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The problem of pure liquid boiling in a gravitational field is solved. The energy conservation 
law in the boiling fluid is formulated. The height dependence of the distribution function 
of buoyant bubbles is investigated, taking into account energy conservation. It is shown that 
one of two scenarios is realized, depending on the extent of superheating. Bubbles 
collapse at a finite height when the amount of superheating is slight. Above the critical 
amount of superheating, a process is established in which the bulk of the energy flux is 
transported by bubbles. The decrease in their number, in inverse proportion to height, 
is balanced by the increasing energy of an isolated bubble. 

1. In the present paper the boiling problem of a pure 
liquid is treated. Boiling is a special case of first-order 
phase transitions. The general theory of nucleation is dis- 
cussed in Refs. 1-3. The current status of the problem is 
discussed, for example, in the reviews of Refs. 4 and 5. 

Unlike other phase transitions, in the boiling process 
bubble buoyancy plays an important role. The buoyancy is 
accompanied by energy transport. For this reason it is re- 
quired to solve simultaneously the kinetic evolution equa- 
tion of the bubble distribution function and the energy 
conservation equation. 

The given problem is similar to the coalescence prob- 
lem in supersaturated solutions, treated by Lifshitz and 
Sle~ov."~ The coalescence process occurs with conserva- 
tion of the number of dissolved particles, causing the su- 
persaturation of the solution to decrease with time. In our 
case the energy of the bubble and fluid system is conserved. 
The corresponding conservation law is formulated in Sec. 
2, where it is shown that energy pumping from the growing 
supercritical bubbles in the fluid generates an increase in 
the extent of superheating. The self-heating can be termi- 
nated with thermal explosion. The bubble buoyancy stabi- 
lizes the process due to heat transport from the superheat- 
ing site. The corresponding time-independent problem is 
solved in Secs. 3-6. It will be shown that the boiling pro- 
cess varies according to the extent of fluid superheating at 
the bottom of the container. Bubble buoyancy leads either 
to disappearance of superheating at a finite height with 
subsequent collapse of all bubbles, or to an asymptotic 
behavior similar to coalescence. 

Preliminary results of this study were presented in the 
Riga ~onference.~ 

2. Consider initially the time evolution of the bubble 
distribution in size R, neglecting the gravity field. In this 
case the boiling process of a pure liquid is similar to coa- 
lescence of nuclei in solutions. 

The evolution of the distribution function f (t,R) is 
described by the equation of continuity 

For weak superheating bubbles have macroscopic 

sizes. This makes it possible to omit the term in (1) cor- 
responding to "diffusion" in space of small sizes in the 
parameter l/n&, where n, is the density of molecular 
vapor, and R, is the critical radius (see below). 

The rate of bubble growth in a weakly superheated 
pure fluid is 

Here c is a quantity of the order of the speed of sound in 
the vapor, Ro=2a/p, a is the surface stress coefficient, and 
A is the extent of nonequilibrium (superheating) : 

where q is the heat of molecular vapor formation, p, is the 
saturated vapor pressure, and Tb is the boiling tempera- 
ture. Taking into account thermal conductivity and viscos- 
ity, the validity limits of expression (2) are discussed in 
detail in Ref. 3. 

If the system is thermally isolated, the extent of non- 
equilibrium A is time-dependent, and an additional condi- 
tion needs to be introduced so as to solve Eq. ( 1 ). One 
must relate A(t) to the distribution function. In a super- 
saturated solution such a condition was obtained from the 
conservation law of the number of particles of the dissolved 
material.ls2 For a superheated pure fluid this role is played 
by the energy conservation law 

The first term on the right hand side is the superheating 
energy of the fluid itself, and C is its heat capacity. The 
second term is the bubble energy. The energy of a single 
bubble 

is maximum at R=Rc (RC=RdA is the critical size), and 
becomes negative for R > !R~. 

It is assumed that the evaporation and condensation 
processes are adiabatic, so that the increase in the bubble 
entropy during its growth is fully balanced by the decrease 
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in the fluid entropy. For this reason the heat of vapor 
formation is not included in the bubble energy (5). 

Using expressions (2) and ( 5 ) ,  we find the rate of 
change of the bubble energy 

This implies that in a superheated fluid bubbles extract 
energy both in dissipation (R <R,) and in growth 
(R > R,), and superheat the surrounding fluid layer. This 
is qualitatively distinct from the evolution of nuclei in a 
supersaturated solution, in which supercritical nuclei de- 
crease the solution concentration, while subcritical ones 
increase it. 

Differentiate Eq. (4) with respect to time: 

Using (6), one thus obtains 

It is seen that a superheated fluid with bubbles under 
thermally insulating conditions is self-heated and, what is 
more, the extent of superheating A and the saturated vapor 
pressure p, increase. We emphasize that this derivation re- 
fers to a constant volume system. The system pressure p 
increases with increasing temperature. The competition of 
pressures p( t )  and p,(t) determines whether thermal ex- 
plosion takes place, or a weakly superheated state occurs 
with slowly increasing temperature and pressure. 

3. In a more realistic statement of the boiling problem 
the heat is supplied to the bottom of the container and 
departs through the upper surface of the fluid. Bubbles are 
created at the bottom surface and depart with the velocity 

determined by equating the Archimedes and Stokes forces. 
The distribution function and the energy start depend- 

ing on the height coordinate z. Their simultaneous evolu- 
tion is described by the system of equations 

af  a a -+- (if +% (R f =o, at az 

Here E is the energy density at height z [see Eq. (4)]. The 
quantity Q is the energy flux density 

where the first term on the right hand side is the heat flux 
in the fluid, and x is the heat conduction coefficient. The 

last term in (12) is the bubble energy flux. It is assumed 
that superheating is slight, and that convective energy 
transport can be neglected. 

Consider steady boiling. In this problem the continuity 
equation ( 10) acquires the form 

It is seen that the height plays the role of time, and the 
bubble flux zf-that of the distribution function. For su- 
perheating independent of height Eq. (13) has a simple 
solution 

The shape of the function F is given by the distribution 
shape at z=0. The solution gives the physically obvious 
result-bubbles having a size less than the critical radius 
R, collapse at a height of order zA . Larger bubbles increase 
as z"~. 

Consider now the height dependence of the extent of 
superheating and of R,. We neglect heat departure through 
the lateral walls. The energy flux ( 12) is then constant, and 
is independent of height. Its value Q is given by the heat 
supplied to the bottom of the container. In the notation 

Eqs. ( 12), ( 13 ) acquire the form 

The physical meaning of the parameter B is the relation 
between the thermal fluxes in the fluid and bubbles. If the 
main thermal flux is transported by the fluid, then B% 1 
holds. As follows from Eq. ( 17), the ratio A/B- h5 (o)/Q 
determines the "fast" cooling of the fluid. 

4. To simplify the analysis of the system evolution, 
consider nucleation at the bottom of bubbles of identical 
size. In this case the distribution function is 

and Eqs. ( 16) and ( 17) reduce to the ordinary differential 
equations 
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FIG. 1. Evolution trajectories of a system of bubbles of 
identical size, solid lines. The critical curve (23) is shown 
by the dashed line. Explanation in text. 

To the left of this curve we have dy/dt > 0, and the extent 
(20) of superheating increases with "time," namely height. To 

the right of this curve the extent of superheating drops. 
The nature of the trajectory is determined by the ratio 

(21) A/B.ForA~BandB>1,almosteverywhereinthe(x,y) 
plane one has the obvious solution 

with initial conditions dy/dt=l- B/A, x(t) zconst. (24) 

y(0) = 1, x(0) =xo. (22) If the initial bubble size is sufficiently large, a > @, then 
It follows from Eq. (22) that the nature of the trajectory the trajectory Passes horizon tall^ to the critical curve, and 
x(y) differs to the right and the left of the critical curve for Y+O it approaches a s ~ m ~ t o t i c a l l ~  either its upper 
x*(y), on which j = O .  The critical curve equation is (see branch x*z3/2y, or its lower, tending to the point 0. In 
Fig. 1): the first case one has the asymptotic law 
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Forxo < f i  the trajectory is horizontal up to y=0, except 
for the region xo < A/B, when the trajectory emerges from 
the abscissa at a finite value of y. 

Thus, when the bottom of the container is preheated 
and the energy flux is large, the fluid cooling is basically 
determined by the thermal conductivity, and the bubble 
size hardly changes until the whole energy flux is trans- 
ported to the bubbles. Subsequently, either the asymptotic 
regime (25) is reached, or the fluid cools off to the boiling 
temperature following a finite time. In the latter case bub- 
bles collapse either for a finite superheat value, or later, 
when y < 0. 

The region in which the curve (23) affects the trajec- 
tory is extended for decreasing energy flux as the ratio A/B 
increases. At the same time the beam of trajectories lost to 
the point ,/% is narrowed down. 

As seen from Eq. (21), for A)B and B > the 
extent of superheating varies slowly in comparison with the 
rate of bubble growth. If the initial size is xo < 1, bubbles 
collapse at a height of the order of zA . For xo > 1 the bub- 
bles initially grow. At the same time the critical size l/y 
increases due to cooling. The asymptotic regime starts 
when the critical size is comparable with the bubble radius. 
Figure 1 provides the results of numerical solution of the 
system (20), (21) for the ratio A/B= 10 and B=2. 

For 0 < B < the critical curve (23) intersects 
the line of initial values y= 1. A region of xo values appears 
on the left of the critical curve, where the bubble energy 
flux exceeds the total energy flux B, while the thermal flux 
in the fluid becomes negative (is directed downward). As a 
result the extent of superheating near the bottom is en- 
hanced in proportion to the bubble buoyancy. In the case 
A( B the bubble size changes little initially: x(y) zconst. 
The trajectory approaches the critical curve later on, and 
for xo > it turns upwards and intersects it. As a result 
the trajectory appears in the cooling region of the fluid 
(dy/dt < 0), tending to the ordinate asymptotically close to 
the upper branch x*(y). If the intersection point of x(y) 
and x*(y) is located below x = m, the trajectory fur- 
ther tends to the abscissa. If the initial bubble size xo is 
above or below the critical curve, fluid cooling starts from 
the very same origin, and the problem reduces to the pre- 
ceding one. The nature of the trajectory does not change 
for A> B. The system evolution for the case B=0.1 and 
A/B= 10 is presented in Fig. lb. 

It is now assumed that B < 0 holds. This implies that 
the heat source is located on top. In this case the critical 
curve (21) is a monotonically decreasing function. Again, 
for simplicity we assume A( I B I .  If the initial value xo is 
located above the critical curve, dy/dt < 0 [see Eqs. (2 1 ) , 
(23)], the heat flux in the fluid turns upwards, the extent of 
superheating drops with increasing height, and the preblem 
reduces to the preceding one. For xo < x* ( 1 ) the tempera- 
ture gradient is initially positive. An increase in the extent 
of superheating leads to redistribution of the total energy 
flux, directed downwards, in the bubbles. The temperature 
gradient vanishes (the intersection of the trajectory and of 
the critical curve at the point y* > 1 ). Subsequently, fluid 
cooling starts again with increasing height, and the process 

acquires the former asymptotic character. It is only for 
xo(l that the trajectory departs from the abscissa. The 
bubbles have disappeared. The extent of superheating in- 
creases with further height increase, but bubbles are not 
newly generated, since the probability of fluctuating nucle- 
ation of bubbles in a pure fluid is very low. For increasing 
ratio A/ I B I the trajectories in the (x,y) plane become 
more vertical, and the transition boundaries from one re- 
gime to another are shifted, but the qualitative pattern does 
not change (see Fig. lc). 

5. Consider now the system evolution when the initial 
size distribution of bubbles is continuous. Two paths of 
system evolution are also possible in this case: either the 
fluid cools so fast that the extent of superheating A van- 
ishes at a finite height and boiling stops, or A approaches 
zero asymptotically and the energy flux in the bubbles is 
conserved. 

As in the case of single-size bubbles, the solution of 
system ( 16)-( 18) is easily analyzed in two limiting cases: 
A(IBI andA)IBI. LetA(IB1. The shape ofthedis- 
tribution function then varies substantially more slowly 
than the superheating. Therefore, the energy flux of bub- 
bles S(y) depends linearly on the quantity y, increasing 
from S(1) to S(0). If S(0)  < B holds, the system super- 
heating is lost after a finite time [at height z z  (A/B)zd 
and boiling ceases. If S (  1 ) < B < S(0) holds, the process 
initially occurs as in the preceding case. Almost the whole 
energy flux then transfers to the bubbles, initiating the as- 
ymptotic phase considered in the next section. According 
to ( 17), S (  1 ) > B implies dy/dt > 0 and superheating in- 
creases with height at the first phase. This derivative then 
changes sign, initiating cooling and either transition to the 
asymptotic regime, or bubble collapse. 

In the opposite limit A ) I B 1 the superheating initially 
changes slowly in comparison with the evolution of the 
bubble distribution function. At the first phase all subcrit- 
ical nuclei collapse, while the supercritical ones increase 
rapidly and create an energy flux directed downwards. As 
a result superheating starts dropping rapidly, and the as- 
ymptotic regime is started. It is seen that when the ratio 
A/ I B I is large the asymptotic phase is initiated following 
substantial rearrangement of the initial distribution func- 
tion. Therefore, this boiling phase depends weakly on both 
the initial distribution and on the value of the total energy 
flux B. 

For an arbitrary ratio of A to B the system (16)-(18) 
was solved numerically. The initial distribution function 
was selected in the form x* exp( -x/xO). It was found that 
when B >  10 the boundary between the two evolution 
paths is located on the line Az45B and is independent of 
the xo value. When B < 10 holds, the boundary value A for 
xo < 1 is located below this line, and for xo > 1 above it. 

6. The asymptotic regime of boiling recalls the coales- 
cence process in supersaturated  solution^,'^^ and can be 
described within the Lifshitz-Slezov theory. In this super- 
heating phase y = A/A (0) is a monotonically decreasing 
function of height. Following Refs. 1, 2, it is convenient to 
introduce the new variables 
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*=R$ f =p/y. 

In these variables Eqs. ( 16)-( 18) acquire the form: 

w=u- ~ u - ~ ( u -  1), (28) 

Following Refs. 1, 2, for long "times" 7 the parameter 
(29) is close to its asymptotic limit yo. Neglecting the 
dependence of y on r, the solution of Q. (27) is obtained 
in the form 

To satisfy condition (30), the function F must have the 
form 

with 

For large u the integral s in (3 1 ) increase as In( u), so in 
the general case the integral (33) diverges at the upper 
limit. An exception is the value 

when the "velocity" w in the direction of the origin of 
coordinates is positive for all u, and is tangent to the ab- 
scissa at the point uo. In this case the integral s becomes 
infinite when u > uo, the distribution function (3 1 ) be- 
comes localized in the interval (O,uo), and condition (33) 
is satisfied. 

Thus, if the system enters the asymptotic path of evo- 
lution, at large heights the parameter is y~256/27,  the 
critical size increases as z1l4 [see (29)], and the number of 
nuclei drops as z-', i.e., 

In this case the distribution function has the universal 
shape (31 ), (32), and is localized in the interval (o,$,). 
Though the energy flux is constant, the bubble energy 
drops as z-I". This is related to the fact that most bubbles 
are on the order of the critical size, and for this size the 
buoyancy rate (9) is proportional to z-'I2. In this connec- 
tion it must be noted that the assumption adopted concern- 
ing fluid immobility is violated not only for substantial 
superheating, when the fluid is entrained by a large number 
of buoyant bubbles, but also if the superheating is less than 
A,= when the velocity z(R,) is comparable with the 
speed of sound. 

7. In conclusion we provide the characteristic param- 
eter values, introduced above, for boiling water if A= 
N= 1018 ~ m - ~ ,  Q= 10' erg/cm2 sec: 

n,=; 1019 cmh3, ~ , - - ,10-~  cm, z*--,10-~ cm, 
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