faster 
than this: 

This is also approximately how the photon number density 
varies as well [see (30)]. Right at the surface of the star we 
have 

We will determine the constant ah in (37) below. 
On the whole, these features of the solution for the 

plasma flow velocity, luminosity, and photon energy den- 
sity are consistent with the results obtained by ~ i l l e r . '  The 
spatial distributions of the photon number density and of 
the plasma and radiation temperature, however, were pre- 
viously not studied, and we now look into this problem in 
somewhat more detail. 

From Eqs. (9c) and (9d), we have for the dimension- 
less variables x , ~  

where xph= TphrJy. TO evaluate the parameters in Eq. 
(38a), we begin by noting that near the Eddington limit 
( q z  1 ) , the ratio gv /9  -- 3 ~ ~ / 4 t ? ~ ~  will be much less than 
unity in the near zone, where Y>E, and of order unity in the 
far zone, i.e., at y-E. With the foregoing in mind, we 
obtain from (38a) 

Hence, by virtue of the smallness of mp/mi9q, we con- 
clude that the effective photon temperature is essentially 
equal to the electron temperature. Similarly, we find from 
Eq. (38b) that 

In the far zone, ~ S E ,  (23) yields 2/y=~. We will 
show below [see (42)] that Te- 1 k e ~ /  6, and despite the 
presence of the large parameter mi/m- lo3, we always 
have 

1 Te-Til 4 T i -  

This inequality is much more easily satisfied in the 
near zone y- 1, and thus all particle bunches wind up at 
virtually the same temperature: 

The reason is that the photon number density is several 
orders of magnitude higher that that of the electrons (see 
below), so the photon gas is effectively a heat bath for the 
electrons. Moreover, the electrons and ions in the plasma 
also exchange a significant amount of heat, leading to rapid 
redistribution of internal energy between these groups of 
particles. 

We consider now how to determine the radiation tem- 
perature Tph . It can be seen from (6) that it is determined 
by a higher moment of the photon distribution function 
than are Uph and Sph, SO from the standpoint of determin- 
ing the radiation temperature, the hydrodynamic equations 
(7)-(9) do not form a closed set. This has not been an 
important issue thus far, since by virtue of (19) thermal 
effects have been assumed to make only a minor contribu- 
tion to the overall balance of forces. Strictly speaking, find- 
ing the actual value of Tph requires that one solve the full 
set of kinetic equations (4) and (5). But there is one fa- 
vorable circumstance that enables us to find the tempera- 
ture accurately without recourse to the solution of the full 
kinetic equation. 

We first assume that the photons have a Wien distri- 
bution, 

no= exp [ -~k/Tp*~]. (39) 

We then have 

If on the other hand the photons have a Planck distribution 

no= [ exp (;rJ-l]-'P - 

then 

It can easily be shown that the approximate value of T,*, 
given by (39a) will deviate only slightly from the true 
temperature Tph for any reasonable distribution of the iso- 
tropic part of the photon distribution function no over 
energy.4) For example, even in the limiting case in which 
no is a step function in energy (momentum), 

- ( 1 for ck<Tph, 
O- 0 for ck > Tph, 

surely a worst case, the error is at most 25%: 

Finally, kinetic considerations (which lie outside the 
scope of the present paper) show that at the dominant 
energies the distribution most closely resembles (39), so 
that we can assume throughout that Tph =: Tph. This makes 
it possible to study the radiation temperature distribution 
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(and thus the plasma temperature distribution) using the 
solutions obtained above, namely (29) and (30). 

It follows from (30) and (39a), in particular, that 
when ~ ( 1 ,  the common temperature at r--ro of all inter- 
acting particles increases monotonically with r. At r)ro, 
9 (y) z B ( y ) ,  and the temperature tends to the constant 
value T, 

approximately twice as high as the temperature To 
=; Tth(ro) at the neutron star surface. This temperature 
increase is related to the fact that when photons are 
strongly scattered by the moving plasma flow, a portion of 
the kinetic energy of directed plasma motion is trans- 
formed into internal energy of the photon gas. 

Kinetic considerations [see Eq. ( 5 ) ]  show that the 
monotonic increase in radiation temperature with height r 
plays a decisive role in the overall energy balance of the 
interacting radiative and plasma fluxes. As a result of this 
increase, the distribution function for photons of a given 
energy, beginning at some threshold value, rises exponen- 
tially with r (the threshold energy depends on r, however, 
monotonically tending to infinity as r+ co ). The advent of 
a reversed gradient in the distribution function results in 
photons of sufficiently high energy being directed toward 
the neutron star. This effect is enhanced by momentum 
exchange with the infalling plasma flow. It is precisely this 
reverse flux of high-energy photons that reduces the radi- 
ative energy flux 2' near the star's surface [see (34)] at the 
same time that the total photon flux ph naturally remains 
constant ( 1 1 ) . 

To finally find the temperature profile, we see from 
(40) that it is necessary to determine the temperature To 
at the surface of the star. Accreting matter heats the sur- 
face, and since the matter at the stellar surface is quite 
dense, the radiation is rapidly thermalized. Note also that 
radiation near the surface is extremely close to being iso- 
tropic; the photon flux from the surface is strongly scat- 
tered by the accreting plasma into a thin surface layer, and 
essentially all of it is returned to the star's surface, where it 
is then reradiated, and so on. This also facilitates the es- 
tablishment of thermal equilibrium in the surface layer. To 
high accuracy, it can therefore be assumed that the surface 
of the star radiates as a black body. Substituting the Planck 
distribution into (6), we have 

Equations (41) and (36) then yield the final expression for 
the photon temperature at the neutron-star surface, 

where Ma is the mass of the sun. 
Making use of (42) and the definition (15) of 9 and 

9, we obtain the last unknown ah in (37): 

Equations (40), (42), and (43), in conjunction with 
(29) and (30), yield the complete solution of this problem. 
Note that according to (42), the maximum temperature of 
the plasma flow (40) is 

Recall that the present theory holds when ~ y > x ~ , ~ = ~  
[see (19)]. Bearing that constraint in mind, and also the 
fact that the far zone y-E plays an important role in the 
solution obtained above, we assume & to esti- 
mate the maximum temperature. Taking T/ro= 140 
MeV. (M/%) (10 km/ro), we obtain from (44) 

Thus, the characteristic temperatures of x-ray sources un- 
dergoing Eddington accretion of plasma onto a neutron 
star can be as high as 20 keV; they can probably be even 
higher if E is less than (45). In the latter case, how- 
ever, the contribution made by hydrodynamic pressure 
must be taken into account in the overall balance of forces. 
Note that Comptonized x-ray and gamma-ray spectra con- 
sistent with such temperatures have been observed on more 
than one occasion7-in particular, they have recently been 
observed coming from the source at the center of the Milky 

To complete the picture presented by Eddington flow, 
we conclude by addressing the beaming of the radiative 
flux. For qualitative analysis, it is convenient to define two 
characteristic velocities: 

the effective photon transport velocity, and 

the effective photon energy transport velocity. 
In wide-angle scattering, i.e., when the distribution 

function exhibits only weak beaming, we have 
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Equations (4) and (5) are no longer applicable when (48) 
breaks down.5) 

Consider first the region with radius 

Equations (30) and (16) then yield 

i.e., the conditions for strong scattering are satisfied by a 
wide margin. Note in addition that near the surface of the 
star, the stricter inequality w4u4c holds, implying an 
abrupt drop in luminosity while the total number of pho- 
tons remains constant (see above). The ratio of the num- 
ber density of photons to plasma particles is 

Equation (49) makes it clear that in the present setting of 
the problem there are always many more photons than 
electrons. 

Now consider the region with 

in which w z u ;  it is quite difficult then to satisfy (48), 
since VJc is not a terribly small number for a neutron star 
(it is of order 0.4-0.5 ) . The requirement (48) breaks down 
when r/rcr> (c/v,)~. Here this means that an isotropic 
photon distribution becomes a beamed one, i.e., the radia- 
tion is gradually transformed into a narrow flux of photons 
freely traversing an optically thin medium. 

CONCLUSION 

We have used kinetic theory to derive a closed set of 
quasihydrodynamic equations describing the interaction 
between an optically thick plasma flow and a strong radi- 
ation field during rapid accretion onto a neutron star. We 
obtained the steady-state solution for the spherically sym- 
metric equations under conditions in which the energy of 
the accreting plasma flow is entirely converted into gamma 
rays, which then exert a significant back influence on the 
overall dynamics of the plasma flow. 

We have treated in detail the case in which the accre- 
tion rate comes close to its maximum possible value, 
whereupon the luminosity far from the star approaches the 
Eddington limit. We have calculated the magnitude and 
spatial distribution of the fundamental parameters of the 
plasma flow and photon gas (plasma number density, flow 
velocity, photon number and energy density, gamma-ray 
flux, luminosity, and the temperature of all interacting par- 
ticles). It is important to emphasize that all of the results, 
including all numerical values, have been obtained in an 
entirely self-consistent manner, using a single predeter- 
mined parameter E, which characterizes the relative prox- 
imity to the Eddington limit. 
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As a result, we have shown that the characteristic scale 
of the plasma-radiation interaction region is inversely pro- 
portional to E. The photon flux exerts a strong decelerating 
and thermally stabilizing influence on the plasma. All 
groups of interacting particles ultimately wind up at essen- 
tially the same temperature, which rises with distance from 
the star. The temperatures attained far from the star are 
approximately twice as high as those at its surface. The 
temperature also rises with decreasing E, and can reach 20 
keV or more. 

APPENDIX 

We present for the record equations describing the in- 
teraction of radiation with an optically thick plasma and 
generalizing Eqs. (4), (5), (7), and (9) to the nonstation- 
ary case with an arbitrary spatial distribution: 

aNe i ---+ div (N,, ;Ve,J = 0, at 
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3mvei +- Ne( Ti- Te) 
mi 

where to extend the generality, we have included a number 
of terms in these equations that were neglected in (9). 
Here B and E are the magnetic and electric field strengths, 
\I1 is the gravitational potential, R is the frictional force 
between ions and electrons, 2e,i are the electron and ion 
thermal conductivities (tensors in general), Qe,i are addi- 
tional heat sources or sinks (ohmic dissipation, etc.), and 

We have assumed here that even when (8a) holds, if we 
are dealing with a general case lacking spherical symmetry 
[see (8b)], the mean electron and ion velocity vectors V, 
and Vi will frequently fail to coincide. Note that we have 
neglected derivatives with respect to time in the kinetic 
equation for the beamed part of the photon distribution 
function (A2), and likewise in the resultant Eqs. (A4) and 
(A6) for the momenta, since otherwise we would have 
exceeded the assumed accuracy dictated by (3). 

We also draw attention to the fact that according to 
(A6) and (A8) the total force due to radiation pressure on 
electrons, apart from any dependence on the direction of 
the mean electron velocity V, or the photon energy flux 
Sph , always points along the gradient of the photon energy 
density Uph . 

In the general case, the energy conservation law that 
replaces ( 12) takes the form 

 he equations appropriate to the nonstationary case with arbitrary spa- 
tial dependence in presented in the Appendix. 

 ere we assume the hydrodynamic conditions Ie,Jr(l, where 1 , ;  is the 
mean free path of electrons or ions. Under these conditions, the distri- 
bution function of the bulk of the thermal ions and electrons is close to 
Maxwellian, with corresponding temperatures Te,i. 

')Recall that the foregoing solution holds only for ~ y s x , ;  (19). When 
EY S yei, the hydrodynamic pressure of the plasma must be included in 
the overall balance of forces. 

4 ' ~ t  must be borne in mind that the concept of the true photon tempera- 
ture is defined, strictly speaking, only for a Planck distribution. For an 
arbitrary distribution function, the temperature makes sense only as a 
ratio of the appropriate moments [see (6)]. 

5 ) ~ s i n g  Eq. (35) for the plasma number density, it can easily be shown 
that the strong scattering condition (3) and the weak beaming condition 
(48) are equivalent. 
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