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We use the time-dependent Anderson-Newns model to consider the charge-transfer effect of 
atoms scattered by the surface of a solid. Our choice of a model time dependence of 
the hybridization matrix element of the band and atomic states makes it possible to analyze 
the case of an arbitrary shape of the band spectrum. We show that the charge state of 
a scattered atomic particle is a non-monotonic (generally speaking, oscillating) function of its 
energy. We use the results to explain known experimental results. 

1. Recently the problem of the charge transfer from 
atoms and molecules scattered by the surface of a solid has 
been the subject of many experimental and theoretical 
studies (see, e.g., the detailed survey in Ref. 1). The inter- 
est is caused above all by the fact that scattering data con- 
tain valuable information both about the composition and 
the structure of the surface as well as about the electronic 
properties of the crystal itself which plays the role of the 
target. From a theoretical point of view the crux of the 
problem consists of the following. 

We consider an atom A which is in some initial charge 
state. As a result of the scattering of this atom by the 
surface of the target T the charge state may be changed. If 
the atom approaches the surface sufficiently closely elec- 
trons may by virtue of the overlap of the atomic and crystal 
wave functions move from the solid to the atom and vice 
versa. We must determine the charge state of the atom 
after the scattering as a function of the energy of the inci- 
dent particles. In other words, we are dealing with the 
calculation of the probability for charge transfer in pro- 
cesses such as A++M+A+M+, or A+M-A++M-. 

The simplest model describing the process of charge 
transfer during elastic scattering of an atom by a surface is 
the time-dependent Anderson-Newns According 
to this model the atom A corresponds to a single-level 
system (one neglects excited states of the atom) interacting 
with the Bloch states of the crystal. 

The Hamiltonian of the model has the form: 

where t&,,â,,? (~?~,~,a^,) are the creation (annihilation) op- 
erators for electrons with spin a in a Bloch state ) k) and in 
the nondegenerate atomic state la), respectively, R(t)  is 
the distance between the atom and the surface at the time 
t (the motion of the atom is assumed to be classical), ~ ( k )  

is the energy of the band electrons, &,(R(t) ) is the position 
of the atomic energy level at time t, and A(R ( t)  ) Vk is the 
hybridization matrix element of the band and atomic 
states, normalized to the volume V of the system. We as- 
sume that we have R = vl ( t I, vl is the velocity component 
perpendicular to the crystal surface, A(t) decreases expo- 
nentially as R ( t ) + w ,  and ~ , (*co)=- I ,  where I is the 
ionization potential of an isolated atom. The charge state is 
simply determined by the average number of electrons in 
the state 1 a): 

n(t) = (a^:(t)ci,(t)). 
u 

Blandin et aL4 using Keldysh's diagram technique5 
and also Brako and ~ e w n s ~  in the framework of the equa- 
tions of motion for the Heisenberg operators have shown 
that this problem can be solved in the general form if one 
assumes that the density of states N(E) and the matrix 
element Vk(B) are independent of the energy 
~ ( N ( ~ ) = N ~ = c o n s t ,  Vk(E)= Vo=const) in the whole of 
the infinite energy range (broad band approximation). 

This approximation is valid only when 
a)  the atomic level E, lands in the allowed part of the 

spectrum and the maximum width of the level 2I'(t=0), 
which is connected with the finite lifetime of the electron in 
the state la), is much smaller than the "distance" A E  
between E, and the edge of the allowed band; 

b) the density of states N(E) and the matrix element 
Vk(E) do not change appreciably on a scale r; 

C) the time scale St for changes in the hybridization is 
large, i.e., StA W>1, where A W is the width of the band. 

In a number of cases (metals with a complicated den- 
sity of states, narow-band metals, narrow-gap semiconduc- 
tors, high-velocity incident particles) these conditions are 
not satisfied. Moreover, the situation when the level E, 

lands in the forbidden band (this occurs, e.g., when He+ 
ions are scattered from a Pb surface) is not even qualita- 
tively described by this approximation. 

There is therefore undoubtedly interest in an analysis 
of the general situation without any restrictions on the 
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shape of the spectrum or the position of the atomic level. 
The aim of the present paper is such an analysis. In our 

considerations we shall, in contrast to the authors of Refs. 
4 and 6, not start from definite functions E,( t) and A(t) but 
assume that E,( t) = const =E, , and that A(t) is a step func- 
tion 

where r is the characteristic interaction time. 
Just this model function A(t) makes it possible for us 

to carry out our considerations in a general form, i.e., to 
obtain an analytical expression for n ( co ) without imposing 
any restrictions on the form of the density of states or the 
position of the atomic level. Moreover, the choice of such 
a dependence for the switching on (and switching off) the 
hybridization has a physical basis. Indeed, electronic tun- 
neling processes become important only when the atom 
approaches the surface to a distance of the order of the size 
a. of the atomic orbitals. Just this region gives the main 
contribution to the charge transfer. Moreover, since in that 
region the hybridization matrix element depends only 
weakly on the time (saturation of the hybridization) we 
may assume the interaction to be adiabatic, which leads to 
the formation of quasistationary energy states of the atom- 
crystal system. The characteristic interaction time is thus 
r=aadvl  , where a is a constant which plays the role of 
a fitting parameter. We shall neglect the tunneling time 
outside this time range. However, we consider in what 
follows also the effect of the exponential "tails" of switch- 
ing on and off the hybridization. 

2. We now turn to a determination of n ( w ). The av- 
erage number of electrons in the state 1 a)  at time t is given 
by the following expression: 

where F(0) is the statistical operator at time t=O and 

is the Heisenberg operator of the number of particles: 

Here khe fi,,, correspond to opposite spin orientations, f 
and T areAthe chronological ordering and antiordering 
operators, H( t )  is the Hamiltonian ( l ) ,  and we have put 
f i= 1. 

According to the assumed model for the interaction 
the number of electrons on the atom remains unchanged 
fortimes t<Oand t > r .  Thereforewehaven(- w)=n(O) 
and n ( w ) = n (7). From the point of view of charge trans- 
fer we are thus only interested in the 0 < t < r time interval. 
Since in that interval the Hamiltonian is time-independent 
( A  = 1 ) we can drop in Eq. (4) the chronological ordering 
operator and integrate over the time in the exponents. The 

next step in the calculations consists of the following. Us- 
ing the equation of motion for the Heisenberg operators 
a^+(t) and a^(t) we can express them in terms of the oper- 
ators a^+, t$ and a^, tk at time t=O. Then, substituting the 
expressions obtained into Eq. (3) and using the initial con- 
ditions: 

where p= 1/T is the inverse temperature of the electron 
gas and p is the chemical potential, we get the required 
quantity (fi(t)). 

We illustrate what we have said by the example of the 
equation of motion for a^(t). This equation has the form 
(t>O) 

In turn, we get for the operator tk(t)  

We must add to the set of Eqs. (6) and (7) the bound- 
ary conditions 

It is convenient to solve the set obtained in the Fourier 
representation. However, to do this we need define the 
operators a^(t) and tk(t) on the whole of the time axis. We 
put a^+(t) =O and tk(t)  =O for t<O. To satisfy the bound- 
ary conditions (8) we must then add to the right-hand 
sides of Eqs. (6) and (7) the terms ia^(0)8(t) and 
itk(0)S(t), respectively. Changing to the Fourier represen- 
tation we find 

where S > 0 is an infinitesimally small quantity which has 
been added to guarantee the analyticity of a^(w) in the 
upper w half-plane (thus guaranteeing that the conditions 
a^(t)=Oandtk(t)=Oaresatisfiedfor t<O). 

One should note that & ( a )  can be expressed in terms 
of the equilibrium retarded Green function 

and the unperturbed Green function of an ideal Fermi gas: 
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One can similarly find the quantity a^+ (w). Performing the 
inverse Fourier transformation and using (5) we get the 
required quantity: 

One should note that the expression for n( w ) is ob- 
tained without any assumptions about the shape of the 
band spectrum and the position of the E, level. The terms 
in the right-hand side of (12) have a clear physical mean- 
ing. The first term describes the transition of the electrons 
from the electron state 1 a) to the free Bloch states I k). 
The second term describes the inverse transition. We now 
turn to an analysis of Eq. (12) in the case of a specified 
shape of the band spectrum. 

3. We start our considerations with the broad-band 
case. We must then, according to Refs. 4 and 6, assume 
that the density of states is N(E) =const=NO and that 

2 2 I VkI =const=Vo. 
For the mass operator 

we therefore have 

where r=?rv$Vo is the halfwidth of the resonance level E, . 
As a result we get for the "atomic" Green function G La(w) 

Substituting ( 15) into Eq. ( 12) for n ( w ) we find that: 

The energy values are reckoned from the chemical po- 
tential of the system. 

One checks easily from Eq. (16) that there are two 
characteristic temperature regions, T > r  and T ( r  in 
which the behavior of n ( w ) is essentially different. 

We first consider the T > r  case. One can in this case 
take the fermion distribution function from under the in- 
tegral sign, putting &=&, in it. One can easily get the re- 
maining integral. As a result we get 

We note that this result could have been obtained also from 
the classical kinetic equation.' 

We now consider the opposite case, T 4 r .  For simplic- 
ity we shall assume that T=O. Only electrons with an 
energy E < 0 will then contribute to the integral in Eq. 
(16). One can relatively easily give an analysis for three 
limiting cases: E,=O; E,>O and ~ , > r ;  and E,<O and 
I E, 1 >I' (recall that the energy is reckoned from the Fermi 
level of the system). For instance, in the E,=O case one can 
easily evaluate the integral in (16) and get the following 
result: 

In the ~ ,>r  > 0 case we get: 

+a cosg 
1 +e-2r7-2e-r'~ar 

It is clear from (19) that if the interaction time r is s d -  
ciently long ( r > WE,), n ( w ) as function of T becomes 
oscillatory: e - r T ~ i n ( ~ a r ) / ~ a r .  One obtains similar results 
for the E, < 0, I E, I >r case. 

We note that the appearance of an oscillatory behavior 
in n( W )  is a manifestation of the effect of the quantum 
interference of the amplitudes. The presence of a sharp 
Fermi boundary and a shift in the energy relative to the 
Fermi level leads to the probability amplitudes not com- 
pletely canceling one another (the result is a phase shift). 
In that sense the picture obtained here is very reminiscent 
of a diffraction picture. 

In conclusion we note that these results may be ob- 
tained from Ref. 6 for the case of a stepwise time- 
dependence of the hybridization. 

4. We now consider the case of a finite band. It follows 
from Eq. ( 12) that n ( w ) as a function of the interaction 
time T is determined by the singularities of the function 
G La(w) in the lower half-plane of the complex z plane. The 
problem reduces therefore to the analytical continuation of 
G L,(o) from the real axis into the lower z half-plane and 
the subsequent integration along a contour bypassing pos- 
sible singularities. 

For simplicity we shall consider the case of an empty 
(nk=O) or a completely occupied (nk= 1 ) band. Using the 
commutation relation a^+ (t)a^(t) +a^(t)a^+ (t) = 1 we then 
get from (12): 
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The simplest way to carry out the analytical continu- 
ation consists in replacing w by the complex z= w' + iw" in 
the expression for Gia(w). We then obtain a function 
GLa(z) which is analytical in the whole of the z plane 
except for the section [El-i6,E2-is] (El and E2 are here 
the energies of the band edges) and, possibly, for two poles 
with an infinitesimally small imaginary part --ID and en- 
ergies lying outside the allowed energy range. The condi- 
tion for the appearance of such poles is determined by the 
presence of solutions of the equation: 

under the conditions that E lies outside the [EI,E2] inter- 
val. The temporal behavior is thus determined by the res- 
idues from the poles and the integral over a contour en- 
closing the section [El - i6,E2- is]. The further analysis of 
the time dependence is thus reduced to calculating the con- 
tour integral by numerical methods. However, from the 
point of view of a qualitative analysis the nature of the 
temporal behavior of G L(T) remains unclear. In particu- 
lar, there is no concept of a "resonance width" (or of a 
decay time of the state) in the approach considered here, 
so that the function G L,(z) has no pole with a finite imag- 
inary part in the lower z halfplane. All the information 
about the decay of the state is contained in the contour 
integral. The limitations of such an approach, from the 
point of view of a qualitative analysis, are particularly clear 
when we turn to the broad-band case (El + - w ,E2+ a, ). 
In that limiting case there is a cut ( - a, --is, a, - 8 )  in the 
function G h(z)  and it breaks, in fact, up into two analyt- 
ical functions above and below the cut. Since the integra- 
tion over o is over the real axis, i.e., above the cut, the 
calculation of G L,(T) again reduces to an integral over a 
contour enclosing the cut. 

In the framework of the analytical continuation con- 
sidered here we lose therefore clear ideas about the finite 

FIG. 1. Integration contour for the mass operator M(z) (solid 
line) and the way to go round the singularities of the function 
G :,(z) (dashed line). 

life time of the quasi-particle state. We therefore consider 
another way to continue G La which is applicable under 
rather general assumptions about the shape of the func- 
tions N(E) and Vk(e). It is convenient to demonstrate this 
method for the case of a rectangular spectrum which is of 
practical importance. Such a form of the spectrum corre- 
sponds to a situation where the atomic state E, interacts 
with a two-dimensional band of surface states (for the two- 
dimensional case the Van Hove singularities at the band 
edges have the form of steps). 

We shall assume that Vk = Vo = const (we assume that 
the interaction V(r) in coordinate space has a pointlike 
character). The density of states N(E) has the form: 

We consider the mass operator 

M(z) =No% J12 5-, 
Z-Z 

where the integration is over the section 12 
([El -i8,E2-is]) (Fig. 1). We shall assume that z lies 
outside the band bounded by the segment 12 and the half- 
lines C1 and C2. The integrand in (23) is then analytical 
inside this band. We can therefore deform the contour as 
shown in Fig. 1 ( 12 + 1342). Lowering the section 34 to 
infinity and taking into account that the contribution from 
that section tends to zero we find that: 

We can now postulate that the value of z can lie inside 
the band, i.e., we can continue the function M(z) inside 
the region 12C1C2. Expression (24) thus defines an ana- 
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lytical function in the whole of the Z plane except the 
half-lines Cl and C2 (on which it has a discontinuity). 
Evaluating the integrals over the contours C1 and C2 we 
obtained: 

where g= N~ V; . 
Let us consider the function G L,(z). Since the mass 

operator M(z) has discontinuities on the contours C1 and 
C2, it follows that G La(z) must also have discontinuities. 
Moreover, for the function G L,(z) there occurs a pole in 
the lower half-plane with a finite imaginary part and an 
energy in the interval [El ,E2] (provided the bare energy E, 

lies inside that range). The coordinates of the pole are 
determined by the roots of the equation Z-E,= M(z). We 
put z=R-ir  with r>O.  The equations for the coordi- 
nates of the pole then take the form: 

It follows from an analysis of Eqs. (26) that there is 
not always a solution of this set; the level E, must lie suf- 
ficiently far from the band edges: 

In the broad-band limit (El-+ - ca,E2+ CG ) the coordi- 
nates of the pole become R =E,, r = ~ g ,  i.e., they are the 
same as those found above [see ( 14) and ( 15)]. 

The set of Eqs. (26) refers to the case when the real 
part of R lies inside the allowed part of the spectrum. For 
poles outside this range the equations for the coordinates 
have the form: 

We note that condition (27) is the same as (2 1 ) . This 
is not surprising since a deformation of the contour 12 does 
not change the values of the function M(z) [and hence also 
of G ia(z)] outside the band 12C1C2. We should stress that 
conditions (27) [and in the general case condition (21)] 
determine the coordinates of the pole only outside the lim- 
its of the continuous spectrum. In other words, if there are 
solutions of Eq. (21 ) with R lying inside the range [El ,EJ 
they do not correspond to any singularities of the function 
G La(z). It follows from (27) that in the case of a rectan- 
gular spectrum there always exist two poles with zero 
damping (localized states). This fact that for any however 

weak interaction of the atomic level with the band, levels 
are split off from the band edges is a manifestation of the 
special features of a two-dimensional (or one-dimensional) 
spectrum when however close we get to the limit of the 
spectrum there is still a finite density of states. 

We now consider the dependence of G La on the inter- 
action time r. Integration over w reduces to going around 
the poles and the cuts C1 and C2 in the lower Z half-plane. 
We can write the result of the integration in the form: 

+ f (~)e- '~ l '+  f2(r)e-iE2r. (28) 

Here the A1,2,3 are the residues from the poles of G La(z): 

where we have A W= El -E2, the R1,2 are the roots of Eq. 
(271, and 

where R3 and I' are the roots of Eqs. (26). 
The last two terms in Eq. (28) describe the contribu- 

tion from the integrals over the contours L1 and L2 (see 
Fig. I) ,  

In the case of a weak interaction of the atomic level E, 

with the continuous spectrum (g/ 1 I 4 1 ) the term 
A3 e-ia37e-rT is the leading one and, hence, the decay of 
the state is basically exponential. In the case of intermedi- 
ate coupling constants (g- (E,- ) all terms (28) are 
quantities of the same order of magnitude. Moreover, since 
the functions f 1,2(~) decrease for large times more slowly, 
generally speaking, than the exponential, the contribution 
from the singularities at the limits of the spectrum are for 
r ) l / r  larger than the corresponding contribution from 
the pole singularity. For interaction times when r)1/ 
r ( r - g )  we have thus 

One easily obtains the asymptotic behavior of f (7) 
and f2 ( r )  for times r)l/g, ~ / (E, - -E~,~) ,  1/AW. Indeed, 
carrying out a change in variables, y=&, in the integral 
(3 1 ) and splitting off the leading terms we get 
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g 1 1  1 1 1 
f 1,2(7) = , A W4r4- elEa-El~21/g and g 4  (E , -E~ ,~I ,  

(~a-~1,2) '  7 ' g ' ca-E1,2 A W  
1 1 

7%- el"a-E1.21/g and g 4  l ~ , - E ~ , ~ l .  
gr(ln A W T ) ~  ' A W 

The boundedness of the spectrum thus leads to a rel- 
atively slow (power-law) decay of the atomic state. 

The required quantity n( cu ) can be calculated from 
(20a,b). One sees easily that besides a monotonic behavior 
of the kind of those considered above there appear oscilla- 
tions at frequencies R1 - R2, Rl  - R3, Rl  - E l ,  and so on. 
One can therefore reach the following conclusion about the 
behavior of the atomic level-bounded spectrum system. As 
the result of the level-band interaction the atomic state 
becomes quasi-stationary. The relaxation of the state has 
an exponential character only in the case of small coupling 
constants and for sufficiently short interaction times. Be- 
sides, this interaction leads to the appearance of new effec- 
tive energy levels (El ,E2) and also to true levels ( a 1  , a2 )  
which interfere with one another and with the state 
R3-ir, which genetically follows from the atomic state, 
and as a result give an oscillatory behavior of n(r). 

5. The case of a more complex shape of the density of 
states N(E) can be considered in the framework of the 
approach proposed above. One needs only continue the 
function N(E) (and also the function I Vk(€) 1 2, if its energy 
dependence is important) from the section [El,E2] of the 
real axis to the band 12C1C2 in such a way that in that 
band it has as far as possible fewer singularities and that it 
moreover is bounded at infinity. One must then deform the 
contour 12 as shown in Fig. 1, enclosing possible singular- 
ities of N(z) I V(z) 1 2. As a result we get for the mass op- 
erator 

'c, ' J C 2 )  Z-Z 

where the zi are the points in which the function 
I V(z) 1 2 ~ ( z )  has pole singularities in the band 12C1C2 and 
the C,, are contours bypassing possible cuts of the function 

I V(z> I 2 ~ ( z ) .  
One can then find from the equation Z-&,=M(z) the 

poles of the Green function G La(z). One should note that 
as a rule the analytical form of the spectrum is unknown. 
One can therefore approximate separate parts of it or the 
spectrum as a whole by simple functions such that the 
resulting N(E) function is close to the known one, ob- 
tained, for instance, from numerical calculations. 

We note that in contrast to the previous considerations 
the function G ia(z) may have several poles in the band 
12C1C2. Moreover, as I Vk 1 2+ 0 there must remain a single 

pole z=E,+ i (  - 0). We must thus assume that for small 
I Vk(,, 1 2 ~ ( & )  there is only one pole inside the band, z 
= E: - ir', corresponding to a quasistationary atomic state. 
As regards the poles lying outside the limits of the allowed 
spectrum, their position is determined by the roots of Eq. 
(2 1 ) . In that sense condition (2 1 ) is a universal one. We 
emphasize again that one cannot use (21 ) to look for poles 
in the region of the continuous spectrum. 

We also note the fact that since the Van Hove singu- 
larities at the band edges have for a three-dimensional 
spectrum a square-root character, the mass operator M(w) 
remains a finite quantity in the points w =El,  E2. There- 
fore there are not always levels which are split off, but only 
when the bare level E, is close enough to the band edge. 

The fact that M(w) is finite at the boundary points 
causes also the contribution from the contour integrals 
around the cuts C1 and C2 to behave always like 1/r for 
large times r. 

Just as the case considered above, the quantity n ( cu ) 
will oscillate at frequencies corresponding to the differ- 
ences between the characteristic frequencies of the system. 

6. When the band is partially filled one can more con- 
veniently carry out the analysis by using the expression 

which can be obtained from the general Eq. ( 12). In that 
case there may appear additional oscillations connected 
with the presence of a sharp boundary of the Fermi distri- 
bution. 

7. Our main result is therefore that the charge state of 
an atom after the scattering process is a nonmonotonic (in 
general, oscillating) function of the characteristic interac- 
tion time 7 (or the energy of the incident particles). One 
should in this connection note Ref. 8 in which was studied 
the change in the charge state of N+ ions scattered by the 
surface of NaCl crystals. The unfilled 2p level of 
N+(E,= 14.7 eV) lies opposite the filled 3p surface band of 
C1, close to its edge: El (El -E,Z 1 eV). The band width is 
El - E2 z 7 eV. We show in Fig. 2 the characteristic behav- 
ior of the yield of N+ ions as function of the energy of the 
incident particles. To explain the observed behavior the 
authors of Ref. 8 used essentially a model similar to the one 
considered by us. However, their whole discussion was 
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FIG. 2. Energy dependence of the relative yield of N +  ions.' 

based only on an analysis of an equation similar to Eq. 
(21) which, as we indicated above, is not valid. The ap- 
pearance in the yield of N+ ions of oscillations which are 
significantly different both in frequency and in amplitude 
(where a lower amplitude corresponds to the high- 
frequency oscillations) can be explained from our point of 
view as follows. Apparently, because the level E, is situated 
near the lower band edge, the function G ;,(z) does not 
have any poles on the continuous-spectrum section (the 
level is expelled beyond the band limits). Moreover, a lo- 
calized state is split off from the nearest band edge with an 
energy - E, ,El which is "genetically" connected with the 
initial E, state. Incidentally, the amplitude with which the 
localized state occurs in G L,(r) will therefore be of the 
order of unity. Besides this term the function G L,(T) will 
also contain terms corresponding to the effective states 
El ,E2 (band limits) and also a term describing the contri- 
bution from a state split-off from the far band edge with 
energy E ~ z E ~ .  We note that the amplitude with which the 
states E~ and E2 occur in G L,(r) will be small to the extent 
that the quantity N(E) I Vk(E) 1 2 / ( ~ a - ~ 2 )  is small. The 
charge state of the atom will be determined by the inter- 
ference of these various contributions. In the resulting 
function n(r )  there will thus appear oscillations at fre- 
quencies -El, - E2, - E ~ ,  and El -E2, where the 
high-frequency oscillations - E2, - EZ, and El - E2) 
will have practically the same frequency. We have thus the 
following function n (7) : 

where A; > A;, E, -El < El - E2. This picture is just the 
one observed in the above-mentioned experiments (Fig. 2). 

In similar vein we can explain the results of Ref. 9 
where oscillations were observed in the energy spectrum of 
excited Si+* ions. In that case the electron exchange took 
place between an isolated level and an unfilled surface band 
with a width of ~2 eV. 

8. We discuss briefly the role of the exponential "tails" 
on-and-off switching of the hybridization. We assumed 
that the tunnelling processes are instantaneously switched 

on (off). However, the actual time dependence of the hy- 
bridization has besides a flat section also exponentially in- 
creasing and decreasing sections. We can estimate the con- 
tribution from the exponential "tails" using the results 
obtained by Rosen and zenerlo who considered the charge 
transfer effect for a two-level system for an arbitrary reso- 
nance defect A=EI  -EZ. The authors of Ref. 10 obtained a 
formula which can satisfactorily be applied in a wide range 
of hybridization time-dependences V( t) : 

where P is the charge transfer probability. 
One can, in particular, obtain from this expression the 

well known Demkov formula: 

where y is a characteristic time for the exponential de- 
crease, which is valid in the case of a small resonance 
defect A [A(V(O), where V(0) is the maximum value of 
the hybridization reached in the flat section]. 

An analysis of Eq. (37) shows that if the flat section of 
the function V(t) extends further than or of the order of 
the characteristic time for the interaction switching-off, 
taking the exponential "tails" into account makes only a 
small contribution to the amplitude of the oscillations and 
does not introduce new frequency dependences. 

9. The main result of the work done here is the analysis 
of the most general case occurring when a single-level sys- 
tem interacts with a bounded band of allowed states. In the 
case of an empty or completely filled band the analysis then 
reduces to considering the retarded Green function 
G La(r), the most general structure of which is given by 
Eq. (28). 

An interesting fact, caused by the finiteness of the 
band, is the appearance in the function GLa(r) of terms 
describing effective states with energies coinciding in posi- 
tion with the band edges which interfere with the formed 
quasistationary and localized states and lead to n( co ) be- 
ing an oscillating function of the interaction time (recip- 
rocal of the velocity). It is important that the presence of 
such effective states can lead to a non-exponential decay of 
the atomic state. 

We obtained Eq. (35) which enabled us to carry out 
an analysis in the case of a partially filled band. Using the 
"broad band" example we showed that in that case, apart 
from n( oo ) oscillations due to terms occurring additively 
in GLa(r), oscillations connected with the presence of a 
sharp boundary of the Fermi distribution are also possible. 

The authors are grateful to B. A. Volkov for useful 
hints in discussions of this paper. 
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