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The critical behavior of the radius of a facet of a smectic A drop near the nematic-smectic A 
phase transition and near the liquid-smectic A phase transition is examined theoretically. 
Near the nematic-smectic A phase transition, the drop radius has a behavior R - rvl , where 
r is proportional to the deviation of the temperature from the transition temperature, 
and v, is the critical exponent of the transverse correlation radius. The critical exponent for 
the facet radius is the same as that for the elastic modulus B only in the case of 
isotropic scaling. Near the liquid-smectic A phase transition point, the facet radius has a 
behavior R -A~ '~ ,  where A is the size of the gap in the correlation function of the short-wave 
density field. 

INTRODUCTION 

The nematic-smectic A phase transition is one of the 
most interesting from the theoretical standpoint, since fluc- 
tuations of the director play an important role along with 
fluctuations of the order parameter near this transition. 
The director fluctuations are analogous in many ways to 
fluctuations of the electromagnetic field near a supercon- 
ducting phase transition.'-' The consequences of an influ- 
ence of director fluctuations have not been clarified theo- 
retically. It is essentially impossible to study the de Gennes 
model,' which describes this phase transition on the basis 
of an E expansion, since the term of second order in E is 
numerically larger than the first in the renormalization- 
group equations.3 In other words, there is no hope that the 
first terms of an E expansion of the renormalization-group 
equations will give a valid description of the situation. 

It thus become necessary to consider all situations 
which are possible in principle: 

1. The fluctuations of the director convert the transi- 
tion into a first-order phase tran~ition.~ 
2a. The phase transition is a second-order phase tran- 

sition with distinctive natural exponents.' 
2b. The phase transition is a second-order phase tran- 

sition characterized by an anisotropic scaling.4 
The calorimetric data which are available on the vicinity of 
the triple point9 speak in favor of the first of these possi- 
bilities, although a continuous transition has been observed 
in most studies, at the experimental accuracy. Recent mea- 
surements put the heat-capacity index close to the helium 
value. '@14 

There are two possible ways to explain this phenome- 
non. First, the behavior of this system may depend strongly 
on the seed values of the parameters, and either scenario 1 
or scenario 2 will be realized, depending on the relation 
among these seed values. If it is scenario 2, the heat- 
capacity exponent turns out by chance to be close to the 

helium value (the exponent of the X-Y model). The sec- 
ond possibility is that scenario 1 is ultimately realized in all 
cases, but near the transition there is a significant interme- 
diate temperature interval in which the director fluctua- 
tions do not play an important role, so the system exhibits 
helium behavior. 

Further experimental data are required in order to 
choose between these two possibilities. Corresponding data 
can be extracted from experiments on the critical behavior 
of the dimensions of the facets on drops of a smectic phase 
near the nematic-smectic A transition.15 As we show be- 
low, the corresponding exponent can be expressed in terms 
of the basic independent exponents characterizing the 
phase transition. A comparison of the result found for a 
helium transition (the exponents for the X-Y model are 
well known) with experimental data can thus answer our 
question. The results of a comparison of this sort are pre- 
sented in the Conclusion to this paper. 

SHAPEOFADROP 

Let us consider the equilibrium shape of a drop of 
smectic A. Like ordinary  crystal^,'^ a smectic must have a 
flat face (a facet) parallel to the smectic layers. In contrast 
with ordinary crystals, however, the facet of the smectic is 
circular, because of the isotropy of the smectic layer. The 
facet of a drop of smectic A is thus characterized exclu- 
sively by its radius R, and it is the critical behavior of this 
radius in which we are interested here. Yet another impor- 
tant distinction between a smectic and an ordinary crystal 
is that the equilibrium shape is reached quickly. This speed 
is of assistance in experiments on smectics. 

Landau has shown1' that, from the theoretical stand- 
point, the presence of facets on the surface of a crystal 
stems from a singular behavior of the surface tension of the 
facet as a function of the orientation of the plane of this 
facet. The dependence is in turn a consequence of the pres- 
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ence of steps on the surface of the crystal. The same argu- 
ments apply to a facet on the surface of a smectic, so we 
will use Landau's ideas below. 

For small values of the angle 8, between the plane of 
the facet and the smectic layers, the surface tension can be 
written as 

u=ao+ bn. (1) 

Here n is the number of steps per unit length, which for 
small angles is given by 

where d is the distance between layers. The parameter b in 
( 1 ) determines the excess energy associated with the pres- 
ence of one step on the surface of the drop. The corrections 
to (1) for the interaction of steps at small values of 6, i.e., 
at a low step density n, can be ignored. 

It follows from ( 1 ) that the value 8 = 0 corresponds to 
a point at which the derivative of the function u(8) is 
discontinuous. We know that the linear size of a facet is 
directly proportional to the jump in the derivative da/d6, 
i.e., to the value of b/d (Refs. 17 and 18). 

Since the distance between layers in a smectic, d, is basi- 
cally insensitive to the proximity to the transition point, 
the critical behavior of R is determined primarily by the 
critical dependence of the step energy b. 

It is easy to see that an estimate of the quantity b will 
be the same as an estimate of the energy of an edge dislo- 
cation in the interior of a smectic, so a step may be thought 
of as an edge dislocation emerging at the surface. The en- 
ergy of the dislocation, on the other hand, can be expressed 
in terms of the smectic's elastic moduli B and K (Ref. 19), 
which have a known critical behavior. The elastic energy of 
a smectic is 

The subscripts 11 and 1 in (3) mean the directions par- 
allel and perpendicular to the director n. 

To calculate the energy of the dislocation we need to 
specify boundary conditions [e.g., u ( x  + - co ) = 0, 
u ( x +  co ) =6] and to determine the distribution u ( r )  cor- 
responding to an extremum of the elastic energy. For our 
purposes it is sufficient to derive an estimate of the dislo- 
cation from dimensional considerations. The energy of a 
dislocation per unit length of the dislocation, fdis], can 
evidently be estimated from 

Using 

we easily find the following estimate of the radius of the 
facet: 

f disl 
R -7 -- - Bdll /III d d  

The parameters Ill and I1 in (5) can be estimated as the 
correlation radii 

If the nematic-smectic A phase transition is a second-order 
transition, the quantities B, rcll , and rcl have the following 
behavior near the transition point: 

where T= 1 - T/TN-A. Using 

we find q = 2v1 - VII for the critical exponent of the elastic 
modulus B. For the facet radius R we thus find the asymp- 
totic behavior 

The experimental data indicate that the critical expo- 
nents for the nematic-smectic A transition often have the 
standard values for the universality class of the X-Y 
model.14 We then find the following value of the critical 
exponent for R: 

The value 0.45 *0.1 was found for the critical expo- 
nent of a facet radius by Bechhoefer et a1. l5 They men- 
tioned that this value is dose in magnitude to the critical 
exponent for the elastic modulus B. As can be seen from 
(7), the critical exponents for the elastic modulus B and 
the face radius R are the same only in the case of isotropic 
scaling. The specific value found for the exponent in Ref. 
15 is apparently not very accurate, since there were only a 
few experimental points, and they were scattered over an 
interval of 20". If an anisotropic scaling prevails in the 
system, the exponent of the facet radius will no longer be 
universal, and it will depend on the values of the exponents 
for the correlation radii (Ref. 20, for example). 

Expression (5) can be used to study a weak, first-order 
liquid-smectic phase transition; this transition was also 
studied in Ref. 15. For this transition the following esti- 
mates hold: 

where A is the size of the gap in the correlation function of 
the short-wave density field, p(r  ) = Z,p(q)exp(iqr), 

In the case of a weak first-order phase transition, the facet 
radius thus varies in accordance with 
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This result can be used to express the R (7) dependence in 
terms of the A(r) dependence. The latter can be derived in 
weak-crystallization theory (for example) or extracted 
from x-ray measurements. 
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