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The Abrikosov-Ryzhkin formulation of the problem of a particle in a one-dimensional 
random potential is used to obtain closed representations for the averaged physical quantities 
in the form of functional integrals, which are calculated exactly without using any 
expansions. Using these integrals, expressions are obtained for multipoint correlators of 
higher powers of the density, which are then used to find the mean-square dispersion in the size 
of a localized wave function and the mean value of the unattenuated current in a 
mesoscopic ring with an arbitrary magnetic flux. (In the limit of small fields this problem 
was recently solved by 0. N. ~ o r o k h o v . ~ )  The case of a finite correlation length for 
the random potential is also considered. 

1. INTRODUCTION AND FORMULATION OF THE MODEL &,(XI =EnY,(x) 

The fundamental macroscopic quantum phenomena of 
Anderson localization has been studied in most detail for 
the case of one-dimensional systems, for which there exist 
exact results of very general character. For one- 
dimensional systems, all the eigenfunctions of the Hamil- 
tonian 

with a random potential U(x) are localized wave packets 
(detailed expositions of the techniques required for this 
problem, as well as rigorous formulations and a bibliogra- 
phy, can be found in Ref. 1 ). This assertion is also valid in 
the high-energy limit discussed in this paper. 

Quantities that can be computed directly are averages 
over ensembles of the potentials U(x) . The measure for the 
averaging process is recovered from the spatial correlation 
properties present in the distribution of the realizations; in 
the simplest case, i.e., potentials of "white noise" type, it 
has the form 

Here ( - L,L) is the interval on the real line occupied by 
the system. ~ n d e r s o n ~  showed that one choice of a crite- 
rion for localization of a state with energy E is a nonzero 
value for the density-density correlator in the thermody- 
namic limit: 

pE(x,xl) = lim ( E ~(E-E.) Iq,(x) 121yn(x') 1 2 )  
L-w n 

E 
= lim lim - ( J G ( x , x ' I E + ~ E ) ~ ~ ) ,  

L - m  E - + o T  

(3) 

where Y,(x) are eigenfunctions of 9: 

and G(x,xt ( E+ ie) is the resolvent of 9: 

In fact, the wave functions of the continuous spectrum at 
each point are cc l / ~ ' " ,  while the sum over n gives a 
factor L, so that pE(x,x1 ) - 1/L + 0. For a potential that is 
spatially uniform on the average the probability of observ- 
ing a state localized in the neighborhood of a given point is 
a: 1/L; however, in this case q,(x) itself does not depend 
on L in the limit L +  oo, so that only normalizable states 
can contribute to pE(x,xP). [It is understood that the 
boundary co@itions at the ends of the interval ( - L,L) 
ensure that 2Y is Hermitian.] 

Two approaches have been developed to compute 
quantities of the type (3). The first, the so-called "phase 
formalism," in principle allows us to represent all possible 
averages with respect to the ensemble (2) for arbitrary 
energies E (Refs. 3 and 4) in the form of solutions of 
partial differential equations of the Fokker-Planck type (a 
review can be found in Ref. 1 ). However, it gives explicit 
answers only in a regime that is quasiclassical from the 
kinetic point of view, i.e., when 

In this regime the second approach5 can be used: isolation 
and summation of infrared-singular terms in a perturbation 
series with respect to the parameter (5) (see also the re- 
view in Ref. 6). The direct implementation of such a pro- 
gram requires rather refined mathematical constructions 
and lengthy calculations. 

In Refs. 7 and 8 it was noted that the sum of the 
leading terms in perturbation theory with respect to the 
potential U(x) is equivalent to a certain average for a spin- 
1/2 particle in a random magnetic field with Gaussian sta- 
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tistics. (In essence, this representation was used in Ref. 9). 
In this paper we will derive this spin model by a somewhat 
more transparent argument. 

We apply the following boundary conditions to the 
wave function of a particle on the segment ( - L, L)  : 

The Green's function can be constructed in terms of 
the solutions u(x), G(x) of the Cauchy problem for the 
equation 

Here W is the Wronskian of the solutions u and ii: 

All the physical quantities of interest to us can be written 
in terms of only one solution, for instance u(x) (see be- 
low). For the function u(x) it is natural to define "plane- 
wave components" vl (x) and v2(x) : 

so that vl =0 (v2=O) for the case of a plane wave traveling 
from left to right (right to left). Equation (7) is equivalent 
to the following first-order matrix equation: 

and the reduction 

From (10) it is clear that the derivatives of vl and v2 with 
respect to x are small when U(x) is small, that is vl (x) and 
v2(x) vary slowly in comparison with exp( + ikx). Let us 
rewrite ( 10) in a more compact notation: 

where 

and d=d/2 ,  S* = (#+iuY)/2 are the ordinary spin op- 
erators; here and in what follows, the dot denotes differ- 
entiation with respect to x. The formal solution to Eq. ( 12) 
can be written 

where the symbol T implies "time" ordering along the in- 
terval ( - L, L)  . By representing the T-exponential ( 14) in 
the form of a series with respect to the fields q,(t), f * (t), 
we find that averaging of any functional of the components 
vI(x), v2(x) with respect to g U ( x )  leads to expressions 
that are combinations of integrals over certain intervals of 
the correlation functions for the fields q,(t), f*  (t): 

I dt dtl(f-(t)[-(t;)). (15) 

In our case the last three kinds of integrals will be integrals 
over rapidly oscillating functions, whose values do not in- 
crease as the interval increases and which decrease as k 
increases. However, the first two kinds of integrals corre- 
spond to infrared-singular contributions which grow lin- 
early with the length of the integration interval. The iden- 
tification of those terms in the perturbation series that are 
nonzero in the thermodynamic limit thus reduces to ne- 
glecting the correlators ([+[+), (f-[-), and (q,,ff ), 
which is equivalent to the assumptions of statistical inde- 
pendence of the fields q, and [* and phase invariance of the 
averaging weight with respect to g[+. For "white noise" 
potentials the corresponding integration measure with re- 
spect to the fields q, and [* has the form 

where 

In what follows we will consider the parameter a to be 
arbitrary (it corresponds to a random jump in the phase 
and, as we will verify below, nothing depends on its specific 
value in the thermodynamic limit). 

Expressions ( 14) and ( 16) were first proposed in Ref. 
7 for the problem of a particle on a line in a random 
potential. Our derivation, which does not turn on the pres- 
ence of a Fermi level, leads us to assert that the infrared 
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behavior of this Abrikosov-Ryzhkin model has universal 
features. The model can easily be generalized to a potential 
with finite correlation length and can be used to study the 
spectral properties of operators that are not in a literal 
sense random (see Conclusion). 

The terms that were discarded in deriving Eqs. (14) 
and ( 16) are smaller by a factor - l / (kL) than those we 
retain. Consequently, this model is also applicable to me- 
soscopic systems (see the review in Ref. 5 ) ,  since for large 
k the inequality l/kL 4 1 is compatible with I) L, where I 
is the mean free path. 

Abrikosov et al. calculated the conductivity of a one- 
dimensional metal using the relations ( 14) and ( 16). Un- 
fortunately, they resorted once more to perturbation 
methods, whose awkward and difficult-to-visualize con- 
structions were not appropriate given the simplicity of the 
original model. In this paper we will show that the 
Abrikosov-Ryzhkin model is exactly solvable using the 
method of functional integration; we will calculate the 
multipoint correlators of higher powers of the density, and 
find the mean-square dispersion of the size of a localized 
wave function and the dependence of the localization 
length on the correlation length of the potential. 

As a physical application of the method we calculate 
the average absolute value of the unattenuated current 
flowing in a mesoscopic loop with an arbitrary magnetic 
flux (in the limit of small this problem was solved 
recently9). 

2. FUNCTIONAL REPRESENTATION OF AVERAGES OF a x )  

Explicit calculation of the function fi(x) using Eqs. 
(12) and (14) in the form of a functional of the fields 
q(x) ,  Sf (x) is impossible. Exactly the same problem 
arises when we attempt to write down a closed functional 
representation for the partition function of a quantum fer- 
romagnet. This latter problem was solved in Refs. 10-12, 
and the methods described in these papers will be used here 
as well. 

The "timeM-ordered exponential operator F ( x ,  - L)  
is defined by the equation 

and the initial condition 

Let us consider the following operator given in the form of 
a product of ordinary matrix exponentials: 

y ( x ,  - L) =exp [s+$- (x) ] exp i? ( IIL pdt) 

where $* (x), p(x) are certain new fields. Here 9 satisfies 
the equation 

and the last factor in (20) satisfies the initial condition 

Thus, by transforming in the functional integral over the 
measure ( 16) according to 

We reduce the "timeM-ordered exponential Y ( x ,  - L) to 
the form (20): 

allowing us to construct an explicit functional representa- 
tion for any averaged quantity [a parametrization of fields 
with values in the group SL(2,C) analogous to (23), was 
also used in Ref. 131. An important feature of this calcu- 
lation is that it is sufficient to specify the variable change 
(22) in only one direction in order to compute the Jaco- 
bian: from (+,Sf) to (p,$*). The Jacobian f[p,$*]: 

depends on regularization of the mapping (23), and on 
whether we impose initial or boundary value conditions on 
the field $-. Ordinary periodic boundary conditions make 
the transformation (23) noninvertible. Following Refs. 11 
and 12, we will assume that the field *-(x) is subject to 
the initial condition: 

however, in contrast to ( 11) and ( 12), we will choose the 
specific value of qo depending on the situation. 

The choice of a regularization of the mapping (23) is 
determined by the physical meaning of the model. The 
6-function correlator (2) is the limiting value of a symmet- 
ric correlation function with a finite correlation length. For 
any method used to define the 6-function, the limiting 
value of the correlators 

will equal a/4, which agrees with the definition of the 
step-function B(x) : 
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The discretization of the transformation (23) that ensures 
that Eq. (27) is satisfied has the following form 
(f,'=f*(tn), pn=p(tn) ,..., n=1, ..., M, tn=-L+2nL/ 
M, h=2L/M-.O, M-. 00): 

The differential of the mapping (29) is a lower-triangular 
matrix, and its determinant-the Jacobian /-equals the 
product of the diagonal elements: 

Substituting the variable change (23) and the Jacobian 
(25), (30) into the measure ( 16), we obtain the averaging 
weight over the fields (p,$*) in the form 

Here N is a normalization factor that depends on L and a. 
In calculating the Jacobian (25) we will treat (P,$*) 

and (#,f*) as sets of independent complex variables; i.e., 
as different systems of coordinates in the space %' 3M of field 
configurations. However, the condition 

initially imposed in the model determines a surface Z in 
%3M, over which the form Qcp A 9J+ A 9J- or 
-@pA9$+ A 9 $ -  is integrated. Equation (32) for Z is 
implicit in the variables (p,$*); however, if we integrate a 
holomorphic function in the space %'3M, according to the 
Cauchy-Poincarh theorem this surface of integration can 
be deformed into the region of convergence in an arbitrary 
way. There exists a continuous family of surfaces, includ- 
ing Z and the "standard" surface 2': 

which lies entirely in the region of "perturbative" conver- 
gence (i.e., to each order of perturbation theory) of the 
integral over the measure (31) (the explicit form of this 
homotopy is given in Ref. 10). Thus, by treating the func- 
tional integral as a sum of a perturbation series,I4 we can 
replace the surface of integration Z by the standard surface 
2'. 

However, in order for the transformation from 8 to 8' 
to be possible it is necessary that the quantity to be aver- 
aged (and not just the action) be represented in a form 
that admits analytic continuation to the surface 8. Con- 

structively this implies that no definition of a physical 
quantity in terms of matrix elements of Y ( x ,  - L)  should 
require the use of complex conjugation. 

3. EXPRESSION FOR THE DENSITY-DENSITY CORRELATOR 
IN TERMS OF THE FUNCTION i ( x )  

Equation (3) expresses the correlator pE(x,xt) in 
terms of the part of the Green's function G(x,x' I E+i&) 
that is singular as E-, +O. In the representation (8), this 
singularity arises due to the vanishing Wronskian W(E) 
on the real axis. Neglecting the quantity E in the numerator 
of ( 18) and substituting 

in the denominator, we find 

The Wronskian W(E) does not depend on x, and, conse- 
quently, we can set x =  L in (8): 

In the product with S( W) =S[u( L)], the solution C(x) is 
proportional to u(x), with a coefficient of proportionality 
determined by condition (7). Thus, for an arbitrary func- 
tional F[G(x)] we have the equation 

The quantity W' (E) , according to (36), can be written in 
terms of the derivative of the solution u(x) with respect to 
energy E: 

The function g(x) =au(x)/aE satisfies the equation 

and the initial condition 

The substitution g(x) =q(x) u (x) leads to a first-order lin- 
ear equation for g ' ( ~ ) ;  solving it we obtain 

and 

Thus, the correlator pE(x,x') is expressed in terms of 
the solution u (x) of the Cauchy problem (7) in the fol- 
lowing way: 
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However, in the high-energy limit (5) we can get rid of the 
6-function and obtain a simple expression for pE(x,xf ) in 
terms of the slowly varying amplitudes V ~ , ~ ( X ) .  Actually, in 
the neighborhood of any given point xo the function u(x) 
can be written in the form 

where the envelope usl(x) and the phase 6 vary slowly on 
a scale - l/k. Let us average expression (43) over an in- 
terval AL of positions at the right edge of our segment 
( -  L,L): 

(Here we have introduced the standard notation 1 for the 
localization length.) In the thermodynamic limit PE(x,xf) 
and pE(x,xf) coincide. On the other hand, by construction 
the value of the function u(x) at a given point does not 
depend on the position of the left-hand edge L. The inte- 
gral in the denominator (43) is determined only by the 
envelope uSl(x), and it varies by a relatively small amount 
as L varies from L to L+AL. The average (45) is impor- 
tant only for the factor S[u(L)]/uf(L): 

since condition (46) is equivalent to the fact that us,(x) 
can be considered to be constant over the averaging inter- 
val. We can obtain an analogous relation between u;/(x) 
and u2(x), specifically: 

Substituting the expression for u(x) into (42)-(48) in 
terms of the amplitude O(x), neglecting contributions that 
are small as k-+ a, and retaining only the "resonant" 
terms in the denominator of Eq. (43), we obtain 

It can be verified that the discarded "nonresonant" terms 
contain the oscillatory factors exp[& 2ik(x -xf )], and 
therefore give contributions that are exponentially small 
with respect to aL after averaging over the random field. 
For this reason we can neglect them. 

4. FUNCTIONAL INTEGRALS FOR THE DENSITY-DENSITY 
CORRELATORS AND THEIR EVALUATION 

Expression (49) has a form that admits analytic con- 
tinuation with respect to the functions u ~ , ~ ( x )  to the sur- 
face v, = (v2)*. For simplicity we will set exp(ikL) = 1 (in 
the thermodynamic limit this is not a restriction). Then 
the initial condition for O(z) has the form 

In order to determine O(x), we substitute the evolution 
operator Y ( x ,  - L )  in the form (20) into ( 14), in this 
case choosing the value & to be 1: 

As a result we obtain 

and the expression for pE(x,xf ) is 

where the average over the measure gp9 $+ 9$- is car- +(1+4~)(27]-ip)$+$-] 
ried out with the weights (3 1 ). In order to calculate this 
functional integral, we use an approach analogous to the 
so-called "bosonization" in the field theory models of Ref. 

+! lL dxp 
2 -L 

15. Using the identity 

and the gauge transformation 

$*(XI =x* exp + ( l + Q )  dt(271-ip)], (55) I JIL 
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we get rid of the nonlinear terms in the action. The Jaco- 5( - L)  =O, 
bian of the rotation (55), taking into account the regular- 
ization (29), equals 9 p 9  9 = const 9 p 9 5 ,  

( J L  ( . (56) after which the Gaussian 9 p integration is easily carried ,fR=const.exp -- I out, and we are led to an expression for the measure: 
The fields 9 and p enter into the averaged expression (53) 
only in the combination const 9 5 9 ~ ~ 9 ~ -  exp(-' JL dxi2 

p y  2a -L 
- [2(1+Q)$-4iap]dt, 
-L 

d x x f ~ -  -- 
which we naturally treat as a new variable of integration: 2 

&=2(1 +4a)rl-4iap, and for the average quantities: 

m e  equality is understood to hold in the limit (5).] The 
initial condition for the field X- (x) following from (5 1 ) : 

implies that X -  (x) contains both a fluctuating part XT (x) 
and a regular part: 

The component XT (x) does not contribute to pE(x,xt), 
since (59) does not contain the conjugate field. Thus, there 
remains only the average with respect to the field f (x) 
with the weight: 

The normalization constant N' is determined by terms that 
are quadratic in &: 

and the factor exp(-aL/4) ensures that the equation 
(1) = 1 is satisfied when we average over the total measure 
(62). According to what we have said above, the correla- 
tor P~(x,x') can be represented in the form of an integral 
over L85 in the following way: 

We are led to this latter expression once we have made a 
change of variables: 

and have isolated the integrals over the quantities g(t) at 
the end points t= L and t= - L in explicit form. The last 
path integral is a standard Feynmann-Kac integral,I6 and 
equals the following matrix element: 

xexp[- (x+L)H] (66) 

with the Hamiltonian 
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The function dn grows as 5+ a,, and therefore we are not 
permitted to write it in the form of a linear superposition of 
eigenfunctions of H: 

(fvlf,A=&(v-v'). 

However, explicit solution of the corresponding evolution 
equation leads to the following asymptotic relation: 

Here KJz) is the standard notation for the modified Bessel 
function. The function K~ (2/ae-tn)e-( is already ex- 
panded with regard to the complete set (68). Thus, the 
correlator pE(x,x') equals 

aa aJx-x')  a d w s h m  
=zkexp(- 8 )lo c h 3 m  

Equation (70), to within the redefinition a/2 = I-  ', coin- 
cides with known results of Refs. 1 and 6. Using this 
method, we also can calculate multipoint correlators of 
higher powers of the density, e.g., (xl < x2 < ... <x2,, 
m> 1): 
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2m-1 ~ ( U ( X ~ ~ - X I  1) Jom Jow 
Xexp - 8 j= n 1 d ~ ~ e x p ( - $ h ~ ) ~ , ~ h 2 ~ ~ ~ f i q )  

Here Axj=xj+,-xj and the functions p(4)(v) and 
Q ( ~ )  ( v,vl ) are defined as follows: 

The expression for pfP'1)(xl,x2) is obtained from (71) by 
formally replacing the product over s from 1 to 2m-2 by 
unity and setting m = 1 in the remaining integral. 

As one possible application of Eqs. (71) and (72) we 
consider the dispersion of the size of localized wave func- 
tions. It is clear from (71) that the remote exponential 
asymptotic behavior of the probability density does not 
fluctuate. On the other hand, it is natural to use some 
integral characteristic to define the size of the packet RE, 
e.g.: 

The factor 4/3 cancels out the average value of the rapidly 
oscillating factor sin4(kx+6) [see (44)]. Then 

In Eq. (75), p(E) denotes the density of states in the 
region of large E: 

The mean square value of RE1 is determined by the cor- 
relation function ( I $(x) $(XI) 1 4, : 

Substituting the explicit expression for p21) ( x ' j )  into this 
expression, 

(2 1) 
a(x-x') 

ITa3 ( ) ~ ~ ~ d v e x p ( - $  pE ' (x',x) =- exp - 
576 

and calculating the integrals over dx' and dv, we obtain 

Together with (75), this gives the value of the mean square 
dispersion of the quantity RE1: 

5. THE AVERAGE CURRENT IN A ONE-DIMENSIONAL 
MESOSCOPIC RING WITH MAGNETIC FLUX @ 

Let us consider a one-dimensional metallic ring in a 
transverse magnetic field. The average value of the current 
operator for a single electron with respect to the stationary 
state in an arbitrary potential becomes nonzero, a T-odd 
term appears in the energy, and the Fermi surfaces for the 
left- and right-hand directions of average velocity are 
found to be shifted with respect to one other. As a result, 
an unattenuated current will flow around the ring in the 
ground state." The arguments of Refs. 18 and 9 advanced 
the idea that the total current in the ring is of order the 
average current I transported by a single electronic state at 
the Fermi level. We will assume that the size of the ring 2L 
is comparable to the mean free path. In this case, effects of 
localization do not completely suppress I; however, they 
make the dependence of I on magnetic field very nontrivial 
(see below). (The case of ordered nonuniform conductors 
was treated in Ref. 19.) 

There is a gauge in which the wave function of an 
electron in a ring with magnetic flux @ is subject to the 
boundary condition 

$( L)  =exp(2~i@)$(- L), (81) 

while the Hamiltonian, as before, has the form ( 1). The 
average absolute value of the current transported by a state 
with energy E in the limit (5) can be written in the 
f ~ r m ~ O > ~ :  

(here h = c = e = 1, so that the magnetic flux quantum 
equals unity). Condition (8 1 ) is nonlocal, and therefore 
Eq. (82) for I cannot be rewritten in terms of the functions 
of the form u(x), u(x) given in the previous paragraph. 
However, as was shown in Ref. 9, I can be expressed di- 
rectly in terms of elements of the 9- matrix (14), for 
which, strictly speaking, we also have a functional repre- 
sentation. 

The fact is, by construction the matrix 9- 
r 9-( - L, L)  satisfies the relations 

d f l d = ~ - ' ,  det 9-= 1, (83) 
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and consequently can be parametrized in the following 
way: 

ch rexp(ia,) sh rexp(i&) 
7= ( 

sh rexp ( - i&) ch rexp ( - ia,) 

where I?, a,, and /3, are slowly varying real functions of L. 
The mapping of the space of initial data at the point 
x= - L for Eq. (7) into the space of solutions at the point 
x= L in the basis u ' i iku  is carried out by the transfer 
matrix T: 

ch rexp[i(a,+kL)] sh rexp(i&) 

sh rexp ( - iS,) ch rexp[-i(a,+kL)] 
(85) 

Condition (81) is equivalent to the matrix T having an 
eigenvalue eie with 8=2&, that is, 

The latter equation determines eigenvalues with energy 
E=kZ, and according to Eq. (82) we have for jn 

sin 8 2 s(E-E.) I jnl= 2 s(E-E.) I 
n n 

Proceeding as in the previous section, we can get rid of the 
6-function by averaging over a small range AL of possible 
lengths L ( l/k( AL ( I )  : 

7Tk 
I= (- S(T(E) -cos e )  1 sin el 

L ) 

= 1; - sin 8 ) - j - ( J ~ m d p e x P ~ - p 2 ( s h 2 ~  

It is important the quantity sinh2 r can be expressed in 
terms of elements of the matrix T in a form that admits 
analytic continuation from the surface 2: 

Here, as usual, the letter t implies transposition (without 
complex conjugation!). The simplest way to express sinh2r 
in terms of the fields p,$* is to choose the zero initial 
condition for the field $-: 

+-(- L)=O. (90) 

In this case, after substituting (20) into (89) we obtain 

The right-hand portion of (9 1 ) is bilinear in the fields 
$*, but is nonlocal. Therefore, rather than carrying out the 
integration with respect to 9 $ * ,  it is convenient to trans- 
form exp( -p2sinh2 r )  into an integral that involves linear 
combinations of the $*: 

k sin 8 
dp exp( -p2 sin2 8)  

x (exP(--p2$-( L )  I:L dt$+ (t) 

k sin 9 
d~dflex~(-p~sin~8--Jz1~) 

Repeating steps (54) to (56) of the previous paragraph, 
introducing a variable g(t) analogous to (57): 

and carrying out the Gaussian integration with respect to 
9 p  and 9 x ,  we are led to the following expression for I: 

a L  k 1 
~ = e ~ ~ ( - ~ )  lj: sin 81-p N' J:m dp (dzdfl 

( I L  dx(~+a2p21z12e-E) xexp -- 
2a -L 

We now change the variable of integration from p to a new 
variable a: 

a2p21z1 '=e-", (95) 

and shift the path c(x) by -a: 

Then after integrating over dzdz* we obtain a representa- 
tion for I in the form of a matrix element: 
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where H is defined by Eq. (67), and the functions Y1,2(c) 
equal 

and 

Expanding in the complete set (68) of eigenfunctions of H, 
and using the integral representation for K2,(y), we are 
led to the following expression for the current I: 

(here I-' = a/2). As sin2 8 varies from 0 to 1, I increases 
monotonically from 0 to I,,. When this expression is 
expanded to first order in 8 as 8+0, we recover the results 
of Ref. 9. Note, however, that the parameter I/L deter- 
mines not only the absolute value of I but also the depen- 
dence of I on magnetic field: 

which in principle allows us to determine NL from the 
shape of the experimental curve I (8) .  

6. CONCLUSION 

If the random potential U(x) has a small but finite 
correlation length x-': 

( U ( x ) ~ ( x ' ) ) = $  Dx exp(-xlx-x'I ), (101) 

so that we have 14x1 but k/x- 1, in the limit of large 
energies its influence is taken into account by simply renor- 
malizing the parameter a ,  or, what is the same thing, the 
localization length I: 

Actually, the correlator ( 101) corresponds to the av- 
eraging measure with respect to the fields c+ [see (13)l: 

After "bosonization" and transforming to the variable 6, 
we are led to a certain effective action, which contains 
terms with the same number of derivatives of the field ( as 
the terms involving derivatives of kf that appear in ( 103). 

Since the unperturbed problem contains a single parameter 
with dimensions of length, i.e., I, the contributions from 
these "non-Markovian" terms to the various correlators 
will be suppressed by the corresponding powers of the 
quantity (XI)-', and we may neglect them. 

The variable a' appearing in (64) and (65) can be 
treated as a global order parameter which characterizes the 
phenomenon of localization. Actually, in view of Eqs. (64) 
and (65), the nonzero value of the correlator pE(x,xl) in 
the thermodynamic limit is a consequence of 

0' 1 
lim -=->O. 
L - w ~ L  2 

(104) 

On the other hand, the quantity A=exp(-a') is associ- 
ated with the norm of the wave function, so that inequality 
( 104) corresponds to exponential growth of the solutions 
to Q. (7). 

In conclusion, we note that the infrared-singular terms 
in the perturbation series, which determine the behavior of 
the wave function at large distances, depend only on cer- 
tain average characteristics of the potential U(x). In par- 
ticular, if the quantity 

x+A 
b~(x ,d )  = dx' exp[ik(x-x')] U(x) U(xl) (105) 

ceases to depend on x starting with a certain A such that 
k-'4A(l, the properties of the wave function in this po- 
tential in the thermodynamic limit can be studied using the 
Abrikosov-Ryzhkin model ( 14)-( 16) with effective pa- 
rameters a and a. 

We note that use of methods analogous to those de- 
scribed here can lead to explicit functional representations 
for the average of any combination of Green's functions 
over the ensemble (2) for arbitrary energies E.~ '  Unfortu- 
nately, effective methods for calculating the resulting path 
integrals have been found only in the simplest cases. 

7. ACKNOWLEDGMENTS 

I am grateful to P. G. Sil'vesterov, V. V. Sokolov, I. B. 
Khriplovich, and M. V. Chertkov for a multitude of stim- 
ulating discussions, and to 0 .  P. Sushkov and B. V. 
Chirikov for useful questions and advice. I would like to 
thank A. Gamba and M. Martinelli for the warm reception 
they gave me in Milan University where an important part 
of this work was done, and M. Martinelli once more for 
one very valuable remark. I am grateful to the Soros Fund 
for financial support of this work. 

'I.  M. Lifshits, S. A. Gredescul, and L. A. Pastur, Introduction to the 
Theory of Disordered Systems (in Russian), Nauka, Moscow, 1982. 

'P. Anderson, Phys. Rev. 109, 1492 (1958). 
'B. I. Halperin, Phys. Rev. 139A, 104 (1965). 
4 ~ .  L. Frish and S. R. Lloyd, Phys. Rev. 120, 1179 ( 1958). 
'v. L. Berezinskii, Zh. Eksp. Teor. Fiz. 65, 125 (1973). 
6 ~ .  A. Gogolin, Phys. Rept. 86, 1 (1982). 
'A. A. Abrikosov and I. A. Ryzhkin, Zh. Eksp. Teor. Fiz. 71, 1204 

(1976) [Sov. Phys. JETP 44, 630 (1976)l. 
'A. A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 146 (1978). 
90. N. Dorokhov, Zh. Eksp. Teor. Fiz. 101, 966 (1992) [Sov. Phys. 
JETP 74, 518 (1992)J. 

1°phys. Lett. 114A, 99 ( 1986). 

11 08 JETP 76 (6), June 1993 I. V. Kolokolov 1108 



"I. V. Kolokolov and E. V. Podivilov, Zh. Eksp. Teor. Fiz. 95, 211 I'M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett. 96A, 365 (1983). 
(1989) [Sov. Phys. JETP 68, 119 (1989)l. "H.-F. Cheung and F. K. Riedel, Phys. Rev. B 40, 9498 (1989). 

"I. V. Kolokolov, Ann. Phys. (NY) 202, 165 (1990). 1 9 ~ .  M. Serebrvanii and V. D. Skarzhinskii, Proc. P. N. Lebedev Inst. of 
"A- Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. Phys., Russ& Acad. sci. (FIAN), Miscow (in Russian) lm, 186 

Shatashvili, Intl. J. of Mod. Phys. (NY) 5A, 2495 (1990). 
"v. N. Popov, Functional Integrals in Quantum Field Theory and Sta- (1989). 

tktical Physics (in Russian). Moscow: Atomizdat, 1976. "N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961). 

1 5 ~ .  M. Polvakov and P. B. Wiemnann, Phys. Lett. 131B, 121 (1983). *'I. V. Kolokolov, Proc. Milan Univ. Seminar, Milan, Italy, 1992. 
1 6 ~ .  P. FeGmann and A. B. ~ i b b s ,  Quantum Mechanics and Path Znte- 

gmls (McGraw-Hill Book Co., New York, 1965). Translated by Frank J. Crowne 

1109 JETP 76 (6), June 1993 I. V. Kolokolov 1109 


