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A study is made of transverse waves propagating through a sequence of alternate metal and 
dielectric layers with respectively strong and zero spatial dispersion. A simple proof of 
the unimodular nature of the transformation matrix is given. The matrix elements are 
calculated for electrons reflected from the boundary specularly, diffusely, or specularly 
at one boundary and diffusively at the other. It is shown that the properties of the superlattice 
are determined not as much by the purity of the metal as by interface processes and by 
the very fact that the motion of the electrons is restricted along the wave propagation direction. 

The discovery of the giant magnetoresistance effect in 
multilayered Fe/Cr films1 stimulated investigation of ki- 
netic effects in metallic superlattices. While the early re- 
search efforts naturally concentrated on analyzing the role 
of magnetic interactions, it did not take long to realize that 
the structure of a film-and particularly of its 
interface(s)-also has a marked influence on the magni- 
tude of magnetoresistance.2 This seems to indicate that a 
significant role may be played by bulk layer properties as 
well as by those interface processes that have no direct 
relevance to magnetic interactions and are common to 
magnetic and nonmagnetic superlattices. Unfortunately, 
the relation between these factors and the electrodynamic 
properties of the film is not yet fully understood, not even 
for nonmagnetic structures, so it requires further effort to 
obtain better insight into the phenomenon. 

In this paper we investigate the wave spectrum and 
calculate the surface impedance of a periodic structure 
formed by alternating nonmagnetic metal and dielectric 
layers. It is assumed that the magnetic field is zero and that 
the electron mean free path is such that in a bulk metal 
sample the anomalous skin effect would be observed. Un- 
der these conditions the spectrum is largely determined by 
scattering at the boundaries of a metal layer, and it should 
be realized that these boundaries may differ in their prop- 
erties because of the specifics of the superlattice growth 
process. Since the electron is restricted to a single layer in 

and the polarization index will be dropped. 
To find the spectrum of such waves it is convenient to 

employ the transfer matrix m (Ref. 3) which relates the 
field E and its derivative E' = aE/az at one end of a certain 
interval (say, O<z < d)  to their counterparts at the other: 

Here ma and mb are the transfer matrices for metal and 
dielectric layers, respectively (m= mpzb). Note that these 
matrices are unimodular: this can be deduced from the 
reciprocity theorem of Ref. 4 which is essentially a conse- 
quence of the symmetry of kinetic coefficients. A direct 
proof of the unimodular nature of the transfer matrices is 
obtained in the next section in connection with the theory. 

By Floquet's theorem,3 

Substituting this into ( 1 ) and noting that Ilmll= 1, we ob- 
tain the familiar expression for determining the Bloch wave 
vector Q= Q' + iQ": 

cos ~ d = i  (m11+m22). (2) 

its motion, calculations are relatively simple and the final For a superlattice occupying the half-space z)0 the 
results quite manageable. surface impedance is 

1. PROBLEM FORMULATION 

We direct the z axis along the normal to the interface 
planes and define the metal and dielectric layers by the 
respective conditions nd<z < nd+a and -nd+a<z < nd 
+a+ b, where a(b) is the thickness of a metal (dielectric) 
layer, d=a+b is the period of the structure, and n an 
integer. Suppose the superlattice carries a z-propagating 
wave whose electric field E(z,t) ( t  being the time) is di- 
rected along the x axis; the time variation will be taken in 
the form 

taking that solution to (2) for which Q" > 0. 
For a dielectric layer the transfer matrix is given by3 

where gem is the vector of the electromagnetic wave in the 
dielectric. Thus we see that the problem reduces to that of 
finding the matrix ma. 
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2. TRANSFER MATRIX FOR A METAL LAYER m 1 1 m 1 

Consider a metal layer O<z<a. The spatial depen- A I , = - :  [ N = O  2 ( 1 - 2 6 ~ 0 ) ~ +  N,N'=O 2 ( I - ~ ~ N O )  

dence of the electric field in the layer is found from the 1 
equation PNN~ 

X 1 - - S N t o  - ( 2 ) ANANI + "']' 
8~ 41riw 
- g + 7 ' = 0 ,  

with the current density 

Expanding E ( z )  in a Fourier series 

we find 

From ( l l ) ,  

singling out the term N'=N in the sum over N t  and de- The elements of the matrices A and ma are not indepen- 

noting dent. The symmetry of the kinetic coefficients implies that 
K(z ,  z ' )  =K(z' ,  z )  (cf. Ref. 5, 4 103) and hence 

41riw PNN* = PNIN With this knowledge, it is readily shown that 
PNN~ =T ( 1 - S N N ~  )KNN~ , ( 9 )  in the series for A12 and Az1 the terms of the same order 

differ only in sign, so that A,,= -A,,  and 

we rewrite Eq. (8) as Ilmall= -A12/A21 = 1 .  Thus the unimodularity of the trans- 
formation matrix follows from the symmetry of kinetic 

m 

( 10) 
N1=O 

Iterating Eq. (10)  now yields EN in series form which we 
must substitute into ( 6 )  to obtain E(0)  and E(a) .  The 
result may be written as 

coefficients. 
The relation between All  and Az2 may be of any form, 

but if KNN* = ( - l ) N + N ' ~ N N t  then Az2= - A l 1 .  
The Fourier transform of the current density is com- 

monly written in the form 

where uN=u(qN)  is the bulk conductivity and ONN* the 
surface conductivity of the metal. Comparing (7) ,  (9) ,  and 
( 14) we obtain 

- 
where the elements of the matrix A are given by the ex- 
pansions As is well known, 
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where 60=c(2rw~o)-"2 and 6 are the skin depths in the 
normal and anomalous skin effect regimes, respectively; 
63 -6; I, 1 is the mean free path, and a. the bulk conduc- 
tivity of the metal when in a uniform field. To calculate 
ONN~ it is necessary to specify boundary conditions for the 
electron distribution function. In the present study the in- 
tegral boundary conditions6 are replaced-admittedly at 
the expense of consistency-by the simpler Fuchs condi- 
tions. It is assumed, namely, that the electrons are scattered 
from the boundaries either purely specularly or purely dif- 
fusely, or else specularly from the plane z=0 and diffusely 
from the plane z=a. Even though in a somewhat simplistic 
fashion, these boundary conditions make it possible to an- 
alyze the role of imperfect boundaries-including their 
possible dissimilarity. It is assumed that spatial dispersion 
is strong (i.e., So&S( I) and that the electronic spectrum is 
parabolic and isotropic. 

Within these approximations the calculation of the sur- 
face conductivity poses no problems of principle and may 
be carried out by standard methods (see Refs. 6-8 for a 
discussion and references), so that in what follows we sum- 
marize the results without presenting details. 

When the electrons are reflected specularly from both 
boundaries of the layer, then the surface conductivity is 
zero. For diffuse reflection, 

where the function #iN, (x) is given by 

For the case where the electrons are reflected specularly 
from the plane z=0 and diffusely from the plane z=a, 

where 

Note that A22#-Al in this last case. 
Although Eqs. ( 17)-(20) hold for an arbitrary ratio of 

the metal thickness to mean free path, we will assume a(6, 
because otherwise superlattice vibrations would die down 
across a single metal layer. 

The transversely averaged steady-state conductivity of 
the film is given by 

In the limiting case a ( 1 ,  Eqs. ( 17) through (21 ) yield the 
familiar  result^"^ 

where C=0.577 ... is Euler's constant. 
The definitions above show that as x-0, the functions 

FNNt ( x )  are only singular at N =  N' =0, so that, turning 
back to the series expansions ( 12) for the Aij, we see that 
for a 4 6 4 1  the first sum in the brackets is larger than the 
second. Neglecting small terms we have 

where Zo is obtained from 60 by replacing uo with So. 
Substitution of (23) into (13) now gives the matrix 

ma. 

3. SOLUTION OF THE DISPERSION EQUATION 

We are now able to be more specific when writing Eq. 
(2). If we multiply ma, Eq. ( 13), by mb and substitute the 
expressions obtained for mll and m2,, Eq. (2) becomes 

All-422 
cos Qd = cos(qemb) -I (M q, 

A21 2 A21 

We can simplify this equation by noting, first, that for 
typical frequencies and layer thicknesses qemb( 1 and, sec- 
ond, that we always have qem6(1. This gives 

COS Qd = 
A11-A22-b 

2A2l 
9 

or, substituting All, A22, and Azl from (23), 

i@a2 + 2/3 + b/a 
cos Qd = 

iSda2 - 1 /3 

Note that to take the limit a+O in Eqs. (25) and (26) 
would be incorrect because we have assumed cos(qemb) = 1 
in their derivation. This assumption is justified if the (not 
overrestrictive) condition a/b % q,go is fulfilled. 

Let us consider the limiting cases which can arise. If 

(thin-layered medium), then 

If b$a, then the condition 
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may be fulfilled, which makes cos (Qd) almost pure imag- 
inary and quite large in absolute value 

This means that the wave is virtually damped out across 
one period of the structure. A similar situation occurs for 
82a241/3, but in this case cos (Qd) turns out to be almost 
pure real: 

cos (Qd)= - (2+3b/a). (29) 

4. SURFACE IMPEDANCE 

By following the same approximations used in pro- 
ceeding from (24) to (25) we obtain 

Using (3) and (30) it is simple to calculate Z for all the 
cases discussed. For a thin-layered medium 

For b/a)@a2) 1/3 the impedance is essentially real 

to be contrasted with the case 82a241/3 in which it is 
almost pure imaginary 

It is found that the variation of the impedance with w 
(frequency) and Zo (conductivity of the metal layer) is 
strongly situation-dependent: for a thin-layered structure 
we have Z a: (u/C0) 'I2; in the second case we have Z cc 5; ' 
and it does not depend on a; in the third case the imped- 
ance does not depend on the conductivity but is propor- 
tional to the frequency. Note that the last case, @a2( 1/3, 
may only occur when the electrons are reflected specularly 
from layer boundaries. Even if only one boundary reflects 
diffusely, we have 

and our assumption a 4 S 4 I suggests @)a2. 
Our results indicate that if the metal layers are thin, 

then the electrodynamic properties of the periodic struc- 
ture considered depend not as much on the purity of the 
metal as on the nature of interface processes and on the 
very fact that the freedom of motion of the electrons is 

restricted in the wave propagation direction. A conse- 
quence of this restriction is that the electric field of the 
wave, rather than interacting with a relatively small group 
of grazing electrons (as it does in the anomalous skin effect 
regime in a bulk metal), interacts with all the totality of 
electrons available in the layer; with a result, for example, 
that in a thin-layered medium the skin effect turns out to 
be normal. For the same reason the limiting process b-0 
does not take us back to the bulk metal situation-as it 
would in the absence of spatial dispersion. 

Measurements of the surface impedance may be used 
to determine, in a contactless manner, the thickness depen- 
dence of the conductivity of the metal layer; if found, such 
a dependence would signify a strong interface scattering of 
electrons. If the variation of the thickness is impossible for 
some reasons, then data on the surface impedance and the 
steady-state conductivity may be used to understand the 
nature of the interface reflection: if the conductivity is large 
and the skin effect normal, then the reflection of the elec- 
trons from the boundary planes is close to specular. 

Finally, it is felt that the basic results of this study 
should remain valid when a dielectric layer is replaced by 
a layer of a low-conductivity metal. To see this, note the 
assumptions we have made concerning the properties the 
dielectric layer: 1) spatial dispersion is absent, 2) the wave 
undergoes a small phase shift and remains almost un- 
damped on traversing the layer, and 3) high-mobility elec- 
trons are unable to escape from their layer. Clearly these 
conditions may be fulfilled if the mean free path Ib and the 
skin depth aOb in the "bad" metal satisfy the inequalities 
Ib&b4aOb and a)lb. 
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Translated by E. Strelchenko 

This article is reproduced as submitted by the translator from Russia. The 
text of the article differs somewhat from the final version printed in the 
original Russian journal. 
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