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The dynamioal behavior of the nuclear spin system of a crystal immersed in strong dc and 
cw rf magnetic fields is investigated. The study focuses on how the relaxation 
properties of the magnetization orthogonal to the effective field, and the ratio of the two- to 
three-spin dipole-dipole interactions in the average Hamiltonian, change as the 
orientation of this field changes in a rotating system of coordinates. The third and fourth 
moments of the NMR spectrum are determined in the rotating system of coordinates and used 
to calculate the free precession decay using the memory-function method. The relation 
between the three-spin interaction and the properties of free precession decay observed 
experimentally under magic-angle conditions and for angles other than the latter is 
clarified. 

Although interactions whose elementary operations in- 
volve the participation of more than two spins are well- 
known in the theory of magnetism,' the dynamical prop- 
erties of systems with such interactions remain practically 
unstudied. For this reason, it is interesting to study the 
behavior of spin systems in strong constant (Ho) and rf 
magnetic fields when the spin dynamics are determined by 
multispin average (effective) ~arniltonians.' Historically, 
the first and best-studied systems of this kind involve in- 
teraction with a cw rf field.3" In these systems, a constant 
effective field acts on the spins in the rotating system of 
coordinates with a value we= (w:+A~)"~ (where wl is the 
rf field amplitude and A is its detuning from the Larmor 
frequency yHo). This field makes an angle 
8 =  arctan(wl/A) with the direction of the field Ho. When 
oe greatly exceeds the average local field (w,,) due to 
dipole-dipole interactions, the motion of the spins aver- 
aged over rapid oscillations is studied in a doubly rotating 
system of coordinates (where the second rotation around 
the effective field takes into account the frequency shift due 
to the first moment of the effective interaction3*'). This 
motion is described by the effective ~ami l ton ian~  

where 

R3 = (9/16w,) 2 { - 2cbijb;&IfIf + [c(bilbli 
i#i#l 

+ b;,bjl) -~b;,b;~] (I;I?+ I;If) I?, (3) 

bij=fii( 1 - 3 cos2 8;,)/2{,, 

m=(3cos28-1)/2, c=sin228, s=sin48. 

Here 8,, is the angle the internuclear vector r j j  makes with 
the magnetic field Ho, and {I;  ,$',I2 are the components 

of the vector spin operator at the lattice site i in a system of 
coordinates with the z-axis directed along the effective 
field. 

By varying the amplitude and detuning of the rf field, 
we can vary the direction of the effective field, and accord- 
ingly the form of the Hamiltonian ( 1 ). For 8= 0 we are left 
with only the two-spin Hamiltonian arising from trunca- 
tion of the dipoldipole interactions; conversely, for the 
so-called "magic angle" 

only the three-spin interaction (3) remains. By choosing 
more complicated rf interactions, e.g., in the form of mul- 
tipulse trains,' we can obtain effective Hamiltonians with 
interactions that are higher order in the number of spins. 
In many cases, these multispin interactions, which are pro- 
portional to powers of the small quantity w,,/~,, are all 
smaller in magnitude than the original dipoldipole inter- 
action. A fundamental practical goal of experiments in- 
volving strong rf fields is to eliminate the dipole-dipole 
interaction and thereby obtain high-resolution spectra in 
solids. However, an equally important scientific result of 
these experiments is that they allow us to study the dy- 
namics of systems with multispan interactions. 

The time dependence of the components of magnetiza- 
tion observed in CaF, in a strong cw rf f i e ~ d ~ , ~ , ~  differs 
qualitatively from the dependence observed when w1 =o.',~ 
In the absence of an rf field (8=0), the magnitude of the 
magnetization directed along the x-axis of the rotating sys- 
tem of coordinates decreases, passing through zero and 
once again increasing in the opposite direction; this leads 
to an oscillatory decay of the free precession that is well- 
known both experimentally798 and the~re t ica l l~ .~~~- ' '  In a 
strong rf field, the magnetization in the doubly rotating 
system of coordinates varies in both magnitude and 
di re~t ion.~"~ In the experiments of Refs. 3 and 6, the au- 
thors observed relaxation of the magnitude of the magne- 
tization. It was noted6 that for 0 < 8 < OM the value of the 
free precession decay signal at the minima of the oscilla- 
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tions does not reach zero. At the magic angle (4) the free 
precession decay signal decays monotonically, without 
 oscillation^,^*^ and for sufficiently long times is described 
by a simple exponential. The authors of Ref. 3 postulated 
the following empirical formula for the we-dependence of 
the time constant in the exponent: 

where 

is the second moment of the NMR absorption line shape,' 
Cl =0.28, and the second term is due to nonuniformity of 
the field we. It is interesting to note that the result T2= 135 
,us obtained in Ref. 6 for we= 100 kHz and [I001 also 
agrees with (5). 

It is natural to postulate the existence of a connection 
between the observed features of free precession decay and 
the appearance of three-spin interactions in the Hamil- 
tonian ( 1 ) under the experimental conditions.' ) The re- 
sults of existing theories do not answer this question. The 
first and second moments of the NMR spectrum were in- 
vestigated in Refs. 3, 5, and 14 in a rotating system of 
coordinates, and Antonov et al.15 obtained approximate 
expressions for 9=OM in the doubly rotating system of 
coordinates for only one of the two magnetization compo- 
nents required to calculate the experimentally observed 
free precession One of the goals of this paper is to 
establish a connection between the features of free preces- 
sion decay and the three-spin  interaction^.^' To this end, 
we will investigate theoretically the dynamics of a spin 
system with Hamiltonian ( 1 ) at arbitrary angles 9. 

The relaxation of the component of the magnetization 
orthogonal to the effective field in the doubly rotating sys- 
tem of coordinates is given by the correlation function 

whose real and imaginary parts give the projections of the 
magnetization 

The time dependence of the operators is determined in the 
usual way: 

The quantity Mx(t) is an even function of time, while 
My(t), which vanishes at 9=0 because of R 3 ,  is an odd 
function of time. In fact, when we replace t by - t  in (8), 
we obtain after a cyclic permutation of the operators under 
the trace sign 

A final rotation of 90" around the z-axis, which does not 
change the axisymmetric Hamiltonian ( 1 ) , yields the ex- 
pression 

For small times, the behavior of M+ (t) is described by 
the following power series 

00 

M+ (t) = C M,(it)"/n!, 
n=O 

where 

M,=Sp{[Z ,... [%,If ] ...I I-/Sp{I+I-). 
'M. 

(10) 

The coefficients ( 10) are the; th moments7 of the spectral 
density, which is connected with M+( t )  by a Fourier 
transform. 

The second moment was found previously.3""4 For the 
third moment we obtain the following expression when 
I= 1/2: 

M3(9) = M ? ~ + M ~ ~ ,  

+3(49c3- 132s-c2+s3) ~ ~ + 6 c ( 9 2 - - 5 ~ ~ + 2 )  

x ( L3 + L4) + 6(29c3 - 25c2s+ 5c2 -2) L~ 

+ 1 2 ~ ( 2 2 - 2 ~ ~ + ? )  L~) .  

Here K~=@w;~, and we introduce the following lattice 
sums: 

In these expressions the summation is over all lattice site 
labels except those that coincide. 

The numerical values of the lattice sums are given in 
Table I for a simple cubic lattice and three orientations of 
the magnetic field % with respect to the crystallographic 
axes. The values of B, PI,  P2, L1 are obtained from the 
results of Refs. 16 and 17; we calculated the remaining 
sums over spins surrounding a particular spin within a 
cube with dimension equal to ten lattice constants. Refin- 
ing the values of the sums by enlarging this cube affects 
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TABLE I. Numerical values of the lattice sums required to calculate M3(0). 

only the last decimal place. This estimate of the conver- Figure 1 illustrates the influence of sums with loops on the 
gence of the lattice sums is inferred from their dependence ratio 
on the number of sites in the lattice included in the calcu- 
lation (Table 11). E= - ~ ~ ( 8 ) / ~ : ' ~ ( 8 ) ,  (15) 

For convenience in later analysis, we give here the ex- 
as we go from d = GO to d= 3. The differences are insignif- pression for the second moment written using the same 

notation: icant, but the simplifications in the computational proce- 
dure for the moments are appreciable; therefore, we will 

~ ~ ( 8 1  =Mf+Mf, compute the fourth moment using this approximation. 
Since the remaining lattice sums are given by powers of the 

M ~ = ~ - ~ K ~ @ { ( ~ ~ c ? - ~ c s + ~ ) P ,  ( 13) sum B, for M4 we obtain a rather simple final expression 

Ho 1 1  [I111 

0.955 

0.13 
0.916 
0.129 

0,043 

0.055 

3,8-10-3 

-0,018 

Lattice sum 

pi 

p2 

L~ 
% 
5 
=A 

4 
=6 

~ f = m ' @ .  
MfD= 7m4(@)'/3, 

It follows from Table I that the lattice sums with l o o ~ s  
arising from the couplings P2, L2- L,, are considerably ~f~=m~~~(@)~(512~-75cs+29~)/144, 
smaller in magnitude than those without loops, which in- 
volve PI and L1. The difference is enhanced for model ~ f ~ = 4 - ~ J ? ( @ ) ~ ( 3 4 4 5 ~ ~ -  176c3s+ 1 0 5 . 5 a  
lattices with higher dimensionality d (Ref. 18), for which 
we find in the limit d+  GO -28~~3+6s~) .  

H0 l l  I1001 

0,7977 

0,0915 

0.5040 
0.072 

4,034 

0,019 

2,O. lo-' 

-4.2. lo-' 

PI= LI=l ,  P2=0, L,=O, n=2-6. ( 14) The dependence of the ratio 

Ho l l  [I101 

0,891 

0,169 

0,708 
0.142 

0.015 

0,035 

0,012 

7,5-10-~ 

TABLE 11. Numerical values of the sums L,B' entering into (12) obtained by summing over the 
(21+ 1)'- 1 sites of a cube with an individual spin in the center. The values of the sums are given in the 
units (gT1/24)~, where r, is the distance between nearest neighbors. 
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FIG. 1. Dependence of the normalized third moment 
E on the orientation of the effective field for a three- 
dimensional cubic lattice with H,(I [I001 (dashed 
curve) and for an inlinite-dimensional lattice (solid 
curve). 

on 8 calculated using Eq. (16) is shown in Fig. 2. In 
particular, for 8=OM we have p =4.1102, E =0.8616. 

Approximating the interaction by one with infinite ra- 
dius (to), for which the sums with loops and without loops 
become equal in magnitude, leads to a still greater 
simplification.19 Unfortunately, the properties of a System 
in the limit ro+ w deviate much farther from those of a 
three-dimensional lattice with finite ro than is the case for a 
system in the limit d+ 00. 

In Figs. 1 and 2, we note the presence of sharp minima 
in E and p for 6= OM. They are caused by the disappear- 
ance of contributions from the mixed terms M f D  and M f D  
due to the combined action of &Pz and R3, which in turn 
is due to vanishing of 2Y2 when 8 = O M .  

Let us turn to an analysis of the behavior of M+ (t) at 
large times. We make use of the method of memory 
 function^?^ and write the equation for M+ (t) in the form 

This integral equation is exact if we know the exact expres- 
sion for its kernel, i.e., the memory finction G(t). How- 
ever, finding this kernel is as complicated a problem as 
finding the correlation function (7) itself. The advantage 
to this method is that qualitatively correct results are al- 
ready obtained when G(t) is chosen in the form of a simple 
function. For example, a Gaussian function 

FIG. 2. Dependence of the normalized fourth mo- 
ment p on the orientation of the effective field. 
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was successfully used in Refs. 2, 9, and 10 for a system 
with two-spin interactions. Since in our case the odd mo- 
ments are also nonzero, the memory function should con- 
tain, in addition to (19), an imaginary part, which we 
choose in the form 

Gi(t) = -~~M:/~EG,= (t).  (20) 

We call the reader's attention to the fact that by using the 
dependence of the parameters on the moments given in 
(19) and (20) we ensure a solution to Eq. (18) that in- 
volves the required values of the moments M2, M3, and 
M4- 

The Laplace transform of the solution to Eq. ( 18) has 
the form 

where z is the transform parameter, and Gr(z) and Gi(z) 
are the transforms of the real and imaginary parts of the 
memory function: 

Expression (21 ) allows us to compute and study the shape 
of the NMR spectrum in the rotating system of coordinates 
for various angles 8. For now, however, we limit ourselves 
to using it to obtain the characteristics of the long-time 
portion of the free precession decay for angles 8 close to 
the magic angle, which are the best-studied 
e~per imenta l l~ .~*~ For this it is necessary to find the zero of 
the denominator (21) that is closest to the coordinate or- 
igin, as was done, e.g., in Ref. 20 for the special case E=O. 

For B=eM, the memory function decays much more 
rapidly than the function M+ (t) ,  which for coordinates 
close to the zero zo implies 1 z0 1 24 2 (p - 1 )M2, so that it 
can be found with sufficient precision by saving a few of the 
leading terms in the expansion for the error function ap- 
pearing in (22) in powers of Z To within quadratic terms 
in (21), we have 

where Z=~[2/(p- 1)1l/~, and R, and Ri are the real and 
imaginary parts of the square root of 

For B= OM, after substituting the values of E and p we 
find 

The oscillation frequency of the function M +  (t)  is given 
by g., while the damping rate is given by c. In particular, 
for the constant C1 in (5) we obtain 

Here the numerical value follows from exact values of M2, 
@, and K~ for the second expression under the radical. 
The calculated value of C1 is in good agreement with the 
experimental value ( 5 ) . 

Relation (23) allows us to track the influence of the 
parameter E. For example, when E is equal to zero we have 
%= -0.54, i.e., the rate of attenuation increases by a factor 
of two. 

We note finally that the constant C1 is independent of 
W, because of the disappearance of the term Z2 in ( 1) at 
8=  OM. Expression (3) for 2Y3 has the form of a scale 
factor, which implies Mn a o;", T2 a w,, and also that p 
and E are independent of W, . When the orientation deviates 
from its magic value, the dependence of the attenuation on 
o, is more complicated; however, it can still be found by 
substituting the expressions for E and p determined above 
for arbitrary angles 8 into Eq. (23). 

A more complete picture of the behavior of M +  (t) for 
various orientations of the effective field is shown in Fig. 3, 
where the results of a numerical solution of Eq. ( 18) with 
the kernel (19) and (20) are presented. In the numerical 
solution, the time interval under investigation was subdi- 
vided into 1000 parts. 

We now make a few changes in the memory function. 
It is natural to expect that at after a sufficiently long time 
the memory function, like the free precession decay (Refs. 
3, 6, and 8), is best described by a simple exponential 
rather than a Gaussian. In particular, local field fluctua- 
tions can produce such a change. A function possessing 
this property, e.g., the function proposed by ~ n d e r s o n ~ '  to 
explain the exchange narrowing of the spectra, can be used 
if we change its coefficients in the following way: 

At small times [or for g( t )  = 11 (26) reduces to (19), while 
for t) rc ,  where rc is the temporal scale of attenuation of 
g(t),  we have 

The solution to ( 18) obtained by replacing ( 19) with (27) 
in the real and imaginary parts of the memory function 
over the entire time interval is even simpler. The time de- 
pendence of ( M  (t)  1, which was calculated for this case 
in Ref. 6 for ~ @ r , = 0 . 7 7 ,  has the same qualitative prop- 
erties as shown in Fig. 3. Since the qualitative differences 
between these two limiting cases as expressed in the oscil- 
lation frequencies and attenuation rates of (M, ( t )  ( are 
also insignificant, we have not carried out any calculations 
using the kernel (26). 

The decaying amplitude of the rotating component of 
the magnetization is plotted for various angles 8 in Fig. 3. 
As represented by the magnitude of the function M +  (t), 

1066 JETP 76 (6), June 1993 V. E. Zobov and M. A. Popov 1066 



this quantity has the same behavior as the free precession 
decay observed experimentally and described at the begin- 
ning of this article, which thus confirms the connection 
between these features and the three-spin interaction. Fur- 
thermore, these results reveal the mechanism by which this 
interaction causes the specific changes in the free preces- 
sion decay with increasing angle 8 mentioned above. The 
oscillations in the magnitude of the magnetization rise 
above the zero line because My(t) develops an imaginary 
part in M+ (t) (Ref. 22) which does not vanish at the same 
time as the real part of Mx(t), as the corresponding curves 
show in Fig. 3. Note that a change in the ratio of the 
imaginary and real parts implies a change in the direction 
of magnetization in the doubly rotating system of coordi- 
nates, which was mentioned in Refs. 4 and 13. The main 
reason that the oscillations in I M+ (t)  1 disappear at the 
magic orientation (4) is an increase in the attenuation rate 
of the memory function, which is indicated by the growth 
in p. The same results are obtained, according to (3), 
when an imaginary part characterized by the quantity E 

appears in p. In this case, the monotonic decrease in the 
value of I M+ ( T )  I is accompanied by oscillatory behavior 
of Mx(t) and My(t) [see Fig. 3 and Eq. (23)]. However, 
these are no longer the oscillations in the component 
Mx(t) that occur for 8=0, which are connected with the 
change in the ordering from magnetization to two-spin cor- 

FIG. 3. Time dependence of the correlation function M + ( t )  
(the absolute value of the function is the solid curve, the real 
part is the dashed curve, and the imaginary part is the dotted 
curve) for 0=0" ( I ) ,  30" (t), 45" (3), 50" ( 4 ) ,  and 0=0,=54.7" 
(5 ) .  

relations. At 8 = O M  the oscillations between Mx(t) and 
M,,(t) are oscillations in the direction of the magnetiza- 
tion, whose rate is determined by the moment M3,  whereas 
for 8=0 the oscillation rate is determined by the moments 
M2 and M., . 

Thus, the theory given here allows us to explain the 
dynamics of spins in strong cw rf fields as observed in free 
precession decay signals in the rotating system of coordi- 
nates by relating these features to the presence of three- 
spin interactions in the average Hamiltonian. 

Since the theory is in qualitative agreement with ex- 
periment, we may attempt to add quantitative refinements. 
These refinements are necessary because the experimen- 
tally observed increase in the free precession decay oscilla- 
tions as the angle 6 departs from OM is more rapid than is 
predicted by the theory given here (Fig. 3). The cause of 
this discrepancy is primarily the form we used for the ker- 
nel of the integral equation (18), in which we treated the 
combined action of X2 and X3 in an average way, which 
was unnecessary. A more detailed equation for the corre- 
lation functions could have been used as an alternative. In 
particular, we could have followed the treatment of the 
dipole4ipole interaction given in Refs. 1 1, 12, and 23 and 
derived an integral equation for M+ (t) .  Let us do so here: 
in place of the zero-order approximation we introduce the 
function 
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where a = c@/h,, b2 =4m2i@/9. This expression is de- 
rived in the Appendix by keeping only interactions be- 
tween the z-components of the spin in the Hamiltonian 
( 1). The rotation of the spins in longitudinal local fields is 

for a number of reasons, the most 
important of which is the axial symmetry of the Hamil- 
tonian. 

The result (28) was obtained using the approximation 
of a lattice of high dimension. For systems with infinite 
interaction radius,19 the term -a2*/2 is absent from the 
exponential, and the constant a increases by a factor of 3. 
The use of these two methods1* for increasing the number 
of neighbors leads to forms of the functions MY)(t) that 
differ even for the local field; this is one more property of 
the three-spin interaction. 

Since X3 vanishes at 8=0, the function (28) is con- 
verted to an ordinary Gaussian decay. At other angles it 
decays more slowly than a Gaussian function for the same 
moment M2, and possesses all the properties derived from 
the Hamiltonian &P3 : odd moments, imaginary part, asym- 
metric spectra, etc. It is not difficult to see that the differ- 
ence in the results for 8=0 and 8=OM is due to the fact 
that the Gaussian local field at an individual spin enters 
into &P3 quadratically [see Eq. (A5)]. This simple example 
allows us to use the language of local fields to improve our 
undefstanding of how the two- and three-spin interactions 
differ. For clarity let us consider variations in the spec- 
trum, which are easy to explain by writing &P3 in the same 
form as &P2 with interaction constants ~ o i = / 3 0 ~ o  that de- 
pend on the local field (A4). For small local fields this 
constant decreases (the center of the spectrum rises), while 
for large fields it increases (the wings of the spectrum rise). 
When the sign of the field changes, the sign of the con- 
stants changes as well (i.e., the contribution of negative 
frequencies decreases, which leads to asymmetry in the 
spectrum). 

In conclusion, the authors are grateful to A. E. Mefyod 
for drawing our attention to the experimental data long 
before publication, and to V. A. Atsarkin and the partici- 
pants in his seminar for useful discussion of the results. 

APPENDIX 

Let us find the form of the correlation function (7) 
when only the interaction between the z-projections of the 
spins is retained in the Hamiltonian (1). In this case, the 
known properties of the creation operators allow us to 
write the time dependence of I$(t) in explicit form: 

M';' ( r )  =sp[ n €exp[ i~ (qbo#o j I f I~+mb~J~)  1 
i#i 

where q= - 9c/8u,. In (A1 ) we have identified contribu- 
tions from terms for which the position of an individual 

spin "0" (the spin whose correlation function we wish to 
calculate) is at the edge or in the center of a chain of three 
coupled spins. We have chosen this description because the 
lattice properties of these contributions differ, a fact which 
we will use in subsequent transformations. 

Let us transform (Al) ,  using the properties of expo- 
nential operators for I= 1/2: 

exp (2iaIi) = cos a + 2iIf sin a ,  
(A21 

exp (4ipI;I; ) = cos B + 4iIfIf sin B. 
For 8=0, when q=O we obtain the well-known result7 for 
the decay in the form of a product of cosines. The appear- 
ance of a term involving the product of operators ZIf be- 
fore the sine when 8#O, which is a consequence of the 
three-spin interaction, implies that we must sort out all 
possible types of pairing of the operators If that will lead to 
a nonzero value of the trace. Similar problems are well 
known from calculations of the partition function in the 
Ising model. The distinctive feature of Eq. (Al )  is the 
presence of the fixed "0" site. 

These problems can be overcome by using the high- 
dimensional lattice approximation after neglecting the con- 
tribution of terms that form loops made up of lattice bonds 
in the time series. Doing this leads to a term in (A1 ) with 
the sine of the second exponential when it is represented in 
the form (A2), and we discard it. Then we can remove the 
remaining factor in this exponent, which does not contain 
operators, from under the trace sign, i.e., 

n c o ~ ( t q b ~ # ~ ~ / 2 )  = exp( -a2?/2), (A31 
i#i d -  a 

and introduce the local field into the exponent of the first 
exponential in the remaining expression under the trace: 

which we write in the form 

In the limit of a large number of neighbors, the distribution 
of the local field Ho is given by a Gaussian function. Re- 
placing the trace calculation in (Al )  by an integration 
over this distribution function, we obtain the required Eq. 
(28) after calculating the integral. 

In the limit of an infinite interaction radius, the differ- 
ence between the two terms in (Al )  disappears; therefore, 
the second exponential can be transformed in exactly the 
same way as the first. 

 he authors of Ref. 13 used a different approach, in which the motion 
of the spins was investigated under the combined action of the rf field 
and dipole-dipole interactions. The integral equations they derived are 
complicated even in the lowest-order approximation. Although this ap- 
proach remains the only one possible in insufficiently strong rf fields, for 
o,>q, the transition to an average Hamiltonian allows the description 
of the spin dynamics to be simplified. 
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